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Outline

 Platform-based Design

* Three examples

— Pico-radio network
— Unmanned Helicopter controller

— Engine Controller
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Platform-Based Design Definitions:
Three Perspectives
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System Definition

Total CDMA Solution

Ericsson's Internet Services Platform is a new tool for helping
CDMA operators and service providers deploy Mobile
Internet applications rapidly, efficiently and cost-effectively
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Platform Architectures: Philips Nexperia
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Platform Types

“Communication Centric Platform”
— SONIC, Palmchip

— Concentrates on communication
— Delivers communication framework plus peripherals

— Limits the modeling efforts

Source: G. Martin
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Platform-types:

“Highly-Programmable Platform (Virtex-ll Pro)”
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Quote from Tully of Dataquest 2002

“This scenario places a premium on
. And it discourages
system architects from locking differential advantages
iInto hardware. Hence, the industry will gradually swing
away from its tradition of starting a new SoC design for
each new application, instead
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Outline

 Platforms: a historical perspective

* Three examples

— Pico-radio network
— Unmanned Helicopter controller

— Engine Controller
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“Platform-Based Design” concept as a major
paradigm shift for Gigascale design

s EETIMES -

+ THE INDUSTRY SOURCE FOR ENGINEERS & TECHNICAL MANAGERS WORLDWIDE e AL NET WO RK

RIBE | MEWSLETTER | SONTACT | MEDIA KIT

Platform-based design: A choice, not a panacea

defines a
platform as....."

EE DESIGN

EETimes, 201 Year Anniversary Edition, September 12, 2002
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Platform-based Design
(ASV Triangles 1998)
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— hide unnecessary details

— expose only relevant parameters for the next step
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Principles of Platform methodology:
Meet-in-the-Middle

 Top-Down:
— Define a set of abstraction layers

— From specifications at a given level, select a solution
(controls, components) in terms of components (Platforms) of
the following layer and propagate constraints

 Bottom-Up:

— Platform components (e.g., micro-controller, RTOS,
communication primitives) at a given level are abstracted to a
higher level by their functionality and a set of parameters that
help guiding the solution selection process. The selection
process is equivalent to a covering problem if a common
semantic domain is used.
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Formal Mechanism

All Platform behaviors
(non deterministic)

Platform Instance

Semantic Architecture Platform
Platform
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Function Space

Platform Instance
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lapped Instance

Admissible Refinements
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ASYV Triangles Revisited
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Analog Platforms

Platform characterization
— Analog Constraint Graphs (= conservative configuration space)
— Adaptive characterization process
Developed tools for:
— platform characterization - client/server framework with GUI
— system exploration > AP specific Simulated Annealing Optimizer
Case studies:
— UMTS receiver

— 2 LNA platforms, 1 mixer
— Interface modeling LNA <-> mixer
— Behavioral models validation
— System exploration
— ADC residue amplifier
— OpAmp platform
— Digital calibration for linearity
— Exploration of power-linearity tradeoffs (with calibration)
Next steps:

— Automatic generation of conservative ACG schedules
— New case studies with the BWRC (Picoradio base-band power estimation)
— Extension to higher level platforms
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Platform-Based Implementation

*Platforms eliminate /large loop iterations for affordable design

*Restrict design space via new forms of regularity and structure that
surrender some design potential for lower cost and first-pass success

*The number and location of intermediate platforms is the essence of
platform-based design

Application Application
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Platform-Based Design Process

« Different situations will employ different intermediate platforms, hence
different layers of regularity and design-space constraints

» Critical step is defining intermediate platforms to support:

— Predictability: abstraction to facilitate higher-level optimization

— Verifiability: ability to ensure correctness

Architecture
Logic Regularity
Component Regularity and Reuse
Regular Fabrics

Geometrical Regularity Silicon Implementation
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Implementation Process

» Skipping platforms can potentially produce a superior design by enlarging
design space — if design-time and product volume ($) permits

* However, even for a large-step-across-platform flow there is a benefit to
having a lower-bound on what is achievable from predictable flow

Architecture
Logic Regularity v
Component Regularity and Reuse A
Regular Fabrics

Geometrical Regularity Silicon Implementation
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Tight Lower Bounds

* The larger the step across platforms, the more difficult to: predict
performance, optimize at system level, and provide a tight lower
bound

» Design space may actually be smaller than with smaller steps since it
is more difficult to explore and restriction on search impedes complete
design space exploration

* The predictions/abstractions may be so wrong that design
optimizations are misguided and the lower bounds are incorrect!
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Design Flow

* Theory:
— Initial intent captured with declarative notation

— Map into a set of interconnected component:

— Each component can be declarative or operational
— Interconnect is operational: describes how components interact

— Repeat on each component until implementation is reached

— Choice of model of computations for component and interaction is
already a design step!

