DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

ANNUAL REPORT

HETEROGENEOUS MODELING AND DESIGN

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA)

CONTRACTOR:

AGREEMENT NUMBER:

CONTRACT PERIOD:
DATE:

TITLE:

REPORT PERIOD:
SPONSOR:
TECHNICAL POC:

REPORT PREPARED BY:

COMPOSITE CAD PROGRAM

University of California at Berkeley
DAABO07-97-C-J007

11/18/96 - 11/31/99

May 31, 1999

Heter ogeneous M odeling And Design
11/15/97 - 11/15/98

Air Force Research Laboratory (AFRL)
James P. Hanna

Edward A. Lee

Principal Investigator: Edward A. Lee
Organization: University of California at Berkeley



Contents

1. Project Overview 4
1.1.Modeling and Design 4
1.2. Architecture Design 5
1.3.Models of Computation 6
1.3.1. Communicating Sequential Processes- CSP 7
1.3.2. Continuous Time- CT 7
1.3.3. Discrete-Events- DE7
1.3.4. Distributed Discrete Events - DDE 8
1.3.5. Discrete Time-DT 8
1.3.6. Finite-State Machines- FSM 8
1.3.7. Process Networks- PN 9
1.3.8. Synchronous Dataflow - SDF 9
1.3.9. Synchronous/Reactive - SR 10
1.4. Choosing Models of Computation 10
1.5.Visua Syntaxes 11
1.6. Ptolemy 11 11
1.6.1. Package Sructure 12
1.6.2. Overview of Key Classes 14
1.6.3. Capabilities14
2. Summary of Accomplishments 17
2.1. Task 1: Modular deployable design tools 17
2.1.1. Synchronization Infrastructure 17
2.1.2. Clustered Graphs 17
2.1.3. Type System 17
2.1.4. Actor Package 17
2.1.5. Data Encapsulation 18
2.1.6. Expression Language 18
2.1.7. Support packages 18
2.1.8. User Interface 18
2.1.9. Mutable Systems 19
2.2. Task 2: Domain-specific design tools 20
2.2.1. Process-Oriented Domains 20
2.2.2. Discrete-Event Domain 20
2.2.3. Continuous-Time Modeling 20
2.2.4. Sate Machines and Hybrid Systems 20
2.2.5. Web-Based Smulation of Embedded Software (UT Austin) 21
2.2.6. Automated Multi-Criteria Filter Optimization Framework (UT Austin) 22
2.3. Task 3: Heterogeneous interaction semantics 22
2.3.1. Multi-Domain Modeling 22
2.3.2. Time22
2.3.3. Data and Domain Polymorphism 23
2.3.4. Srictness 23
2.3.5. Interoperability 24
2.3.6. Design Flow Management 24
2.4. General Infrastructure 25

20of 42 Principal Investigator: Edward A. Lee



24.1. Software Practice 25
24.2. Support Software 27
24.3. Other Software 28
3. Software 29
3.1. Information dissemination Policy 29
3.2. Development Environment 29
3.3. Software Releases 29
Plansfor the next year 30
Technology Transfer 31
5.1. Hewlett-Packard 31
5.2.NASA 31
5.3. Cadence 32
5.4.BNED / Virtua Photonics 32
5.5. Philips 32
5.6. Cadabra 32
5.7. The MathWorks 33
5.8. Coyote Systems 33
5.9. Technologies LyreInc., 33
5.10.Improv Systems 33
5.11.TCL/TK & Java Tutoria 33
5.12.Cooperation with Other Groups at Berkeley 33
5.13.Cooperation with other Universities 34
6. Acknowledgments 36
6.1. Participants at Berkeley 36
6.1.1. Principal investigator 36
6.1.2. Professional staff 36
6.1.3. Post-doctoral researchers 36
6.1.4. Graduate students 36
6.1.5. Undergraduate students 36
6.2. Corporate Support 36
6.2.1. Sponsors 36
7. Publications 38
7.1. Journal Articles 38
7.2. Conference Papers 38
7.3. Technical Reports 38
7.4. Masters Reports 39
7.5.PhD Theses 39
7.6. Publications Produced under Subcontract at UT Austin 39
8. References4l

L

Heter ogeneous Modeling and Design 3of 42



1. Project Overview

The Heterogeneous Modeling and Design (HMAD) project studies heterogeneous modeling, sim-
ulation, and design of concurrent systems. The focus is on embedded systems, particularly those that
mix technologies, including for example analog and digital electronics, hardware and software, and
el ectronics and mechanical devices (including MEMSS, micro electromechanical systems). Thefocusis
aso on systems that are complex in the sense that they mix widely different operations, such as signal
processing, feedback control, sequentia decision making, and user interfaces.

1.1 MODELING AND DESIGN

Modeling is the act of representing a system or subsystem formally. A model might be mathemati-
cal, inwhich caseit can be viewed as a set of assertions about properties of the system such asitsfunc-
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more
models of the system and refining the models until the desired functionality is obtained within a set of
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed on a design. For instance, they may describe amechanical system that is not under design, but
must be controlled by an electronic system that is under design.

Executable models are sometimes called simulations, an appropriate term when the executable
modé is clearly distinct from the system it models. However, in many electronic systems, amodel that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

Embedded software is software that resides in devices that are not first-and-foremost computers. It
is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc. A technically active person probably interacts regularly with more pieces of embedded
software than conventional software.

A major emphasis in the Ptolemy project is on the methodology for defining and
producing embedded software together with the systems within which it is embed-
ded.

Executable models are constructed under a model of computation, which is the set of “laws of
physics” that govern the interaction of components in the model. If the model is describing a mechani-
cal system, then the model of computation may literally be the laws of physics. More commonly, how-
ever, it is a set of rules that are more abstract, and provide a framework within which a designer builds
models. A set of rules that govern the interaction of components is callesirtingics of the model of
computation. A model of computation may have more than one semantics, in that there might be dis-
tinct sets of rules that impose identical constraints on behavior.

The choice of model of computation depends strongly on the type of model being constructed. For
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example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is common in programming languages such as C, C++,
Java, and Matlab will be adequate. For modeling a mechanical system, the semantics needs to be able
to handle concurrency and the time continuum, in which case a continuous-time model of computation
such that found in Simulink, Saber, Hewlett-Packard’s ADS, and VHDL-AMS is more appropriate.

The ability of a model to mutate into an implementation depends heavily on the model of compu-
tation that is used. Some models of computation, for example, are suitable for implementation only in
customized hardware, while others are poorly matched to customized hardware because of their intrin-
sically sequential nature. Choosing an inappropriate model of computation may compromise the qual-
ity of design by leading the designer into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affect the quality of a system design.

For embedded systems, the most useful models of computation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneous sources of stimuli. In addition, they operate in a timed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correctness of the
response.

The objective of Ptolemy software is to support the construction and interoper abil-
ity of executable models that are built under a wide variety of models of computa-
tion.

Ptolemy Il takes a component view of design, in that models are constructed as a set of interacting
components. A model of computation governs the semantics of the interaction, and thus imposes a dis-
cipline on the interaction of the interaction of components.

Component-based design in Ptolemy Il involves disciplined interactions between
components governed by a model of computation.

1.2 ARCHITECTURE DESIGN

Architecture description languages (ADL ), such as Wright [27] and Rapide [45], focus on formal -
isms for describing the rich sorts of component interactions that commonly arise in software architec-
ture. Ptolemy Il, by contrast, might be called an architecture design language, because its objectiveis
not so much to describe existing interactions, but rather to promote coherent software architecture by
imposing some structure on those interactions. Thus, while an ADL might focus on the compatibility
of asender and receiver in two distinct components, we would focus on a pattern of interactions among
aset of components. Instead of, for example, verifying that a particular protocol in a single port-to-port
interaction does not deadlock [27], we would focus on whether an assemblage of components can
deadlock.

It is arguable that our approach is less modular, because components must be designed to the
framework. Typical ADLs can describe pre-existing components, whereas in Ptolemy Il, such pre-
existing components would have to wrapped in Ptolemy |1 actors. Moreover, designing components to
a particular interface may limit their reusability, and in fact the interface may not match their needs
well. All of these are valid points, and indeed a magjor part of our research effort isto ameliorate these
limitations. The net effect, we believe, is an approach that is much more powerful than ADLSs.
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First, we design components to be domain polymorphic, meaning that they can interact with other
components within awide variety of domains. In other words, instead of coming up with an ADL that
can describe a number of different interaction mechanisms, we have come up with an architecture
where components can be easily designed to interact in a number of ways. We argue that this makes
the components more reusable, not less, because disciplined interaction within a well-defined seman-
ticsis possible. By contrast, with pre-existing components that have rigid interfaces, the best we can
hope for is ad-hoc synthesis of adapters between incompatible interfaces, something that is likely to
lead to designs that are very difficult to understand and to verify. Whereas ADLs draw an analogy
between compatibility of interfaces and type checking [27], we use a technique much more powerful
than type checking alone, namely polymorphism.

Second, to avoid the problem that a particular interaction mechanism may not fit the needs of a
component well, we provide arich set of interaction mechanisms embodied in the Ptolemy || domains.
The domains force component designers to think about the overall pattern of interactions, and trade off
uniformity for expressiveness. Where expressiveness is paramount, the ability of Ptolemy Il to hierar-
chically mix domains offers essentially the same richness of more ad-hoc designs, but with much more
discipline. By contrast, a non-trivial component designed without such structure is likely to use a
melange, or ad-hoc mixture of interaction mechanisms, making it difficult to embedded it within a
comprehensible system.

Third, whereas an ADL might choose a particular model of computation to provide it with a for-
mal structure, such as CSP for Wright [27], we have devel oped a more abstract formal framework that
describes models of computation at a meta level [2]. This means that we do not have to perform awk-
ward translations to describe one model of computation in terms of another. For example, stream based
communication via FIFO channels are awkward in Wright [27].

