Part2: Platform-based Design

Application Space

Application Instance

Platform
Mapping

System (Software + Hardware)
Platform
Platform
Design-Space
Export

ASV Triangles

EE249Fall04

Outline

 Platform-based Design

* Three examples

— Pico-radio network
— Unmanned Helicopter controller

— Engine Controller

EE249Fall04

Platform-Based Design Definitions:
Three Perspectives

EE249Fall04

System Definition

Total CDMA Solution

Ericsson's Internet Services Platform is a new tool for helping
CDMA operators and service providers deploy Mobile
Internet applications rapidly, efficiently and cost-effectively

EE249Fall04

Platform Architectures: Philips Nexperia

MIPS™ TriMedia™

MIPS CPU
D$

< >
DEVICE IP BLOCK

\Ve
N\
VAN

Streaming and
Platform Software

<>
DEVICE IP BLOCK

DVP SYSTEM SILICON

Hardware Software

Source: Philips

EE249Fall04

Platform Types

“Communication Centric Platform”
— SONIC, Palmchip

— Concentrates on communication
— Delivers communication framework plus peripherals

— Limits the modeling efforts

Source: G. Martin

EE249Fall04

Platform-types:

“Highly-Programmable Platform (Virtex-ll Pro)”

Virtex-Il Pro
production
3/02

EXILINX

I
. N
i
| -
-
"
¥
"1 T
i
I
|

IBM Wind River
PowerPC O/S

7100 Mindspeed RocketChips 3/01

SkyRail mixed-signal IP
gigabit serial /0O acquisition
9/00 10/00

EE249Fall04

Quote from Tully of Dataquest 2002

“This scenario places a premium on
. And it discourages
system architects from locking differential advantages
iInto hardware. Hence, the industry will gradually swing
away from its tradition of starting a new SoC design for
each new application, instead

EE249Fall04

Outline

 Platforms: a historical perspective

* Three examples

— Pico-radio network
— Unmanned Helicopter controller

— Engine Controller

EE249Fall04

“Platform-Based Design” concept as a major
paradigm shift for Gigascale design

s EETIMES -

+ THE INDUSTRY SOURCE FOR ENGINEERS & TECHNICAL MANAGERS WORLDWIDE e AL NET WO RK

RIBE | MEWSLETTER | SONTACT | MEDIA KIT

Platform-based design: A choice, not a panacea

defines a
platform as....."

EE DESIGN

EETimes, 201 Year Anniversary Edition, September 12, 2002

EE249Fall04

Platform-based Design
(ASV Triangles 1998)

Tensilica
Xtensa
pace RISC CPU

Sonics Silicon Backplane
Platform
= Speech External
Mappl ng Samples UART Bus
Interface
Interface Interface

Protocol

Export

Platform
Design-Space Wirel
gn-Sp P cecsor Baseband
Bus

Iatform Instance
Architect Space

- Platform: library of resources defining an abstraction layer

Xilinx ot ADCR

FPGA Frontend
i 1 DAC

— hide unnecessary details

— expose only relevant parameters for the next step
EE249Fall04

Principles of Platform methodology:
Meet-in-the-Middle

 Top-Down:
— Define a set of abstraction layers

— From specifications at a given level, select a solution
(controls, components) in terms of components (Platforms) of
the following layer and propagate constraints

 Bottom-Up:

— Platform components (e.g., micro-controller, RTOS,
communication primitives) at a given level are abstracted to a
higher level by their functionality and a set of parameters that
help guiding the solution selection process. The selection
process is equivalent to a covering problem if a common
semantic domain is used.

EE249Fall04

Buses Operating

System Behavior System Platform

e ————

Evaluation of
Architectural
and
Partitioning
Calibration . Alternatives

evelopmen

After Sales
Service

EE249Fall04

rmal Mechanism

Function Space

Function

Closure under
constrained composition
(term algebra)

Library Elements

eyaat

L - e

:N« By } :&'.f Xe) et :g ¥ 3, ¥ r‘:???t'??&#i’:‘rw: 1 :;N'r!‘r
w..'.oxw.v-... RN -

Gl S

- LB &_.,.... Ll

Hit ;'!'ru :':’:"r‘;':‘t-mg’:':.-; friza0222s
oo

Sy e :~ vers

EE249Fall04

Formal Mechanism

All Platform behaviors
(non deterministic)