— Meta-model in Metropolis (operational) and Trace Algebras
(denotational) are used to capture this process and make it rigorous
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Consequences

There is no difference between HW and SW. Decision comes later.

HW/SW implementation depend on choice of component at the
architecture platform level.

Function/Architecture co-design happens at all levels of
abstractions

— Each platform is an “architecture” since it is a library of usable

components and interconnects. It can be designed independently of a
particular behavior.

— Usable components can be considered as “containers’, i.e., they can
support a set of behaviors.

— Mapping chooses one such behavior. A Platform Instance is a mapped
behavior onto a platform.

— A fixed architecture with a programmable processor is a platform in this
sense. A processor is indeed a collection of possible bahaviours.

— A SW implementation on a fixed architecture is a platform instance.
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A discipline for Platform-based Design
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Articulation Points, Research and Business
Opportunities

Distributed Systems and Embedded Software

Traditional Flows

Silicon Impliementation Platform

Design for Manufacturing

EE249Fall04




Outline

 Platforms: a historical perspective

 Platform-based Design

— Pico-radio network
— Unmanned Helicopter controller

— Engine Controller
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Hierarchical Application of the Paradigm:
The Fractal Nature of Design!

Network
Level Performance analysis

Radio Node e
Level
Performance analysis

Functional & Performance .
M Od u I e Requirements
Level
Performance analysis
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Network Platforms

NP components:

node

— link

® port
¥ NPIT/O port

* Network Platform Instance: set of resources (links and protocols)
that provide Communication Services

 Network Platform API; set of Communication Services

o Communication Service: transfer of messages between ports
« Event trace defines order of send/receive methods
* Quality of service
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Network Platforms

Communication
Services:

- CS1:
v Lossy Broadcast
Error rate: 33%
v > Max Delay: 30 ms

- CS2:

NP components:

’ node

.

port

®  NPIIO port
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Network Platforms API

NP API: set of Communication Services (CS)

* CS: message transfer defined by ports, messages, events
(modeling send/receive methods), event trace

 Example

« CS: lossy broadcast transfer of messages m1, m2, m3

« Quality of Service (platform parameters):

 Losses: 1 (m3)
— -

« Error rate: 33% *® —_—

 In-order delivery
¢« D(m3) =t(€r23) —t (€s3) = 30 ms eveo
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Picoradio Network Platforms

Application Layer

Power <100 uW, BER~ 0

Network Layer

¢S‘——>C§
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Platform-Based Design of Unmanned
Aerial Vehicles

Synchronous Synchronous
UAV System Embedded Platform Based
Control UAV Design

Platform-
Based Design
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Il. UAV System: Sensor Overview

* Goal: basic autonomous flight
R-50 Hovering * Need: UAV with allowable payload

 Need: combination of GPS and
Inertial Navigation System (INS)

GPS (senses using triangulation)
» Qutputs accurate position data
» Available at Jow rate & has jamming

INS (senses using accelerometer and
rotation sensor)

» Qutputs estimated position with
unbounded drift over time

« Available at high rate

Fusion of GPS & INS provides needed
high rate and accuracy

oL 8
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Il. UAV System: Sensor Configurations

« Sensors may differ in:

« Data formats, initialization schemes (usually requiring
some bit level coding), rates, accuracies, data
communication schemes, and even data types

« Differing Communication schemes requires the most
custom written code per sensor

Software Request
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lll. Synchronous Control

« Advantages of time-triggered framework:
— Allows for and

— These are important properties for safety critical systems like the
UAV controller

— Timing guarantees ensure
« Disadvantages:
— is introduced
— Stale data will be used by the controller
— Implementation and system integration become more difficult

» Platform design allows for time-triggered framework for the UAV
controller

— Use Giotto as a middleware to ease implementation:
— provides real-time guarantees for control blocks
— handles all processing resources

— Handles all I/O procedures
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Platform Based Design for UAVs

 Goal

— Abstract details of
sensors, actuators, and
vehicle hardware from
control applications