We make these ideas concrete by describing the models of computation implemented in the
Ptolemy Il domains.

1.3 MODELS OF COMPUTATION

Thereis arich variety of models of computation that deal with concurrency and time in different
ways. Each gives an interaction mechanism for components. In this section, we describe models of
computation that are implemented in Ptolemy Il domains, plus a couple of additional ones that are
planned. Our focus has been on models of computation that are most useful for embedded systems. All
of these can lend a semantics to the same bubble-and-arc, or block-and-arrow diagram shown in figure
1. Ptolemy Il models are (clustered, or hierarchical) graphs of the form of figure 1, where the nodes are
entities and the arcs are relations. For most domains, the entities are actors (entities with functionality)
and the relations connecting them represent communication between actors.

FIGURE 1. A single syntax (bubble-and-arc or block-and-arrow diagram)
can have a number of possible semantics (interpretations).
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1.3.1 Communicating Sequential Processes - CSP

In the CSP domain (communicating sequential processes), created by Neil Smyth [12], actors rep-
resent concurrently executing processes, implemented as Java threads. These processes communicate
by atomic, instantaneous actions called rendezvous (or sometimes, synchronous message passing). If
two processes are to communicate, and one reaches the point first at which it is ready to communicate,
then it stalls until the other process is ready to communicate. “Atomic” means that the two processes
are simultaneously involved in the exchange, and that the exchange is initiated and completed in a sin-
gle uninterruptable step. Examples of rendezvous models include Heame'sinicating sequential
processes (CSP) [39] and Milner’sal culus of communicating systems (CCS) [49]. This model of com-
putation has been realized in a number of concurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware
resources. A key feature of rendezvous-based models is their ability to cleanly model nondeterminate
interactions. The CSP domain implements both conditional send and conditional receive. It also
includes an experimental timed extension.

1.3.2 Continuous Time - CT

In the CT domain (continuous time), created Jie Liu [13], actors represent components that interact
via continuous-time signals. Actors typically specify algebraic or differential relations between inputs
and outputs. The job of the director in the domain is to find a fixed-point, i.e., a set of continuous-time
functions that satisfy all the relations.

The CT domain includes an extensible set of differential equation solvers. The domain, therefore,
is useful for modeling physical systems with linear or nonlinear algebraic/differential equation descrip-
tions, such as analog circuits and many mechanical systems. Its model of computation is similar to that
used in Simulink, Saber, and VHDL-AMS, and is closely related to that in Spice circuit simulators.

Since many solvers iterate to a fixed point solution, the CT domain has stressed the Ptolemy Il
infrastructure to ensure that it supports speculative computation and rollback.

Embedded systems frequently contain components that are best modeled using differential equa-
tions, such as MEMS and other mechanical components, analog circuits, and microwave circuits.
These components, however, interact with an electronic system that may serve as a controller or a
recipient of sensor data. This electronic system may be digital. Joint modeling of a continuous sub-
system with digital electronics is known amxed signal modeling. The CT domain is designed to
interoperate with other Ptolemy domains, such as DE, to achieve mixed signhal modeling. To support
such modeling, the CT domain models of discrete events as Dirac delta functions. It also includes the
ability to precisely detect threshold crossings to produce discrete events.

Physical systems often have simple models that are only valid over a certain regime of operation.
Outside that regime, another model may be appropriataodal mode is one that switches between
these simple models when the system transitions between regimes. The CT domain interoperates with
the FSM domain to create modal models.

1.3.3 Discrete-Events - DE

In the discrete-event (DE) domain, created by Lukito Muliadi, the actors communicate via
sequences of events placed in time, along a real time lineveAinconsists of &alue andtime stamp.

Heter ogeneous Modeling and Design 7 of 42



Actors can either be processes that react to events (implemented as Java threads) or functions that fire
when new events are supplied. This model of computation is popular for specifying digital hardware
and for simulating telecommunications systems, and has been realized in alarge number of simulation
environments, simulation languages, and hardware description languages, including VHDL and Ver-
ilog.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of timeis problematic. In particular, it over-specifies (or over-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. Every event is placed precisely on aglobally consistent time line.

The DE domain implements a fairly sophisticated discrete-event simulator. DE simulators in gen-
eral need to maintain a global queue of pending events sorted by time stamp (thisis called apriority
gueue). This can be fairly expensive, since inserting new events into the list requires searching for the
right position at which to insert it. The DE domain uses a calendar queue data structure [31] for the
globa event queue. A calendar queue may be thought of as a hashtable that uses quantized time as a
hashing function. As such, both enqueue and dequeue operations can be done in time that is indepen-
dent of the number of eventsin the queue.

In addition, the DE domain gives deterministic semantics to simultaneous events, unlike most
competing discrete-event simulators. This means that for any two events with the same time stamp, the
order in which they are processed can be inferred from the structure of the model. Thisis done by ana-
lyzing the graph structure of the model for data precedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion given by their precedence relation-
ships. VHDL, for example, uses delta time to accomplish the same objective.

1.3.4 Distributed Discrete Events - DDE

The distributed discrete-event (DDE) domain, created by John Davis, can be viewed either as a
variant of DE or as a variant of PN (described below). Still highly experimental, it addresses a key
problem with discrete-event modeling, namely that the global event queue imposes a central point of
control on amodel, greatly limiting the ability to distribute a model over anetwork. Distributing mod-
els might be necessary either to preserve intellectual property, to conserve network bandwidth, or to
exploit parallel computing resources.

The DDE domain maintains alocal notion of time on each connection between actors, instead of a
single globally consistent notion of time. Each actor is a process, implemented as a Java thread, that
can advance its local time to the minimum of the local times on each of its input connections. The
domain systematizes the transmission of null events, which in effect provide guarantees that no event
will be supplied with atime stamp less than some specified value.

1.3.5 Discrete Time- DT

The discrete-time (DT) domain, which has not been written yet, will extend the SDF domain
(described below) with a notion of time between tokens. Communication between actors takes the
form of a sequence of tokens where the time between tokens is uniform. Multirate models, where dis-
tinct connections have distinct time intervals between tokens, will be supported.

1.3.6 Finite-Sate Machines - FSV

The finite-state machine (FSM) domain, written by Xiaojun Liu (but not yet released), isradically
different from the other Ptolemy |1 domains. The entities in this domain represent not actors but rather
state, and the connections represent transitions between states. Execution isa strictly ordered sequence
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of state transitions. The FSM domain leverages the built-in expression language in Ptolemy 1l to eval-
uate guards, which determine when state transitions can be taken.

FSM models are excellent for control logic in embedded systems, particularly safety-critical sys-
tems. FSM models are amenabl e to in-depth formal analysis, and thus can be used to avoid surprising
behavior.

FSM models have a number of key weaknesses. First, at avery fundamental level, they are not as
expressive as the other models of computation described here. They are not sufficiently rich to
describe all partial recursive functions. However, this weakness is acceptable in light of the formal
analysis that becomes possible. Many questions about designs are decidable for FSM s and undecidable
for other models of computation. A second key weaknessis that the number of states can get very large
even in the face of only modest complexity. This makes the models unwiel dy.

The latter problem can often be solved by using FSMs in combination with concurrent models of
computation. This was first noted by David Harel, who introduced that Statecharts formalism. State-
charts combine a loose version of synchronous-reactive modeling (described below) with FSMs [36].
FSMs have also been combined with differential equations, yielding the so-called hybrid systems
model of computation [37].

The FSM domain in Ptolemy |l can be hierarchically combined with other domains. We call the
resulting formalism “*charts” (pronounced “starcharts”) where the star represents a wildcard [11].
Since most other domains represent concurrent computations, *charts model concurrent finite state
machines with a variety of concurrency semantics. When combined with CT, they yield hybrid systems
and modal models. When combined with SR (described below), they yield something close to State-
charts. When combined with process networks, they resemble SDL [56].

1.3.7 Process Networks - PN

In the process networks (PN) domain, created by Mudit Goel [14], processes communicate by
sending messages through channels that can buffer the messages. The sender of the message need not
wait for the receiver to be ready to receive the message. This style of communication is often called
asynchronous message passing. There are several variants of this technique, but the PN domain specif-
ically implements one that ensures determinate computation, namely Kahn process networks [40].

In the PN model of computation, the arcs represent sequences of data values (tokens), and the enti-
ties represent functions that map input sequences into output sequences. Certain technical restrictions
on these functions are necessary to ensure determinacy, meaning that the sequences are fully specified.
In particular, the function implemented by an entity mugtreBx monotonic. The PN domain realizes
a subclass of such functions, first described by Kahn and MacQueen [41] bldokheg reads ensure
monotonicity.

PN models are loosely coupled, and hence relatively easy to parallelize or distribute. They can be
implemented efficiently in both software and hardware, and hence leave implementation options open.
A key weakness of PN models is that they are awkward for specifying control logic, although much of
this awkwardness may be ameliorated by combining them with FSM.

The PN domain in Ptolemy Il has a highly experimental timed extension. This adds to the blocking
reads a method for stalling processes until time advances. We anticipate that this timed extension will
make interoperation with timed domains much more practical.

1.3.8 Synchronous Dataflow - SDF

The synchronous dataflow (SDF) domain, created by Steve Neuendorffer, handles regular compu-
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tations that operate on streams. Dataflow models, popular in signal processing, are a specia case of
process networks (for the compl ete explanation of this, see [43]). Dataflow models construct processes
of a process network as sequences of atomic actor firings. Synchronous dataflow (SDF) is a particu-
larly restricted specia case with the extremely useful property that deadlock and boundedness are
decidable. Moreover, the schedule of firings, parallel or sequential, is computable statically, making
SDF an extremely useful specification formalism for embedded real -time software and for hardware.

