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Abstract— Aircraft Electric Power Systems (EPS) route
power from generators to vital avionics loads by configuring
a set of electronic control switches denoted as contactors.
The external loads applied to an EPS, power requirement
of the system, electrical component failure events, and the
dynamics of the system are inherently uncertain. In this paper,
we address the problem of designing a stochastic optimal
control strategy for the EPS contactors. We first represent
mathematical models of different components of an EPS, and
formalize the performance metrics of the system as well as the
constraints that should be satisfied in a stochastic modeling
framework. We then formulate the optimization of the system
performance as a stochastic model predictive control (SMPC)
problem, and present two special cases of the proposed SMPC
analysis to approximate the problem with linear mixed-integer
optimization problems. Finally, we report simulation results to
confirm the effectiveness of the proposed approach.

I. INTRODUCTION

Advances in systems technology, high performance and
reliable power electronics, together with powerful digital
computing platforms have enabled an unprecedented amount
of “electrification” of aircrafts in recent years [7]. Electrical
and electronic components replace the mechanical systems
such as hydraulics, and pneumatics to provide increased
overall system efficiency [9]. However, the increased use of
electrical components poses reliability concerns in aircraft
electrical power generation and distribution.

In an aircraft electric power system (EPS), a set of elec-
tromechanical switches are actuated by supervisory control
units to dynamically route electric power from generators
to loads, while satisfying safety, reliability, and real-time
performance requirements, as in Fig 1.

In our previous work [5], we addressed the problem of
control design for aircraft EPS within a Platform-Based
Design (PBD) methodology [10]. We developed an optimal
load management system based on the formalization of the
connectivity, safety and performance requirements of an
EPS. We proposed a two-level hierarchical scheme where
a high-level load management system (HL-LMS) receives as
inputs the required-power prediction for each bus over a time
horizon of interest, the health status (operational or faulty)
of power sources and contactors, the whole set of system
requirements, and solves the optimal control problem. The
output is an “advice” for the low-level load management
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Fig. 1. Single line diagram of an EPS from a Honeywell, Inc. patent [6].

system (LL-LMS), which handles system faults by directly
actuating the EPS contactors, and decides to implement such
advice only if it is safe.

However, various quantities and phenomena in an EPS
such as load forecast, power generation, and contactors and
generators failure events are stochastic in nature. Further-
more, performance criteria such as succeeding in supplying
power to buses and keeping the state of charge of battery
above a certain threshold are often defined as probabilistic
constraints (e.g. failure with probability less than 10−6).
To properly model uncertain behavior of various EPS com-
ponents and system performance criteria, in this paper we
improve upon the deterministic HL-LMS introduced in [5],
with a novel stochastic model predictive control (SMPC)
framework. The LL-LMS and its functionality are kept intact.

Our approach builds on a number of results that opened
the way for a more formal EPS design methodology. An
automated procedure for correct-by-construction design of
the EPS control protocol is discussed in [11]. System specifi-
cations are first converted using linear temporal logic [8], and
then automatically synthesized by leveraging formal methods
to guarantee safety constraints. While the correctness of the
final solution is guaranteed, its optimality with respect to a
number of performance metrics is not addressed.

This paper is organized as follows: in Section II general
system components, requirements and control architecture
are described. In Section III the stochastic optimization prob-
lem for controlling the contactors is presented. We introduce
two relaxations of the general problem in Section IV and
provide solutions to them. Simulation results in Section V
confirm the effectiveness of the proposed approach. Conclu-
sions are drawn in Section VI.



II. SYSTEM DESCRIPTION

A. Electric Power System

An aircraft EPS, as shown in Fig. 1, typically consists
of a combination of generators, contactors, buses and loads.
The connections among different components are specified
by a Single Line Diagram (SLD), a simplified notation
for representing three-phase power systems [7]. AC and
DC generators deliver power to a number of AC and DC
loads or power conversion equipments, such as Transformers
and Rectifier Units (TRU). In addition to the generators
connected to the aircraft engines, power-generation elements
also include Auxiliary Power Units (APU) and batteries.
Power is distributed via one or more buses, and connections
of generators to loads are routed by a series of electrome-
chanical switches, denoted as contactors. A subset of loads
are critical and cannot be shed, while others can be taken
off-line in case of emergency.

The role of the EPS distribution system is to guarantee
that loads are powered with the required power levels.
Therefore, in addition to sensors, the EPS control system
consists of Generator Control Units (GCUs) and Bus Power
Control Units (BPCUs). Each GCU regulates the output
voltage of a generator to meet the desired power level for
a range of expected loads. Conversely, the BPCU ensures
robust operation of the system for a number of failures
in its components, by opening or closing the contactors to
adequately reroute power to critical loads.

B. System Requirements

The EPS system requirements are generally expressed in
terms of safety and reliability properties. We list here some
of the requirements that are relevant to the derivation of the
optimal control problem in this paper:
R1) AC source parallelization. No bus can be powered by

multiple AC generators at the same time.
R2) Bus priorities. Each bus has a prioritized list of pre-

ferred generators. If the first priority generator is un-
available, the second generator is used.