 How?
- Synchronous
Embedded Programming
Language (i.e. Giotto)
Platform

Control Applications
(Matlab)

Synchronous
Embedded
Programming

Application Space

Architectural
Space

Sensors: INS, GPS
Xctuators: Servo Interface
Vehicles: Yamaha R-50/R-

Max
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Platform Based Design for UAVs

 Device Platform

— Isolates details of
sensor/actuators from
embedded control programs

Communicates with each
sensor/actuator according to
its own data format, context,

and timing requirements Synchronous

Embedded
Presents an AP| to embedded pr.(gr.zmr:mg

control programs for
accessing sensors/actuators

Control Applications

Application Space
« Language Platform Architectural

— Provides an environment in Space

which synchronous control
programs can be scheduled Sensors: INS GPS

and run Xctuators: Servo Interface

Assumes the use of generic Vehicles: Yamaha R-50/R-
data formats for Max
sensors/actuators made

possible by the Device

Platform

Device
Platform
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Power Train Design
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The Design Problem

Given a set of specifications from a car manufacturer,

— Find a set of algorithm to control the power train

— Implement the algorithms on a mixed mechanical-electrical
architecture (microprocessors, DSPs, ASICs, various sensors and
actuators)
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Power-train control system design

Specifications given at a high level of abstraction
Control algorithms design

Mapping to different architectures using performance
estimation techniques and automatic code generation from
models

Mechanical/Electronic architecture selected among a set of
candidates
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HW/SW implementation architecture

- a set of possible hw/sw implementations is given
by
- M different hw/sw implementation architectures
- for each hw/sw implementation architecture m {i,...,M},

- a set of hw/sw implementation parameters z
- e.g. CPU clock, task priorities, hardware frequency, etc.

» an admissible set X, of values for z

S

CCP

Application KWP 2000

Specific Transport
Software

Application Programming Interface  OSEK

/O drivers & handlers com
> 20 configurable modules

uControllers Library
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The classical and the ideal design approach

» Classical approach (decoupled design)
— controller structure and parameters (r e R, ¢ € X,)
— are selected in order to satisfy system specifications
— implementation architecture and parameters (m € M, z € X))

— are selected in order to minimize implementation cost

» Ideal approach

— both controller and architecture options (r, ¢, m, z) are selected at the same
time to

— minimize implementation cost

— satisfy system specifications
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Platform stack & design refinements

Application Space

| N
l

-
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DESIGN

Power-train System Specifications
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Implementation abstraction layer

we introduce an

— which exposes ONLY the implementation non-idealities that affect the
performance of the controlled plant, e.g.

— control loop delay
— quantization error
— sample and hold error

— computation imprecision

at the implementation abstraction layer, platform instances are
described by

— S different implementation architectures

— for each implementation architecture s €{1....,5},

— a set of implementation parameters p

— e.g. latency, quantization interval, computation errors, etc.

— an admissible set X, of values for p
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Platform stack & design refinements

P

Platform 1

e platform 1

instance functional layer

control struc. & par. (r,c)

implem. struc. & par. (s,p)
platform 2

Platform 2 - instance

implementation abstraction layer

hw/sw implementation
struc & par. (m,z)

implementation hw/sw implementation layer

Platform n .
instances
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Effects of controller implementation in the

controlled plant performance

d y

—
u

| Plant W

< Aw -
+ Au
Ar
nll

modeling of implementation non-idealities:

A

—  Au, Ar, Aw : time-domain perturbations

— control loop delays, sample & hold , etc.

— n,,n_,n, :value-domain perturbations

— quantization error, computation imprecision, etc.

EE249Fall04



Choosing an Implementation Architecture

Application Space (Features)

Apphcatlon Instances

Platform
Specification
Application Software
System ] Platform API

Platform ‘

(no ISA)
. @,
Platform Design Space

Exploration

Network Communicatior

Networ! ommunicatien

Device Drivers

Platform Instance . Input devices Output Devices

Architectural Space (Performance)
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Application effort

Application code (lines)

Calibrations (Bytes)

Total Modified

Total Modified

71,000 1,400 (2%)

28.000 20

Modifications due to compiler change

Device drivers SW(lines)

Calibrations (Bytes)

Total Modified

Total Modified

6000 1200 (20%)

1000 10

Modifications due to compiler change and new BIOS interface

First Application: 10 months

Successive Application: 4 months