Certain generalizations sometimes yield to similar analysis. Boolean dataflow (BDF) models
sometimes yield to deadlock and boundedness analysis, although fundamentally these questions are
undecidable. Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt to stat-
icaly answer questions about deadlock and boundedness. Neither a BDF nor DDF domain has yet
been written in Ptolemy 1. Process networks (PN) servesin the interim to handle computations that do
not match the restrictions of SDF.

1.3.9 Synchronous/Reactive - SR

In the synchronous/reactive (SR) model of computation [28], the arcs represent data valuesthat are
aligned with global clock ticks. Thus, they are discrete signals, but unlike discrete time, a signal need
not have avalue at every clock tick. The entities represent relations between input and output values at
each tick, and are usually partial functions with certain technical restrictions to ensure determinacy.
Examples of languages that use the SR model of computation include Esterel [30], Signal [29], Lustre
[32], and Argos [46].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, aso
because of the tight synchronization, some applications are overspecified in the SR model, limiting the
implementation alternatives. Moreover, in most realizations, modularity is compromised by the need
to seek aglobal fixed point at each clock tick. An SR domain has not yet been implemented in Ptolemy
I1, athough the methods used by Stephen Edwards in Ptolemy Classic can be adapted to this purpose
[33].

1.4 CHOOSING MODELS OF COMPUTATION

The rich variety of concurrent models of computation outlined in the previous section can be
daunting to a designer faced with having to select them. Most designers today do not face this choice
because they get exposed to only one or two. Thisis changing, however, asthe level of abstraction and
domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope with this heterogeneity.

An essentia difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be area number that advances uniformly, and placing events
on atime line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa-
tion[2].

A grand unified approach to modeling would seek a concurrent model of computation that serves
al purposes. This could be accomplished by creating a melange, a mixture of al of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.
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Another alternative would be to choose one concurrent model of computation, say the rendezvous
model, and show that al the others are subsumed as specia cases. Thisisrelatively easy to do, in the-
ory. It isthe premise of Wright, for example [27]. Most of these models of computation are sufficiently
expressive to be able to subsume most of the others. However, this fails to acknowledge the strengths
and weaknesses of each model of computation. Rendezvousis very good at resource management, but
very awkward for loosely coupled data-oriented computations. Asynchronous message passing is the
reverse, where resource management is avkward, but data-oriented computations are natural®. Thus,
to design interesting systems, designers need to use heterogeneous models.

1.5 VISUAL SYNTAXES

Visual depictions of electronic systems have always held a strong human appeal, making them
extremely effective in conveying information about a design. Many of the domains of interest in the
Ptolemy project use such depictions to completely and formally specify models.

One of the principles of the Ptolemy project is that visual depictions of systems can
help to offset the increased complexity that is introduced by heterogeneous model-

ing.

These visual depictions offer an alternative syntax to associate with the semantics of a model of com-
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they are judiciously combined with textual syntaxes.

Visual representations of models have a mixed history. In circuit design, schematic diagrams used
to be routinely used to capture al of the essential information needed to implement some systems.
Schematics are often replaced today by text in hardware description languages such as VHDL or Ver-
ilog. In other contexts, visua representations have largely failed, for example flowcharts for capturing
the behavior of software. Recently, anumber of innovative visual formalisms have been garnering sup-
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal of attention, and in fact is
used fairly extensively in the design of Ptolemy Il itself.

A subset of visual languages that are recognizable as “block diagrams” represent concurrent sys-
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essential if these diagrams are to be used
for system specification and design. Ptolemy Il supports exploration of the possible concurrency
semantics. A principle of the project is that the strengths and weaknesses of these alternatives make
them complementary rather than competitive. Thus, interoperability of diverse models is essential.

1.6 PTOLEMY II

Ptolemy Il offers a unified infrastructure for implementations of a number of models of computa-
tion. The overall architecture consists of a set of packages that provide generic support for all models
of computation and a set of packages that provide more specialized support for particular models of
computation. Examples of the former include packages that contain math libraries, graph algorithms,
an interpreted expression language, signal plotters, and interfaces to media capabilities such as audio.

1. Consider the difference between the telephone (rendezvous) and email (asynchronous message passing). If you
aretrying to schedule a meeting between four busy people, getting them all on a conference call would lead to a
quick resolution of the meeting schedule. Scheduling the meeting by email could take several days, and may in
fact never converge. Other sorts of communication, however, are far more efficient by email.
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Examples of the latter include packages that support clustered graph representations of models, pack-
ages that support executable models, and domains, which are packages that implement a particular
model of computation.

1.6.1 Package Sructure

The package structure is shown in figure 2. This is a UML package diagram. The name of each
package is in the tab at the top of each box. Subpackages are contained within their parent package.
Dependencies between packages are shown by dotted lines with arrow heads. For example, actor
depends on kernel.event which depends on kernel which depends on kernel.util. Actor also depends on
data and graph. Therole of each package is explained below.

actor

actor.gui

actor.lib
actor.process

actor.sched

actor.util

data

data.expr

domains
graph

gui
kernel

kernel.event
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This package supports executabl e entities that receive and send data through ports.
It includes both untyped and typed actors. For typed actors, it implements a sophis-
ticated type system that supports polymorphism. It includes the base class Director
for domain-specific classes that control the execution of a model.

This subpackageisalibrary of polymorphic actorswith user interface components,
plus some convenience base classes for applets and applications.

This subpackage is alibrary of polymorphic actors.

This subpackage provides infrastructure for domains where actors are processes
implemented on top of Java threads.

This subpackage provides infrastructure for domains where actors are statically
scheduled by the director.

This subpackage contains utilities that support directors in various domains. Spe-
cificaly, it contains asimple FIFO Queue and a sophisticated priority queue called
acalendar queue.

This package provides classes that encapsul ate and manipul ate data that is trans-
ported between actors in Ptolemy models.

This class supports an extensible expression language and an interpreter for that
language. Parameters can have values specified by expressions. These expressions
may refer to other parameters. Dependencies between parameters are handled
trangparently, asin a spreadsheet, where updating the value of onewill result in the
update of all those that depend on it.

This package contains one subpackage for each Ptolemy Il domain.

This package provides algorithms for manipulating and analyzing mathematical
graphs. Mathematical graphs are simpler than Ptolemy |1 clustered graphsin that
thereis no hierarchy, and arcs link exactly two nodes. This package is expected to
supply agrowing library of algorithms.

This package contains generically useful user interface components.

This package provides the software architecture for the key abstract syntax, clus-
tered graphs. The classes in this package support entities with ports, and relations
that connect the ports. Clustering iswhere acollection of entitiesis encapsulated in
asingle composite entity, and a subset of the ports of the inside entities are exposed
as ports of the cluster entity.

This package contains classes and interfaces that support controlled mutations of
clustered graphs. Mutations are modificationsin the topology, and in general, they
are permitted to occur during the execution of a model. But in certain domains,
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where maintaining determinacy is imperative, the director may wish to exercise
tight control over precisely when mutations are performed. This package supports
gueueing of mutation requests for later execution. It uses a publish-and-subscribe
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FIGURE 2. The package structure of Ptolemy I, without the domains.
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design pattern.

kernel.util  This subpackage of the kernel package provides a collection of utility classes that
do not depend on the kernel package. It is separated into a subpackage so that these
utility classes can be used without the kernel. The utilities include a collection of
exceptions, classes supporting named objects with attributes, lists of named
objects, a specialized cross-reference list class, and athread class that helps
Ptolemy keep track of executing threads.

math This package encapsulates mathematical functions and methods for operating on
matrices and vectors. It aso includes a complex number class and a class support-
ing fractions.

media This package encapsulates a set of classes supporting audio and image processing.

plot This package provides two-dimensiona signal plotting widgets.

schematic ~ This package provides atop-level interface to Ptolemy 1. A GUI can use the
classes in this package to gain access to Ptolemy |1 models.

1.6.2 Overview of Key Classes

Some of the key classes in Ptolemy 11 are shown in figure 3. Thisis a static structure diagramin
UML (unified modeling language). The key syntactic elements are boxes, which represent classes, the
hollow arrow, which indicates generalization, and other lines, which indicate association. Some lines
have asmall diamond, which indicates aggregation. The syntax of this diagram and the details of these
classes will be discussed in subsequent chapters.

Instances of all of the classes shown can have names; they all implement the Nameable interface.
Most of the classes generalize NamedObj, which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances of NamedObj.

Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the
primitives of the abstract syntax supported by Ptolemy I1. They will be fully explained in the kernel
chapter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by adding
support for clustered graphs. CompositeEntity extends ComponentEntity and represents an aggrega
tion of instances of ComponentEntity and ComponentRelation.

The Executable interface, explained in the actors chapter, defines objects that can be executed. The
Actor interface extends this with capability for transporting datathrough ports. AtomicActor and Com-
positeActor are concrete classes that implement this interface.

An executable Ptolemy |1 model consists of atop-level CompositeActor with an instance of Direc-
tor and an instance of Manager associated with it. The manager provides overall control of the execu-
tion (starting, stopping, pausing). The director implements a semantics of a model of computation to
govern the execution of actors contained by the CompositeActor.

Director is the base class for directors that implement models of computation. Each such director
is associated with a domain. We have defined in Ptolemy |1 directors that implement continuous-time
modeling (ODE solvers), process networks, synchronous datafl ow, discrete-event modeling, and com-
municating sequential processes.

1.6.3 Capabilities

Ptolemy Il is a second generation system. Its predecessor, Ptolemy Classic, still has many active
users and developers, and may continue to evolve for some time. Ptolemy |1 has a somewhat different
emphasis, and through its use of Java, concurrency, and integration with the network, is aggressively
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experimental. Some of the mgjor capabilities in Ptolemy 1l that we believe to be new technology in
modeling and design environments include:

Higher level concurrent design in Java™. Java support for concurrent design is very low level,

based on threads and monitors. Maintaining safety and liveness can be quite difficult [42]. Ptolemy
Il includes a number of domains that support design of concurrent systems at a much higher level
of abstraction, at the level of their software architecture.