Platform Instance

Semantic Architecture Platform
Platform

EE249Fall04

Function

Function Space

Platform Instance

Semantic Platform

lapped Instance

Admissible Refinements

EE249Fall04

ASYV Triangles Revisited

ﬂ)plicationm\
Applicatign Instance

Platform
Mapping

- Semantic Platform

Platform
Design-Space
Export

Iatform Instance
Archltectural S

EE249Fall04

Analog Platforms

Platform characterization
— Analog Constraint Graphs (= conservative configuration space)
— Adaptive characterization process
Developed tools for:
— platform characterization - client/server framework with GUI
— system exploration > AP specific Simulated Annealing Optimizer
Case studies:
— UMTS receiver

— 2 LNA platforms, 1 mixer
— Interface modeling LNA <-> mixer
— Behavioral models validation
— System exploration
— ADC residue amplifier
— OpAmp platform
— Digital calibration for linearity
— Exploration of power-linearity tradeoffs (with calibration)
Next steps:

— Automatic generation of conservative ACG schedules
— New case studies with the BWRC (Picoradio base-band power estimation)
— Extension to higher level platforms

EE249Fall04

Platform-Based Implementation

*Platforms eliminate /large loop iterations for affordable design

*Restrict design space via new forms of regularity and structure that
surrender some design potential for lower cost and first-pass success

*The number and location of intermediate platforms is the essence of
platform-based design

Application Application

‘V
‘ ‘
-y

EE249Fall04

Platform-Based Design Process

« Different situations will employ different intermediate platforms, hence
different layers of regularity and design-space constraints

» Critical step is defining intermediate platforms to support:

— Predictability: abstraction to facilitate higher-level optimization

— Verifiability: ability to ensure correctness

Architecture
Logic Regularity
Component Regularity and Reuse
Regular Fabrics

Geometrical Regularity Silicon Implementation
EE249Fall04

Implementation Process

» Skipping platforms can potentially produce a superior design by enlarging
design space — if design-time and product volume ($) permits

* However, even for a large-step-across-platform flow there is a benefit to
having a lower-bound on what is achievable from predictable flow

Architecture
Logic Regularity v
Component Regularity and Reuse A
Regular Fabrics

Geometrical Regularity Silicon Implementation
EE249Fall04

Tight Lower Bounds

* The larger the step across platforms, the more difficult to: predict
performance, optimize at system level, and provide a tight lower
bound

» Design space may actually be smaller than with smaller steps since it
is more difficult to explore and restriction on search impedes complete
design space exploration

* The predictions/abstractions may be so wrong that design
optimizations are misguided and the lower bounds are incorrect!

EE249Fall04

Design Flow

* Theory:
— Initial intent captured with declarative notation

— Map into a set of interconnected component:

— Each component can be declarative or operational
— Interconnect is operational: describes how components interact

— Repeat on each component until implementation is reached

— Choice of model of computations for component and interaction is
already a design step!

— Meta-model in Metropolis (operational) and Trace Algebras
(denotational) are used to capture this process and make it rigorous

EE249Fall04

Consequences

There is no difference between HW and SW. Decision comes later.

HW/SW implementation depend on choice of component at the
architecture platform level.

Function/Architecture co-design happens at all levels of
abstractions

— Each platform is an “architecture” since it is a library of usable

components and interconnects. It can be designed independently of a
particular behavior.

— Usable components can be considered as “containers’, i.e., they can
support a set of behaviors.

— Mapping chooses one such behavior. A Platform Instance is a mapped
behavior onto a platform.

— A fixed architecture with a programmable processor is a platform in this
sense. A processor is indeed a collection of possible bahaviours.

— A SW implementation on a fixed architecture is a platform instance.

EE249Fall04

A discipline for Platform-based Design

Application

/

Programming Model:

Models/Estimators Kernels/Benchmarks

e

Architecture(s)

Microarchitecture(s)

el ~\

Cycle-speed, Functional Blocks,
power, area Interconnect

™~ ~

S ——

Circuit Fabric(s)

Manufacturing Interface

/ AN

Delay, variation, Basic device &
SPICE models interconnect structures

/

Silicon Implementation

EE249Fall04

Articulation Points, Research and Business
Opportunities

Distributed Systems and Embedded Software

Traditional Flows

Silicon Impliementation Platform

Design for Manufacturing

EE249Fall04

Outline

 Platforms: a historical perspective

 Platform-based Design

— Pico-radio network
— Unmanned Helicopter controller

— Engine Controller

EE249Fall04

Hierarchical Application of the Paradigm:
The Fractal Nature of Design!