R3) Load Shedding. Sheddable loads are allowed to be shed
if power supplies are insufficient, while non-sheddable
loads must remain powered at all times.

C. Hierarchical Load Management System

In this paper we use the hierarchical architecture proposed
in [5], that controls power source utilization, load shedding,
contactor status and battery charge. Fig. 2 shows a block
diagram of the system (top), consisting of a Low-Level LMS
(LL-LMS) and a High-Level LMS (HL-LMS), and a timing
diagram for its operation (bottom). The HL-LMS operates
at a slower clock rate, with period T , and provides control
optimality over a time horizon. The LL-LMS operates at a
faster clock rate with period tf < T , and guarantees system
safety by quickly reacting in the event of unexpected changes
in loads or component failures.

The HL-LMS solves the optimal control problem at each
step, using a receding horizon approach. The inputs to the

Fig. 2. Block diagram of the proposed hierarchical control architecture
(top) and timing diagram for its operation (bottom). In the top figure, white
arrows show control signals, black solid arrows show flow of information
and dashed black arrows represent timers.

HL-LMS are the required-power prediction for each bus over
a time horizon of interest (H , in Fig. 2), the health status
(operational or faulty) of power sources and contactors, and
the whole set of system requirements (e.g. including R1,R2,
and R3). While each optimal control problem is solved for
the time horizon H , only the initial samples of the solution
(up to time T ) are sent to the LL-LMS as advice.

As discussed in detail in [5], The maximum computation
time of the optimal control problem is assumed to be τ ≤ T .
In fact, as discussed in Section V, τ is usually much smaller
than T in our application. However, to ensure more frequent
updates to the HL-LMS, T can be chosen as max(τ, tf ).
Before the end of each slow clock cycle, by a time interval
as long as τ , the optimal control problem is updated with the
actual sensor readout on the status of sources, contactors and
loads. A new solution is then computed and sent as advice.

The LL-LMS, implements the BPCUs and, along with
the GCUs, monitors the generator and contactor status more
frequently (with a period tf ) to guarantee that each critical
bus is powered at the desired voltage level (e.g. T = 10tf in
Fig. 2). At each time step, the LL-LMS actuates the advice
from the HL-LMS only if this is feasible, given the actual
status of contactors, power sources and loads. If this is not
feasible, e.g. when an unforeseen fault in a component or an
unpredicted change in load forecast is detected, the LL-LMS
reroutes power based on its predefined, worst-case control
policy. Then, the LL-LMS keeps implementing its control
policy until the next HL-LMS cycle, when the information on
the failure is communicated to the HL-LMS, which updates
the optimization problem with additional constraints that
account for the failure. The new constraints will remain in
place until the failure is resolved.

III. SYSTEM MODELING

This section presents a refinement of the deterministic
optimization problem given in [5] to capture the inherent
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Fig. 3. Single line diagram of an electric power system.

randomness in the status of contactors, generators and exter-
nal loads. We use the SLD in Fig. 3 as a running example.

For loads and generated power, it is possible to use prior
statistical information, and current measured data attained by
sensors, to obtain a prediction of these quantities. However,
the health status of contactors and generators are inherently
unpredictable. In the following subsection, we present a
statistical model for each of these components.

1) Contactor Modeling: Health status of each contactor
can be captured by a Boolean variable, which is zero when
the contactor is failed and one when it is healthy. Notice that
the “health status” of a contactor differs from the contactor
“status” that is used in [5]. Indeed, the health status is
a random variable, while the contactor status is a control
parameter that is determined by the controller. Therefor,
a contactor can transmit power only when it is healthy
and closed. In Fig. 3 random variables associated to the
contactors are shown by di’s and control variables are shown
by ci’s, where i ∈ {1, 2, · · · , 11}.

We assume that when a contactor fails, it will remain
inoperative forever. Hence, we model the health status of
each contactor at time k as a Bernoulli random variable by
conditioning on its health status at the previous time step[

di(k)|di(k − 1)
]

=D B(hidi(k − 1)) (1)

where B (h) denotes a Bernoulli distribution with h being
the probability of outcome 1.

We categorize the contactors into two sets according to
their placement in the SLD: 1) the contactors that transmit
power from sources to buses which are called source con-
tactors, and 2) load contactors that connect buses to loads.
An important point to make is that although both types are
inherently subject to failure, we can neglect the stochastic
behavior of the latter case in the synthesis of HL-LMS
controller. This assumption can be justified by considering
two cases, namely when a source is disconnected and when
a load is detached unwontedly. The HL-LMS controller can
take the possibility of the former situation into account
and disconnect some of the sheddable loads accordingly.
However, there is nothing that the HL-LMS controller can
do in the latter situation and from the standpoint of HL-LMS

this type of failure – if not compensated by the LL-LMS –
means less demand for power, which is not destructive.

2) Power Source and Load Modeling: The output power
source j, can be modeled as a Gaussian random variable
Pmaxj =D N (µPj

, σPj
) where N (µ, σ) denotes a µ-mean

Gaussian distribution with variance of σ2. We denote the i-
th non-sheddable and sheddable load connected to bus j at
time step k as Lnsji (k) and Lsji(k) respectively. Similar to
the power sources, both of these load types are modeled as
Gaussian random variables:

Lsji(k) =D N
(
µLs

ji(k), σLs
ji(k)

)
Lnsji (k) =D N

(
µLns

ji (k), σLns
ji (k)

)
.