Better modularization through the use of packages. Ptolemy Il is divided into packages that can be
used independently and distributed on the net, or drawn on demand from a server. This breaks with
tradition in design software, where tools are usually embedded in huge integrated systems with
interdependent parts.

Complete separation of the abstract syntax from the semantics. Ptolemy designs are structured as
clustered graphs. Ptolemy Il defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha-
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FIGURE 3. Some of the key classes in Ptolemy Il. These are definedkanrible kernel.util, and
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nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the
graphs.

< Improved heterogeneity. Ptolemy Classic provided a wormhole mechanism for hierarchically cou-
pling heterogeneous models of computation. This mechanism is improved in Ptolemy Il through
the use of opaque composite actors, which provide better support for models of computation that
are very different from dataflow, the best supported model in Ptolemy Classic. These include hier-
archical concurrent finite-state machines and continuous-time modeling technigues.

» Thread-safe concurrent execution. Ptolemy models are typically concurrent, but in the past, sup-
port for concurrent execution of a Ptolemy model has been primitive. Ptolemy Il supports concur-
rency throughout, allowing for instance for a model to mutate (modify its clustered graph
structure) while the user interface simultaneously modifies the structure in different ways. Consis-
tency is maintained through the use of monitors and read/write semaphores [39] built upon the
lower level synchronization primitives of Java.

» A software architecture based on object modeling. Since Ptolemy Classic was constructed, soft-
ware engineering has seen the emergence of sophisticated object modeling [48][53][55] and
design pattern [34] concepts. We have applied these concepts to the design of Ptolemy II, and they
have resulted in a more consistent, cleaner, and more robust design. We have also applied a simpli-
fied software engineering process that includes systematic design and code reviews [52].

e Atruly polymorphic type system. Ptolemy Classic supported rudimentary polymorphism through
the “anytype” particle. Even with such limited polymorphism, type resolution proved challenging,
and the implementation is ad-hoc and fragile. Ptolemy Il has a more modern type system based on
a partial order of types and monotonic type refinement functions associated with functional blocks.
Type resolution consists of finding a fixed point, using algorithms inspired by the type system in
ML [49].

« Domain-polymorphic actors. In Ptolemy Classic, actor libraries were separated by domain.
Through the notion of subdomains, actors could operate in more than one domain. In Ptolemy II,
this idea is taken much further. Actors with intrinsically polymorphic functionality can be written
to operate in a much larger set of domains. The mechanism they use to communicate with other
actors depends on the domain in which they are used. This is managed through a concept that we
call aprocess level type system.
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2. Summary of Accomplishments

The major accomplishments of the project are summarized in this section. Concrete deliverables
included monthly and annual reports, software, demonstrable technology transfer, and numerous publi-
cations, all of which have been posted on the web.

2.1 TASK 1: MODULAR DEPLOYABLE DESIGN TOOLS

2.1.1 Synchronization Infrastructure

Ptolemy |1 is multithreaded at its core. Its design assumes that multiple threads will be interacting
simultaneously within a Ptolemy model, or externally with other tools or interfaces. We have con-
structed a sophisticated synchronization mechanism that we call the workspace which makesit safe for
multiple threads to interact with the same data structures. This mechanism permits any number of
threads to simultaneously hold read permission on a workspace, and at most one thread to hold write
permission on the workspace. No thread can hold write permission if any other thread holds read or
write permission. Priority is given to threads wanting write permission, so that when dataisread, it is
as up-to-date as possible.

2.1.2 Clustered Graphs

The kernel package in Ptolemy Il supports an abstract syntax called “clustered graphs” for con-
structing modular models. In particular, it introduces the notiotravfsparent and opague ports,
which serve to hierarchically expose subsystem abstractions in a controlled way. Inferences such as the
width of connections (the number of channels) are automatically carried across these hierarchical
boundaries, as are type constraints.

2.1.3 Type System

The sophisticated Ptolemy Il type system, built by Yuhong Xiong, is loosely based on concepts
first embodied in the ML language. His design permits subsystems (including atomic actors) to define
constraints on type relationships between their inputs and outputs. An algorithm based on partial
orders resolves types so that all constraints are satisfied, or the constraints are determined to not be sat-
isfiable. His design supports a rich variety of polymorphic actors, and meshes with the actor package
to support mutable systems.

Yuhong's design adds a method typeConstraints() to the Actor interface. The default implementa-
tion in the AtomicActor class supports a broad class of polymorphic actors where the input type are
required to be at least as specific as the output types. The default implementation for the CompositeAc-
tor class collects type constraints from contained actors and forms constraints for the connections.

TypedlOPort is a new subclass of IOPort that stores the declared and resolved types for ports. The
Director class has a method resolveType() that solves the type constraints by calling a generic inequal-
ity solver.

2.1.4 Actor Package

The actor package, which provides basic support for flow of control and message passing, contin-
ues to mature. It provides base classes for actors, their ports, the directors (which manage the execution
of a domain-specific model), and a manager (which manages the overall execution in a domain-inde-
pendent way). A significant challenge was to ensure that multi-threaded models are controlled system-
atically from a central controller, and that exceptions are handled cleanly.
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The actor package includes an API for handling of time in aunified way across domains, including
those that do not have explicit notions of time in their semantics. This model permits a director in a
domain to suspend execution while requesting re-invocation at a specified time in the future. Even if
the parent domain does not include time in its semantics, as long as some domain above it in the hier-
archy does, then the director will be re-invoked as requested. The notion of time is kept consistent
across al timed domains without requiring untimed domains to explicitly manage it.

2.1.5 Data Encapsulation

The Ptolemy |l data package contains a set of classes that wrap data exchanged between actors. A
token isaunit of datain this package. It isimmutable, in that once created, its data value can never be
changed. This design proves especially convenient in a multithreaded environment, where it obviates
the need to synchronize threads that are modifying and/or reading data values. However, Jeff Tsay
showed that it comes at a non-trivial cost in performance.

2.1.6 Expression Language

Neil Smyth developed an expression parser for the data package that uses JavaCC (informally
called Jack), a"compiler-compiler" from Sun Microsystems. The expression parser is designed to sup-
port interrelated parameters (via a publish-and-subscribe model) and dynamically evaluated expres-
sionsin actors. This represents a major improvement over the expression parser in Ptolemy 0.

The intended use of the expression language is for specifying interlinked parameter values in a
model, for specifying guards on transitions in state machines, and for providing a convenient, inter-
preted scripting language for quick construction of actors.

2.1.7 Support packages

The math package now includes afairly complete complex number class, and a fairly incomplete
set of matrix, vector arithmetic, and signal processing classes.

The graph package contains an efficient graph representation and a small set of graph algorithms,
with emphasis on utilities for operating on lattices and complete partial orders (CPOs), which are
needed by the type system. The desigh emphasizes efficiency by representing the graph using an adja-
cency matrix, rather than a set of cross-referenced node and edge objects. But it also emphasizes con-
venient use by providing an interface in which arbitrary objects represent the nodes.

The plot package continues to improve slowly, although it is not a primary concern at this time
since its current capabilities are adequate for our purposes.

2.1.8 User Interface

We had a number of frustrations in our effort to build a user interface for Ptolemy 11, and as a net
result, we have de-emphasized this part of the design. First, we lost confidence in Tcl/Tk as an infra
structure when Sun failed to support any object-oriented extension, and Itcl, the object-oriented exten-
sion that we were using, was late being updated to new versions of Tcl/Tk. We attempted a port of
Tycho, our Itcl based Ul toolkit, to Tcl++, but performance was abysmal. Second, our experiments
with Swing, Sun’s Java Ul toolkit, indicated clearly that this technology had not matured. We decided
to focus on having a good API for a Ul in Ptolemy I, but to not put extensive resources into develop-
ing a graphical user interface as yet. Instead, we have focused on infrastructure for constructing applets
that include Ptolemy Il models.

We have made progress on defining the interface that a graphical user interface can use to interact
with Ptolemy Il. In particular, we have defined the following APIs:
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System API. Purpose: Allow a Ul to start up and connect to Ptolemy Il. Functionality: Is Ptolemy
installed?; query Ptolemy Il version; query available domains; query actors fitting a given domain and
name.

Execution API. Purpose: Allow Ul to control arunning simulation. Functionality: Start, pause, stop a
simulation; notify on all execution events.

Icon Library API. Purpose: Allow Ul to locate icons and related definitions. Functionality: What
paths are searched; modify the search path; return top-level library names; return sub-library names;
return file path of any library.

Domain API. Purpose: Allow Ul to query adomain for parameters, display important run-time infor-
mation (current time etc.). Functionality: What directors can be used; what information needs to be
shown in the control panel; notify of time advanced.

Animation & Parameter APIs. Purpose: Allow Ul to animate and display parameter of arunning sim-
ulation. Functionality: Notify on: actor ready to fire; actor fired; actor blocked; token transmitted;
token read.

Debug API. Purpose: Allow Tycho to act as a graphical “debugger” on a simulakonctionality:
Step the simulation; set a firing breakpoint; set a value breakpoint; run to breakpoint; notify on break-
point.

Logging API. Purpose: Allow logging and log-style debugging, with or without TycRkainctional-
ity: Notify on log message generated.

2.1.9 Mutable Systems

John Reekie defined a new “mutation” package for Ptolemy Il designed to work with the Ptolemy
Il kernel to provide support for dynamically changing graph topologies. This package uses a publish-
and-subscribe model, where the publisher informs subscribers of changes in the graph topology (muta-
tions). It addresses the problem that we wish to constrain mutations to occur at precisely defined points
in an execution cycle in order to ensure determinism.

This package includes an interface called Mutation with two methods, perform() and update(), that
correspond to performing mutations and informing all observers about the mutations, respectively.