Network
Level Performance analysis

Radio Node e
Level
Performance analysis

Functional & Performance .
M Od u I e Requirements
Level
Performance analysis

EE249Fall04

Network Platforms

NP components:

node

— link

® port
¥ NPIT/O port

* Network Platform Instance: set of resources (links and protocols)
that provide Communication Services

 Network Platform API; set of Communication Services

o Communication Service: transfer of messages between ports
« Event trace defines order of send/receive methods
* Quality of service

EE249Fall04

Network Platforms

Communication
Services:

- CS1:
v Lossy Broadcast
Error rate: 33%
v > Max Delay: 30 ms

- CS2:

NP components:

’ node

.

port

® NPIIO port

EE249Fall04

Network Platforms API

NP API: set of Communication Services (CS)

* CS: message transfer defined by ports, messages, events
(modeling send/receive methods), event trace

 Example

« CS: lossy broadcast transfer of messages m1, m2, m3

« Quality of Service (platform parameters):

 Losses: 1 (m3)
— -

« Error rate: 33% *® —_—

 In-order delivery
¢« D(m3) =t(€r23) —t (€s3) = 30 ms eveo

EE249Fall04

Picoradio Network Platforms

Application Layer

Power <100 uW, BER~ 0

Network Layer

¢S‘——>C§

S

Multi-hop

EE249Fall04

Platform-Based Design of Unmanned
Aerial Vehicles

Synchronous Synchronous
UAV System Embedded Platform Based
Control UAV Design

Platform-
Based Design

EE249Fall04

Il. UAV System: Sensor Overview

* Goal: basic autonomous flight
R-50 Hovering * Need: UAV with allowable payload

 Need: combination of GPS and
Inertial Navigation System (INS)

GPS (senses using triangulation)
» Qutputs accurate position data
» Available at Jow rate & has jamming

INS (senses using accelerometer and
rotation sensor)

» Qutputs estimated position with
unbounded drift over time

« Available at high rate

Fusion of GPS & INS provides needed
high rate and accuracy

oL 8

EE249Fall04

Il. UAV System: Sensor Configurations

« Sensors may differ in:

« Data formats, initialization schemes (usually requiring
some bit level coding), rates, accuracies, data
communication schemes, and even data types

« Differing Communication schemes requires the most
custom written code per sensor

Software Request

EE249Fall04

lll. Synchronous Control

« Advantages of time-triggered framework:
— Allows for and

— These are important properties for safety critical systems like the
UAV controller

— Timing guarantees ensure
« Disadvantages:
— is introduced
— Stale data will be used by the controller
— Implementation and system integration become more difficult

» Platform design allows for time-triggered framework for the UAV
controller

— Use Giotto as a middleware to ease implementation:
— provides real-time guarantees for control blocks
— handles all processing resources

— Handles all I/O procedures
EE249Fall04

Platform Based Design for UAVs

 Goal

— Abstract details of
sensors, actuators, and
vehicle hardware from
control applications

 How?
- Synchronous
Embedded Programming
Language (i.e. Giotto)
Platform

Control Applications
(Matlab)

Synchronous
Embedded
Programming

Application Space

Architectural
Space

Sensors: INS, GPS
Xctuators: Servo Interface
Vehicles: Yamaha R-50/R-

Max

EE249Fall04

Platform Based Design for UAVs

 Device Platform

— Isolates details of
sensor/actuators from
embedded control programs

Communicates with each
sensor/actuator according to
its own data format, context,

and timing requirements Synchronous

Embedded
Presents an AP| to embedded pr.(gr.zmr:mg

control programs for
accessing sensors/actuators

Control Applications

Application Space
« Language Platform Architectural

— Provides an environment in Space

which synchronous control
programs can be scheduled Sensors: INS GPS

and run Xctuators: Servo Interface

Assumes the use of generic Vehicles: Yamaha R-50/R-
data formats for Max
sensors/actuators made

possible by the Device

Platform

Device
Platform

EE249Fall04

Power Train Design

COOm

Hand Held & o .
Device i Mobile

Interface = - - Phone
ey] Appllcatlon Transceiver

[Processing
Data-Bus v

FM/DAB
Radio

EE249Fall04

The Design Problem

Given a set of specifications from a car manufacturer,

— Find a set of algorithm to control the power train

— Implement the algorithms on a mixed mechanical-electrical
architecture (microprocessors, DSPs, ASICs, various sensors and
actuators)