A second interface called MutationListener is implemented by any observer that depends on muta-
tions. This interface has methods like addEntity, removeEntity, link, unlink, etc. corresponding to the
elementary forms of mutations that are possible in the kernel.

Now any actor performing mutations would then create an object implementing the interface
Mutation, and implement the methods perform() and update(). The perform method contains com-
mands corresponding to all the mutations that the actor intends to make. The update() method specifies
the same mutations but using the methods defined in the MutationListener interface.

After listing these methods and creating the Mutation object, the actor calls a method queueMuta-
tion() on the director and queues the mutation with the director. The director chooses when the muta-
tions are actually performed, to ensure that occur at a safe point in the execution sequence.

This mechanism has been prototyped and demonstrated in the PN (process networks) domain.
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2.2 TASK 2: DOMAIN-SPECIFIC DESIGN TOOLS

2.2.1 Process-Oriented Domains

We have created two domains where actors logically represent interacting processes. These are
CSP (communicating sequential processes) [12] and PN (process networks) [14]. In CSP, communica
tion occurs via rendezvous, where a single atomic action temporally links the two processes when
communication occurs. In PN, communication occurs via asynchronous message passing, with FIFO
queues serving as buffers. In the CSP domain, the emphasis is on controlled nondeterminsm, where for
exampl e a process can hondeterministically rendezvous with any of a set of other processes. In PN, the
emphasisis on determinism, in that data sequences do not depend on scheduling details.

The main anticipated application for the CSP domain is for modeling resource management prob-
lems, such as embedded software multitasking and real-time scheduling. The anticipated application
for PN is modeling real-time stream transforming processes and hardware subsystems.

In both cases, processes are implemented as Java threads. Mudit Goel and Neil Smyth created a
subpackage of the actor package called actor.process specifically to hold the common infrastructure
used by these two domains.

Both domains have been extended with timed versions, where communication events can be
placed along a time line, and processes can request to be delayed by a specified amount of time. The
semantics abstracts the passage of time in that it assumes that zero time passes between the external
(communication or delay) events of an actor. That is, computation itself does not take time.

Both domains also support mutations, or changes in the graph topology that occur at run time.

2.2.2 Discrete-Event Domain

Lukito Muliadi has completed a prototype of the discrete-event domain in Ptolemy 1. Thisdomain
uses a sophisticated calendar-queue scheduler to sort events, and is expected to play a major role in
mixed signal design. Using this prototype domain, we have experimented with the first applet that
intensively uses Ptolemy Il infrastructure, a simple DE simulation that demonstrates the inspection
paradox. This exercise help us verify that Ptolemy |1 infrastructure can be used effectively in applets.

2.2.3 Continuous-Time Modeling

Jie Liu has developed a continuous-time (CT) domain in Ptolemy 1l that includes a sophisticated,
variable-step-size ODE solver, plus an ability to generate and to react to discrete events. Reaction to
discrete events is accomplished by abstracting those events as Dirac delta functions. This domain is
thus intended to interoperate with discrete domains such as DE and FSM.

2.2.4 Sate Machines and Hybrid Systems

During this reporting period, Xiaojun Liu made progress on defining an FSM domain in Ptolemy
I1. This domain will be used to specify control logic for modal models and for digital controllers. Spe-
cifically, he has extended Neil Smyth's expression evaluator to support expressions that serve as guards
for state transitions and actions associated with state transitions.

Meanwhile, Bilung Lee has implemented a valued FSM syntax in Ptolemy Classic. One key issue
that he had to resolve was the need to be able to distinguish between the evaluation based on the status
of events (i.e. whether events occur) vs. their values. For example, when a user writes “el || le2”, does
this means “el is present or e2 is not present” or “el is non-zero or e2 is zero"?

The approach he used is adapted from the Statemate. The transition of the FSM is denoted as
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te [tc] / ta

where
« Atrigger event “te” is a boolean expression generated by

te ::=TRUE| FALSE | e | !te | te&&e | te||te

where e is an input event, and the evaluation of an event e is either TRUE or FALSE when the
event is either present or absent and "!", "&&" and "||" are the logic operators "not", "and" and
"or", respectively.

e Atrigger condition “tc” is a boolean expression generated by

tc ::=nil | TRUE| FALSE| e | !'tc | tc&tc | tc||tc

| v==v | vl=v | v<v | v<=v

where e is an input event, and the evaluation of an event e is either TRUE or FALSE when the
value of the event is either non-zero or zero, and "!", "&&" and "||" are the same as those in trigger
eventte, and "==", "I=", "<" and "<=" are the logic operators "equal to", "not equal to", "less than"
and "less than or equal to", respectively, and v is an arithmetic expression generated by

Vv:i:=e| c| vtv | v-v | V¥V | VIV

where e is an input event, and the evaluation of an event e in v is the value of that event. ¢ is a con-
stant value, and "+", "-", "*" and "/" are the arithmetic operators "add", "subtract”, "multiply" and
"divide", respectively.

» Atrigger action “ta” lists a subset of the output events and is generated by

ta::=nil | e(v) | e| ta,ta

where e is an output event. v is the same as that in trigger condition tc, and “,” distinguishes two
events in the trigger action.

In one reaction of the FSM, a subset of the input events are present with some values. One transition is
triggered if its guard is TRUE under the current input events. The guard consists of two parts, atrigger
event and atrigger condition. If the trigger condition isnull, it means that the trigger condition is omit-
ted and then the guard is exactly the same as the one for pure FSMs. Otherwise, the guard is TRUE if
both trigger event and trigger condition are TRUE. Then the FSM goes to the destination state of the
triggered transition, and emits each output event in the trigger action of the triggered transition, mak-
ing these output events present. If the output event to be emitted is attached with an arithmetic expres-
sion, the value of that event is set to be the evaluation of the expression. Otherwise, the value of that
event is set to be 0. If the trigger action is null, it means that no output event is emitted.

2.2.5 Web-Based Smulation of Embedded Software (UT Austin)

Under subcontract, Brian Evans and his team at UT Austin have released a new version of their
extensible, configurable, portable, freely distributable framework for Web-enabled simulation of
embedded software for DSPs and microcontrollers. The new version, Version 1.0.6 (as of July 3,
1998), can be run by using a Java-enabled Web browser to open the URL

http://anchovy.ece.utexas.edu/~arifler/wetics/
Version 1.0.6 of the Web-enabled Simulation framework consists of:
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« A set of Java applets that provide a configurable framework for Web-based user interfaces for
instruction set architecture simulators.

« A multithreaded TCP/IP Internet server written as a Java application that provides the interface
between the Java applets and the simulators.

« Command-line simulators/debuggers written in C/C++ for a. Texas Instruments TMS320C30
floating-point digital signal processor simulator

b. Motorola MC68HC11 microcontroller simulator
c. Motorola MC56811 fixed-point digital signal processing simulator
d. Motorola MC56LC811 fixed-point digital signal processing board debugger

They provide pre-built binaries of the simulators and debuggers for Windows '95/NT and Solaris 2.5
machines.

New command-line tools for DSP and microcontroller processors and boards can be added to the
framework by only providing data about the tools - no Java applet or application code changes. All of
the data is kept in one file.

Their framework is in the spirit of the Web-based Electronic Design (WELD) Project at UC Berke-
ley directed by Richard Newton. WELD “aims to construct the first operational prototype of a
national-scale CAD design environment enabling Internet-wide IC design for the U.S. electronics
industry”. WELD focuses on VLSI CAD tools and design management infrastructure, and UT Austin's
framework provides a complementary focus on embedded software.

2.2.6 Automated Multi-Criteria Filter Optimization Framework (UT Austin)

Under subcontract, Brian Evans and his team at UT Austin have released a set of Filter Optimiza-
tion Packages for Matlab:

http://lwww.ece.utexas.edu/~bevans/projects/syn_filter_software.html
The packages to optimize the following characteristics of analog filter designs simultaneously
1. magnitude response
2. linear phase in the passband
3. peak overshoot in the step response
4. quality factors (Q)

subject to constraints on the same characteristics. This framework takes both behavioral and imple-
mentation characteristics of filters into account. A traditional approach has been to design a filter
according to behaviora properties and then iteratively tweak the filter poles and zeros for a given
implementation technology. This framework designs filters that simultaneously meet both behavioral
and implementation constraints and goals.

2.3 TASK 3: HETEROGENEOUS INTERACTION SEMANTICS
2.3.1 Multi-Domain Modeling

Jie Liu and Lukito Muliadi created the first multi-domain simulation in Ptolemy Il. This model has
a CT (continuous-time) model inside a DE (discrete-event) model. This combination is particularly
useful for mixed-signal modeling.

2.3.2 Time

We are gaining a much better understanding of the role of time in binding heterogeneous seman-
tics. We have determined that continuous-time modeling fundamentally requires that either the discrete
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environment or the continuous-time maodeling environment itself must be capable of rolling back a
simulation. We are developing aframework in which it is sufficient for only the CT modeling environ-
ment to have this capability. This greatly simplifies the other modeling environments.

2.3.3 Data and Domain Polymorphism

In object-oriented languages, polymorphism is the independence of code from the data types it
operates on. The same operation takes different forms depending on the data. This form of polymor-
phism, which we call data polymorphism, is supported in Ptolemy Il in a number of ways. First, the
token classes, which encapsulate data communicated between actors, polymorphically implement var-
ious arithmetic and logical operations. Thus, actors that require only these operations can easily be
polymorphic in that they need not know a-priori what type of datathey are operating on.

A second, more interesting kind of polymorphism iswhat we call domain polymorphism. Here, an
actor does not know a-priori which domain it operates in. Thus, for example, although it assumes it
will obtain input data, it does not know whether the input will be transferred to it by rendezvous, by
asynchronous message passing, or by some other mechanism. We have begun the devel opment of a set
of domain-polymorphic actors, and in so doing, have been learning a great deal about the issues
involved. One of these is dealt with in the next section.

2.3.4 Srictness

We have determined that we need a generalized notion of strictness for actors that is supported in
the kernel. In programming languages, “strict” means that a function or procedure needs to have all its
arguments in order to be able to calculate any output. For actors, the question is whether the inputs
need to be known on all input ports in order for the actor to be able to produce outputs. Note that
“knowing an input” means knowing the number of available tokens (which may zero) and knowing the
values of the available tokens.

We have several uses for non-strict semantics. In the CT domain (continuous time), it is often
important to be able to determine an estimate of an output value using an estimate of an input value.
Thus, the value of the input tokens is not “known.” Only an estimate of it is known. It is important that
when an estimate of the output is calculated, that the state of the actor not be updated. The state should
be updated only when the input is completely known.

In synchronous/reactive modeling, for which we have not yet built a domain, it is essential to be
able to assert outputs even when it is not known whether the inputs will have tokens. We identify three
fundamental levels of strictness for actors:

e STRICT: An actor needs to know all inputs to perform its function.

e« SOFT_STRICT: Given an estimate of all the inputs, the actor can produce estimates of the outputs.

«  NON_STRICT: An actor can produce partial information about the output given partial informa-
tion about the input. By “partial information” we mean that it need not be known whether an input
has tokens, or how many tokens it has.

In both of the latter two cases, the actor should not update its state until the input is fully known. Typi-

cally, we will implement this by updating the state of the actor in its postfire method.

Domain-polymorphic actors (those that can operate in more than one domain) would need to assert
which of the three levels of strictness they follow. Opague composite actors, which mediate the inter-
action between domains, would defer to the inside director to determine strictness. Thus, a domain that
is able to expose a NON_STRICT interface to other domains, for example, could assert
NON_STRICT semantics.
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The CT domain would prefer SOFT_STRICT actors, but would be able to handle STRICT actors
by introducing a delta delay. Since CT is based on convergence to afixed point at each time instant, it
normally needs to invoke actors repeatedly with estimates of the inputs until convergence is reached.
For STRICT actors, it would only invoke them once, after the inputs are fully known. At that time
instant, the output is already known because of the delta delay, so convergence is not compromised.

Most domains embedded within CT, therefore, would have a delta delay from inputs to outputs.
CT can also make use of NON_STRICT actorsto overcome stiffness problems.

2.3.5 Interoperability

We have invested considerable effort into evaluating Sun’s Java-based RMI (remote method invo-
cation) vs. CORBA as technologies for multi-source distributed modeling and simulation. John Davis
and Mudit Goel have prototyped small systems using both mechanisms, and have reached some tenta-
tive conclusions. RMI is much simpler than CORBA, but is limited to distributed applications where
al components are written in Java. However, it is aso apparently possible to use a subset of RMI to
develop CORBA-compliant distributed applications. A talk at Java One (the major Java conference)
included examples showing a simple distributed application with a mixture of Java RMI technology
code and C++ CORBA code.

Jie Liu and William Wu prototyped a CORBA-based approach to reduced-order modeling in
Ptolemy II. In this prototype, a CORBA server provided a reduced-order model of a MEMS acceler-
ometer, while a CORBA client integrated the model within alarger model. The reduced-order model
was provided by Dr. Per Ljung of Coyote Systems. The larger model was implemented in the CT
domain of Ptolemy Il. Eventually, we hope that this infrastructure can be used to solicit parameterized
reduced-order models on demand from servers on the network.

CORBA is surprisingly complex, requiring considerable expertise to use. We are concerned that
the cost and complexity of setting up CORBA ORBs may preclude many possible uses within the
Composite CAD community.

We are a so studying the use of JavaBeans with CORBA, and it appears that with CORBA 3.0, due
out in the fourth quarter of thisyear, there could be a very useful synergy here. A 2/2/98 PC Week arti-
cle, 'JavaBeans key to CORBA upgrade,’ states:

“Skeptics have long complained that CORBA lacked the ease of use known to
Microsoft Corp.'s rival COM (Component Object Model). But CORBA 3.0's Java-
Beans object model could solve that. The new model, dubbed CORBAbeans, will
enable rapid development of applications, with easier-to-use tools and interfaces.”

Also, Beans has an interface called InfoBus that allows Beans to communicate within the same
virtual machine, something more difficult to accomplish with CORBA alone.

Finally, Christopher Hylands has investigated the Tcl Bean, which connects Tcl scripts via Java
Beansto Java Studio, an environment distributed by Sun for graphically composing Java Beans. Chris-
topher was studying how this might relate to Ptolemy I1.

2.3.6 Design Flow Management

William Wu created an exploratory demo of a mechanism in Ptolemy |1 for managing design flows
a a high level of abstraction. The purpose of this demo is to study the interaction between tools and
block diagram semantics of Ptolemy. The scheduler in this demo is static, since scheduling is still an
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open issue. Thiswork is not intended to turn directly into releasable code.
The flow in the demo performs the follow tasks
» Design a lIR Butterworth filter.
« Compute its frequency response and get postscript version of the plot.
» Filter a sample audio file through it.

« Compute the spectrogram of the original audio signal, and filtered signal and print postscript ver-
sion of both spectrograms.

e Synthesize a Xilinx X4000 FPGA netlist.
« Display all three postscript plots in ghostview.
« Display the netlist in emacs.

These tasks mix Ptolemy package libraries with external tools, such as Matlab, ghostview, emacs, and
the BOOM IIR generator for FPGAs from the BRASS project. The latter was wrapped in a CORBA
wrapper. William, together with Jie Liu, writes this summary of the DFM effort:

“Traditional system-level design techniques usually rely on one particular well-
defined model of computation (MoC) and try to map the application onto that
model. As the size and scope of the system increase, no single MoC alone can man-
age the complexity. This forces the designer to leverage on the integration of multi-
ple CAD tools. Incorporating different tools with simple scripts has become too
difficult and unmanageable, since there is no standard defined interface between
the tools. Ptolemy manages the interaction among different MoCs, and is capable
of interoperating with external tools. Thus a design can be described by the MoCs
supported within Ptolemy, and those used by external tools. For example, a system
can be modeled partly in abstract block diagram using data flow model and partly
in SPICE circuits. This heterogeneity exists not only in different MoCs, but also in
different levels of abstractions of the design flow. The key is to manage the tools in
the design flow and classify the tools by their semantics and their level of abstrac-
tion. Then the interoperability of the tools becomes the interoperability of the
semantics. Ptolemy can act as the standard interface among different tools to
achieve the overall design requirements. Three types of semantics/tools interaction
are studied. They are domains within Ptolemy, local interprocess communication,
and global object retrieve and invocation through CORBA.”

2.4 GENERAL INFRASTRUCTURE

We have done quite a bit of work that contributes to each of the three tasks without being specifi-
cally part of any one of them. This section summarizes that work.

2.4.1 Software Practice

One of the major innovations in the Ptolemy project is the development of a practical, usable, and
systematic software engineering practice in an academic setting. This experiment has been master-
minded by John Reekie [52].

In this practice, each class is advanced through four levels of confidence by a light-weight review
and testing process. There are two ratings for each class: that proposed by its author or maintainer, and
that accepted by its tester and reviewers. This approach tries to maintain the accepted principles of
code review and testing by people other than the author, while keeping overhead manageable for a
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research group and not sguelching innovation.

The basic idea is that the author proposes that a class advance a level. The tester/reviewer is then
responsible for examining the class (with the help of other reviewers, if necessary), writing test code
for it, and either accepting or rejecting the proposed advancement. The tester/reviewer needs to pro-
vide specific and concrete reasons for rejection; the author is obliged to make needed modifications
and re-submit the code.

Thefour levels of confidence arered, yellow, green, and blue. Each level has awell-defined mean-
ing, which both the author and tester/reviewer are expected to satisfy before proposing or accepting
advancement to that level.

The process includes both design reviews and code reviews. The four ratings are as follows:

Red. All code starts here. Red code isin flux, and anyone that calls red code should expect it to change
without warning. Code that calls red code does not need to be modified by the author if changesin the
red code break the calling code. Red code should never be released, in theory, although in practice, we
do release it with appropriate caveats.

Yellow. The interface and overall design of the class is acceptable for development purposes. Clients
can code to this interface with the expectation that further changes will be limited to revisions, not
major changes. Clients cannot insist that code that calls yellow code will work at all, inthat al that has
to be defined istheinterface, not the implementation. With this view, Yellow code should generally not
be released. In practice, we have rarely promoted code to yellow without the interface being backed by
a complete implementation, and hence we are reasonably comfortable releasing yellow code.

Proposing advancement. The author proposes advancement to yellow when he/she is satisfied
with the design of the class, and how it collaborates with other classes. The author is responsible
for making sure that the class is adequately documented. UML diagrams at the design level are
appropriate here.

Accepting advancement. The tester/reviewer accepts advancement to yellow when he/sheis sat-
isfied that the design of the classis satisfactory in the context given by the author. The tester/
reviewer should evaluate the class solely on the basis of the documented interface -- note that, in
the case of classes which are designed to be subclassed, this includes the (protected) interface pro-
vided to subclasses. The tester/reviewer is entitled to request UML diagrams as an aid to under-
standing the purpose and function of the class, and is entitled to organize a design review at this
time. The tester/reviewer is also entitled to require changes to the interface in anticipation of test-
ing needs.

Acceptable changes. Yellow code can have interface changes before advancing to green, but the
author should avoid making wholesale changes. If wholesale changes are required, the author
should request that the class be taken back to red. If the author changes the interface to yellow
code, then he isresponsible for a) making sure that the calling code compiles, and b) notifying the
author of calling code about the change. The author is not responsible for making sure that the call-
ing code works or passesits test suites, as yellow code does not provide any assurance of function-
aity.