EE249Fall04

Power-train control system design

Specifications given at a high level of abstraction
Control algorithms design

Mapping to different architectures using performance
estimation techniques and automatic code generation from
models

Mechanical/Electronic architecture selected among a set of
candidates

EE249Fall04

HW/SW implementation architecture

- a set of possible hw/sw implementations is given
by
- M different hw/sw implementation architectures
- for each hw/sw implementation architecture m {i,...,M},

- a set of hw/sw implementation parameters z
- e.g. CPU clock, task priorities, hardware frequency, etc.

» an admissible set X, of values for z

S

CCP

Application KWP 2000

Specific Transport
Software

Application Programming Interface OSEK

/O drivers & handlers com
> 20 configurable modules

uControllers Library

EE249Fall04

S &
(ope)

0O
=
— O
(2}

OSEK
RTOS

J31aWoyoe |
J81awiopO

The classical and the ideal design approach

» Classical approach (decoupled design)
— controller structure and parameters (r e R, ¢ € X,)
— are selected in order to satisfy system specifications
— implementation architecture and parameters (m € M, z € X))

— are selected in order to minimize implementation cost

» Ideal approach

— both controller and architecture options (r, ¢, m, z) are selected at the same
time to

— minimize implementation cost

— satisfy system specifications

EE249Fall04

Platform stack & design refinements

Application Space

| N
l

-

EE249Fall04

DESIGN

Power-train System Specifications

7

Power-train Syste .
. Functional
Behavior o
Decomposition

Capture System
Architecture

\, \ J
wgw - r ‘
Functional Partitioning and Capture
Optimization ElectricalMechanical
Network .
Architecture
Operation
Refinement
. N
Operational Capture Electronic
Architecture (ES Architecture
J
Design Mechanical *
Components
HWISW —> Verify
partitioning Performance
HW and SW .
berformanceB: Components | ' Verify Component
Annotatio Implementation)

Functions

Operations

and Macro Architecture

Electronic
System
Mapping

Components

A2

A3

A4

AS

SR,

> ¢
QY

Implementation abstraction layer

we introduce an

— which exposes ONLY the implementation non-idealities that affect the
performance of the controlled plant, e.g.

— control loop delay
— quantization error
— sample and hold error

— computation imprecision

at the implementation abstraction layer, platform instances are
described by

— S different implementation architectures

— for each implementation architecture s €{1....,5},

— a set of implementation parameters p

— e.g. latency, quantization interval, computation errors, etc.

— an admissible set X, of values for p

EE249Fall04

Platform stack & design refinements

P

Platform 1

e platform 1

instance functional layer

control struc. & par. (r,c)

implem. struc. & par. (s,p)
platform 2

Platform 2 - instance

implementation abstraction layer

hw/sw implementation
struc & par. (m,z)

implementation hw/sw implementation layer

Platform n .
instances

EE249Fall04

Effects of controller implementation in the

controlled plant performance

d y

—
u

| Plant W

< Aw -
+ Au
Ar
nll

modeling of implementation non-idealities:

A

— Au, Ar, Aw : time-domain perturbations

— control loop delays, sample & hold , etc.

— n,,n_,n, :value-domain perturbations

— quantization error, computation imprecision, etc.

EE249Fall04

Choosing an Implementation Architecture

Application Space (Features)

Apphcatlon Instances

Platform
Specification
Application Software
System] Platform API

Platform ‘

(no ISA)
. @,
Platform Design Space

Exploration

Network Communicatior

Networ! ommunicatien

Device Drivers

Platform Instance . Input devices Output Devices

Architectural Space (Performance)

EE249Fall04

Application effort

Application code (lines)

Calibrations (Bytes)

Total Modified

Total Modified

71,000 1,400 (2%)

28.000 20

Modifications due to compiler change

Device drivers SW(lines)

Calibrations (Bytes)

Total Modified

Total Modified

6000 1200 (20%)

1000 10

Modifications due to compiler change and new BIOS interface

First Application: 10 months

Successive Application: 4 months