Green. The interface of the class has been finalized, and the implementation is acceptable for devel op-
ment purposes. The documentation of the interface is acceptable for development purposes. Clients
can code to green code in the expectation that the interface will not change in such a way as to break
compilation, nor will the implementation change enough to break the caller’s test suite. Green code can
be released.
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Proposing advancement. The author proposes advancement to green when he/sheis satisfied that
the interface to the class will not need further changes, except for relatively minor enhancements
and additions, and with the implementation of the class. This could be considered "beta’ level
code. The author is responsible for providing the tester/reviewer with atest suite that he/she can
use as a starting point. This test suite should exercise and illustrate the main uses of the class.

Accepting advancement. The tester/reviewer accepts advancement to green if he/sheis satisfied
with the implementation of the class. The tester/reviewer shall determine this by a) writing atest
suite, and b) reviewing the code. The test suite must have at least 50% code coverage. The tester/
reviewer is entitled to organize a code review at thistime. The author is required to write example
test code if requested by the tester/reviewer.

Acceptable changes. The interface to green code can have interface changes, but these should be
minor or purely incrementa (new methods). If the changes break any test suites, the author is
required to fix the calling code. If a change will require substantial fixes, then the class should
probably be taken back to yellow.

Blue. The implementation of the class has been fully and completely tested, and accepted as meeting
al requirements. All documentation, including external documentation if appropriate, is complete.
Blue code can be released. We have not yet advanced any Ptolemy Il code to blue, although by these
criteria, the kernel and actor packages could probably be advanced to blue at thistime.
Proposing advancement. The author proposes advancement to blue when he/she is satisfied that
the classis finished, polished, flexible, and robust. This applies to the documentation aswell asthe
code. Thisis, in other words, quality releasable code. In general, code should not be advanced to
blue until it has been in use by other classes for some time.
Accepting advancement. The tester/reviewer accepts advancement to blue when he/she is satis-
fied that the classis finished, polished, flexible, and robust. The tester/reviewer determines this by
completing the test suite to get 100% coverage, or as close asis reasonable given the way that the
class operates with other classes, and possibly also by writing atest suite that tests this class work-
ing in collaboration with other classes.
Acceptable changes. Blue code can have bug fixes, but changesto the external interface, inherited
interface, or observable behavior, make the class a candidate for reversion to green or yellow sta-
tus.
John Reekie conducted a design review of our review process. This “meta-review” or “review review
yielded some interesting insights that have led to some fine tuning of the process.

t1]

2.4.2 SQupport Software

In a collaboration between the Ptolemy project and the CAD group at Berkeley, John Reekie and
Michael Shilman have developed a Java package called Diva, which is afirst step toward a software
infrastructure for visualizing and interacting with dynamic information spaces. Diva's distinguishing
characteristics are its emphasis on dynamic data and interactive user interfaces, and its clean, easy-to-
use API.

The most recent release consists of two Java packages, diva.canvas and diva.graph. The Diva can-
vasis a structured graphics layer over the Java2D APl with a coherent set of features intended to sup-
port innovative and interesting visualizations and user interfaces. The Diva graph package implements
an easy-to-use architecture for graph visualization, based on a Swing-style MV C data and notification
model. Extensible and pluggable graph rendering and layout facilities complete the picture.
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2.4.3 Other Software

Under the structure of a weekly study group, we have made systematic studies, including proto-
typed experimental implementations, of each of the following technologies:

+ CORBA
* Java RMI
* JINI

e JavaSpaces

e VHDL and Verilog

We have also performed experiments with the following software packages.
e Rational's Quantify for Java

e Optimizit, a commercial product for profiling Java software

e Saber (from Analogy)
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3. Software

Software in the Ptolemy project serves as both a laboratory for experimentation and a mechanism
for disseminating results. A new feature of this project is that we expect to be distributing software in
the form of smaller packages rather than large monoalithic software systems. During the second year of
the project we completed several small software rel eases.

3.1 INFORMATION DISSEMINATION POLICY

The Ptolemy web site, http://ptolemy.eecs.berkeley.edu, is used to distribute all software (includ-
ing source code) and documentation, together with updated summary sheets, answers to frequently
asked questions, and tutorials. We use the most liberal copyright permitted by the University of Cali-
fornia, one which has proven effective in promoting technology transfer. A Usenet news group called
comp.soft-sys.ptolemy and a mailing list ptolemy-hackers@ptolemy.eecs.berkeley.edu are used to
communicate with outside users. Postings to the mailing list are cross-posted to the news group. Post-
ings are archived and searchable from our web site.

3.2 DEVELOPMENT ENVIRONMENT

During thisreporting period, we switched from SCCSto CV Sas our primary version control infra-
structure. This coincided with a much greater emphasis on the use of Iaptop computers running Win-
dows NT in the development environment. Christopher created a package (a self-extracting archive)
that includes CVS and SSH (a secure shell that CV'S uses to communicate without sending cleartext
passwords).

We have aso developed an extensive regression testing infrastructure for Ptolemy 1I. The tests are
written in Tcl, and Jacl (a pure Java implementation of Tcl) is used to execute the Tcl. Christopher
Hylands and John Reekie worked with Mo DeJong (University of Minnesota) and Bryan Surles (Scrip-
ticsInc.) on Tcl Blend and Jacl.

3.3 SOFTWARE RELEASES

We released the first version of Ptolemy Il, designated 0.1alpha, in December 1998. This release
includes the kernel, actor, and data packages, but none of the domains. The release is intended for col-
|aborators and critics of the software architecture.

We released Ptplot 2.0 in December 1998 and Ptplot1.3pl in June 1998. Ptplot is a Java 2-D plot-
ting package that can be used as an applet or a stand-al one application.

We released Ptolemy 0.7.1, the most recent version of Ptolemy Classic, in apha and beta versions
in May, 1998, and in final version in June, 1998. While much of Ptolemy 0.7.1 is independent of this
HMAD project, it has the following connections:

e Mutable discrete-event modeling

« Starcharts generalized hybrid systems

« The NT port (which gives us experience developing and releasing NT software)
« Ptplot (which gives us experience developing and releasing Java software)
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4. Plansfor the next year

Capabilities that we anticipate making available in the next year include:

Extensible XML-based file formats. XML is an emerging standard for representation of informa-

tion that focuses on the logical relationships between pieces of information. Human-readable rep-
resentations are generated with the help of style sheets. Ptolemy Il will use XML as its primary
format for persistent design data.

Formalization of process-level type systems. We plan to use the development of a domain-poly-
morphic actor library to drive better understanding of process-level types. Process-level types cap-
ture dynamic properties of the interaction between simultaneously active objects.

I nteroperability through software components. Ptolemy Il will use distributed software component
technology such as CORBA, Java RMI, or COM, in a number of ways. Components (actors) in a
Ptolemy Il model will be implementable on a remote server. Also, components may be parameter-
ized where parameter values are supplied by a server (this mechanism segpcetisorder

modeling, where the model is provided by the server). Ptolemy Il models will be exported via a
server. And finally, Ptolemy Il will support migrating software components.

Embedded software synthesis. Pertinent Ptolemy Il domains will be tuned to run on a Java virtual
machine on an embedded CPU. Hardware, firmware, and configurable hardware components will
expose abstractions to this Java software that obey the model of computation of the pertinent
domain. Java's native code interface will be used to define a stub for the embedded hardware com-
ponents so that they are indistinguishable from any other Java thread within the model of computa-
tion. Domains that seem particularly well suited to this approach include PN and CSP.

Embedded hardware synthesis. Earlier versions of Ptolemy had only very weak mechanisms for
migrating designs from idealized floating-point simulations through fixed-point simulations to
embedded software, FPGA, and hardware designs. Ptolemy Il will separate the interface definition
of component blocks from their implementation, allowing libraries to be constructed where com-
patibility across implementation technologies is assured. This work is currently being prototyped
in Ptolemy 0.7.1.

Integrated verification tools. Modern verification tools based on model checking could be inte-
grated with Ptolemy Il at least to the extent that finite state machine models can be checked. We
believe that the separation of control logic from concurrency will greatly facilitate verification,
since only much smaller cross-sections of the system behavior will be offered to the verification
tools.
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5. Technology Transfer

One of the notable properties of the Ptolemy project isits track record of demonstrable transfer of
technology to industry leaders in the computer-aided design and defense industries. This is accom-
plished via a careful cultivation of industry contacts and a strategy of wide open, very liberal distribu-
tion of software and publications. All software is made available on the Web with the most libera
copyright notice permitted by the University of California. This notice retains ownership of the copy-
right, but expressly grants permission to use the software for any purpose, including development of
commercia products. It is distinctly more liberal than the GNU public license, and thus better repre-
sents “free software.”

Although it is still too early in this project for major results of the project to have been transferred,
there are some ongoing interactions that we wish to highlight.

5.1 HEWLETT-PACKARD

HP has released a beta version of HP Ptolemy in January 1998, and a final version shortly thereaf-
ter. HP Ptolemy is based on Ptolemy Classic. Some of the major additions over the Berkeley Ptolemy
code are:

¢ Runs On NT 4.0, NT 3.51 and Win 95

« Added time and frequency simulation and modeling
* Added DSP filter tool

e Added VHDL modeling and simulation

« Added Verilog modeling and simulation

e Added 300-400 time and frequency models

e Added Spice and Harmonic Balance cosimulation....

HP has integrated their HF Spice, Harmonic Balance and Circuit Envelope simulators into HP
Ptolemy. Their simulation executable links two distinct simulator software architectures: one based on
UCB Ptolemy (HP Ptolemy) and the other incorporating the HP EEsof analog simulators (Gemini). In
HP Ptolemy there currently are two simulation domains; SDF and TSDF. In TSDF, HP has modified
the semantics of SDF to introduce a notion of time to apparently make it easier to combine DSP simu-
lations with analog simulations. Using the TSDF domain a user can embed a circuit simulator into a
dataflow simulation using an interface very similar to a Ptolemy wormhole.

At the DSP Spring conference in Santa Clara on April 13, 1998, Hewlett-Packard announced a
complete HP W-CDMA Design Library based on HP Ptolemy. According to Paul Washkewicz of HP,

“This is one of the hottest technologies to hit the streets recently, and our ability to
get this product into the industry is directly related to our adoption of UCB
Ptolemy.”

Paul also told us privately that

“With HP Ptolemy as our framework, we fully expect to deliver almost a new prod-
uct every month for the next 6 months. This is the real value in HP Ptolemy.”

52 NASA

Ivan Clark of NASA contacted us and told us that “NASA is involved in a research program that
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uses our Ptolemy software as part of amodeling effort. As part of the NASA aviation programs, there
has been underway for 2 or 3 years an effort to develop an Integrated Electromagnetic Sensor Simula-
tion (IESS). growing out of previous Fortran-based modeing efforts to simulate windshear detection
by radar, the IESS program has been trying to modularize and convert the fortran code into Ptolemy-
compatible modules and to add air-to-air multiple radar-target tracking to the simulation. the next gen-
eration of the model effort will seek to add the capability of simulating the flying of sensors (radar,
lidar, radiometer, etc.) through a weather model with emphasis on detection of aviation weather haz-
ards such as turbulence. this next-generation effort currently includes participation by NASA, RTI,
NCAR, Allied Signal, and Collins.”

5.3 CADENCE

On Oct. 20, 1998, we met with 8 engineers and managers from Cadence Design Systems at Berke-
ley for half a day to brief them on our approach to integrating control logic with dataflow-oriented
modeling. Cadence has commercialized techniques from the Ptolemy project in the past, although dur-
ing this reporting period there were no new announcements.

5.4 BNED /VIRTUAL PHOTONICS

BNeD, now merged with Virtual Photonics, has announced the next generation product line, the
“Photonic Transmission Design Suite” (PTDS), which is partly based on Ptolemy. They say, “The
PTDS features a modular approach to optics and photonics simulation, offering distinct libraries for
component, system and network design together with a unique and innovative simulation architec-
ture.”

BNeD and Hewlett-Packard have announced a joint marketing agreement to distribute their simu-
lation environment for optical fiber communication systems. Wolfgang Reimer, who has done a lot of
work with Ptolemy and Linux, is part of BNeD. He visited us on Feb. 27 with Igor Koltchanov, the
BroadNeD Product Manager, and demonstrated the simulation environment, which focuses on the
physical properties and their interaction with communication algorithms. The fact that HP's new
design environment is based on Ptolemy made this marketing agreement a clear win for both sides.

5.5 PHILIPS

Three visitors from the Philips Research Lab in Eindhoven, The Netherlands, Bart Kienhuis, Kees
Vissers, and Pieter van der Wolf visited our group on March 13 and presented a model of computation
that they are using for embedded video systems that is heavily inspired by our own work on Kahn pro-
cess networks. Their model of computation blends Kahn process networks with a model called PAM-
ELA that adds time. This notion of time should make it much easier for us to mix PN models with
physical models where time is intrinsic.

Stimulated by this visit, Mudit Goel spent the summer at Philips Research Labs in Eindhoven. The
appendix includes a report from Pieter van der Wolf of Philips. Mudit was working on embedded sys-
tem design methodologies, including the modeling of applications and programmable architectures for
real-time video.

5.6 CADABRA

Farhana Sheikh, a Project Leader at Cadabra (http://www.cadabratech.com) reports that they used
Tycho (our ltcl-based Ul toolkit) to generate the C++ class diagram for their physical synthesis soft-
ware. The software contains a little over 700,000 lines of C++. She reports that parsing the code did
not take very long. However, it was a bit of a struggle to get it all printed out on our plotter. They now
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have an entire wall covered with our class hierarchy which has proven useful in training new develop-
ers.

5.7 THE MATHWORKS

Prof. Lee visited the MathWorks, makers of Matlab and Simulink, on June 2, 1998, to discuss the
trgjectory of ongoing work with Simulink and Stateflow. Approximately 20 engineers and managers,
including the company president, were present for the meeting, which lasted dl afternoon. We offered
a critique of the current discrete-time moddl in Simulink and of the interaction between Simulink and
Stateflow, and received in return an advance view of forthcoming product offerings. Simulink and
Stateflow work together on a principle that is a special case of our * charts (starcharts) model of com-
putation.

5.8 COYOTE SYSTEMS

Dr. Per Ljung of Coyote Systems provided us with two Simulink models that are a manually-mod-
ified automatically generated model of aMEMS accelerometer. Thefirst is a simple 2nd order system
of the proof mass (no damping), and the second is a comb finger with sensing of position. Applying a
sguare wave excitation results in deflection of the proof mass and a capacitance change in the comb
finger sensor. This is graphically shown in the output of the simulink simulation. Jie Liu successfully
converted these models to Ptolemy Il under the CT domain.

5.9 TECHNOLOGIESLYRE INC,,

Technologies Lyre Inc., of Quebec, Canada, demonstrated in their booth at DSP World Spring,
Santa Clara CA, April 21-23, a rapid-prototyping platform called SignalMaster, based on Motorola’s
DSP56301 as well as a newer SHARC-based model. They are offering Ptolemy Classic as one of the
main interfaces bundled with their DSP boards. They use the code generation capability to produce
downloadable code. On May 6, we met with two representatives of Lyre at Berkeley to discuss
whether we would participate in a betatest of their hardware. We decided not to.

5.10 IMPROV SYSTEMS

Cary Ussery <caryu@improvsys.com=>, from Improv Systems Inc., visited our group on April 24,
and discussed their software and hardware design methodology. Improv Systems is a startup company
(started this past August) which has developed a new processing platform for embedded systems.

511 TCL/TK & JAVA TUTORIAL

Christopher Hylands and John Reekie presented a tutorial, “Tcl and Java Programming: Practice
and Pitfalls,” on September 15th, 1998 at the 1998 Tcl/Tk workshop, San Diego. There were about 45
attendees. Tutorial notes including slides are at:

http://ptolemy.eecs.berkeley.edu/~johnr/tutorials/tcljava98/
5.12 COOPERATION WITH OTHER GROUPS AT BERKELEY

We have begun a collaboration with the group of Prof. Kris Pister, who is working on MEMS-
based semi-autonomous microrobotic agents. Members of his group have used Ptolemy Il (the DE
domain) to construct simulations of multiple interacting agents.

The POLIS team at Berkeley and Cadence (headed by Professor Alberto Sangionvanni-Vincen-
telli) has developed POLIS, a co-design environment for control-dominated embedded systems.
POLIS, which is based on Ptolemy Classic, using primarily the DE domain, offers an integrated inter-
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active environment for specification, co-simulation, formal verification, and synthesis of embedded
systems implemented as a mix of hardware and software components.

The group of Prof. Dave Messerschmitt at Berkeley has devel oped the SiP Protocol Modeling tool
that uses SPIN and the DE domain of Ptolemy Classic. Hereis a summary:

“We investigated a widely distributed software package, SPIN, that supports the
formal verification of distributed systems. PROMELA (Process Meta Language) is
the input language of SPIN, which has been used to trace logical design errors in
distributed systems design, such as operating systems, data communications proto-
cols, switching systems, concurrent algorithms. SPIN checks for the logical consis-
tency of a specification, deadlocks, race conditions, etc.”

5.13 COOPERATION WITH OTHER UNIVERSITIES

David V. Anderson (dva@ee.gatech.edu), of the Center for Signal & Image Processing at the
Georgia Institute of Technology has informed us of plans to significantly extend our Ptolemy signal
plotter. We are remaining in touch, and providing support as needed.

Prof. Brian Evans and some of his students visited a number of times. They met with several group
members to help coordinate our ongoing collaboration (they are subcontractors on this project).

Neil Smyth spent one month at Delft University in The Netherlands. He was working closely with
Bart Kienhuis on his simulator for stream based function (SBF) objects. In particular Neil added the
notion of time to his simulator, with the intent of giving feedback earlier in the design cycle to the
designer on issues such as processor utilization and bottlenecks. Neil says, “One of the main advan-
tages for me of my stay at Delft University was seeing the application of much of the theory | have
read about to practical problems.”

Frédéric Boulanger, of Supélec in France has developed a code generation domain for SR (our
synchronous/reactive domain in Ptolemy) named SRCGC. Code generation for pure SR systems cur-
rently works, and they are studying code generation for mixed domain systems. Their final goal is to
provide tools for separate development of the control and data processing parts of an application. SR
and SDF (synchronous dataflow) could be used for prototyping, and SRCGC and CGC (code genera-
tion in C, which uses dataflow semantics) for the production of draft code, the final application code
could require a last manual step before meeting size and speed requirements. In the process, Boulanger
has provided a number of improvements to the SR implementation, and we have agreed that he should,
in the near term, become the primary maintainer of this code. Boulanger has also made a new version
of ocpl, which translates oc modules (from Lustre or Esterel programs) into Ptolemy blocks in the DE,
SDF, SR, CGC and SRCGC domains. This work is done in collaboration with Xavier Warzee at Thom-
son TCO, and they agreed to make the new domain publicly available.

The Universitat de Girona is studying the Ptolemy environment, and using it to make significant
steps into DSP development.

Jens \oigt of the Technical University in Dresden, Germany, has contributed a new mechanism in
the Ptolemy discrete-event (DE) domain in Ptolemy Classic that he calls “Dynamic Higher-Order
Functions”. This mechanism supports dynamically mutating topologies. Jens has applied this to the
simulation of wireless radio applications. John Davis, in the Ptolemy group, has been working with
Jens to integrate and extend his code. For example, included in his mechanism are “DEDynamicFork”
and “DEDynamicMerge” stars, which can vary the number of portholes during runtime. Each time he
instantiates one more block in the wireless radio simulation, he adds one porthole to a multiporthole in
these dynamic stars. Ptolemy Il will support such mutability in a robust and complete way.
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