(2)

However, unlike the output power, the loads are not wide-
sense stationary (WSS) and the mean and variance values
are changing over time.

We model the required power at time step k as the sum-
mation of contributions from different power sinks (loads).
Hence, for bus j

Preqj (k) =
∑

i∈Isj,h∪I
s
j,f

dji(k)cji(k)Lsji(k) (3)

+
∑

i∈Ins
j,h∪I

ns
j,f

dji(k)cji(k)Lnsji (k)

where Isj,f (k) and Isj,h(k) denote the sets of sheddable loads
connected to bus j by failed and healthy contactors respec-
tively. Similarly, Insj,f (k) and Insj,h(k) respectively denote the
set of non-sheddable loads connected to bus j by failed
and healthy contactors at time step k. Preqj (k) is the total
required power by electrical loads connected to bus j.

Let dji(k) be a Bernoulli random variable that models the
possibility of failure in the connection between bus j and
load i when t ∈ [kT, (k + 1)T ), i.e.

dji(k) =D B
(
hdji(k)

)
(4)

where hdji(k) is the probability that the connection is healthy
– i.e. dji(k) = 1.

Each coefficient cji(k) for bus j and load i at time k is a
binary decision variable. If a contactor is healthy, it specifies
whether power Lji(k) must be supplied or it can temporarily
be interrupted for sheddable loads; and when that contactor
fails, its value is constrained to zero, i.e. for j = 1, · · · , N b,
where N b is the number of buses, we have

cji(k) =


1 ∀ i ∈ Insj,h(k)

0 ∀ i ∈ Insj,f (k) ∪ Isj,f (k)

{0,1} ∀ i ∈ Isj,h(k)
(5)

Finally, we capture shedding priorities ∀m,n ∈ Isj,h(k)

cjm(k) ≤ cjn(k) if m ≤ n, j = 1, ..., N b (6)

so that loads get ranked based on their priority if they are
connected to healthy contactors.



3) Source Allocation and Switching Policy: For each bus
j, a power balance equation can be written as follows:

Preqj (k) = Psupj (k)−βj(k) j = 1, ..., N b ∀ k ≥ 0 (7)

where the required power Preqj from the loads, defined
in (3), is equal to the amount of power supplied to bus j,
Psupj (k), minus the power used for charging battery set j,
denoted as βj(k). Therefore, when βj(k) > βmin for some
βmin > 0, the battery set j is in a charging state, while
βj(k) ≤ 0 implies that the battery set j is used to provide the
power deficit. When no battery is present (as in AC buses),
βj(k) = 0 is enforced at all times.

Power supplied to bus j originates from one of the power
sources. Assuming that there are N b buses and Ns power
sources, we enforce these constraints with

Psupj (k) =

Ns∑
m=1

γmj(k)δmj(k)Pmtoj(k) ∀j = 1, ..., Nb (8)

where Pmtoj is the amount of power delivered by source m
to bus j. γmj(k) is a Bernoulli random variable that models
the possibility of failure in the connection between source
m and bus j when t ∈ [kT, (k + 1)T ), i.e.

γmj(k) =D B
(
hγmj(k)

)
(9)

where hγmj(k) is the probability that the connection is
healthy (i.e γmj(k) = 1) Binary variables δmj determine
which source should power which bus, so that δmj(k) = 1
enforces that source m powers bus j at time k. Also, since no
AC sources can be connected in parallel, we need to enforce
that each bus is powered by only one generator at every time

Ns∑
m=1

δmj(k) = 1 j = 1, ..., N b ∀ k ≥ 0 · (10)

It is possible that at least one contactor placed in the
connection from source m to bus j fails. We denote the set
of buses that cannot be fed from source m, due to the failure
in the connections, as Ibm,f . Hence, we need to enforce the
value of δ to be zero for those connections, i.e.

δmj(k) = 0 ∀j ∈ Ibm,f (k) i = 1, ..., Ns (11)

Finally, we need to guarantee that the power available at
each generator equals the power flow from the generator to
the supported buses. This constraint can be enforced for a
power source m by the following equations ∀ k ≥ 0

Nb∑
j=1

δmj(k)Pmtoj(k) = εm(k)αm(k)Pmax
m (k), m = 1, ..., Ns (12)

where Pmaxm (k) is the maximum capacity of power source
m at time t = kT . αm(k) is a binary variable denoting the
use of power source m, i.e. αm(k) = 1 if and only if source
m is used to power a bus at time kT . Similar to (12) we
can pose a constraint on the values of αis connected to the
failed generators. However, we assume that the output power
of the failed generators is zero (i.e. Pmax(k) = 0 for that
generator). Hence, a constraint like (12) for αis is redundant.
εm(k) is a Bernoulli random variable that models the failure
possibility of a contactor that connects the m-th source

εm(k) =D B
(
hεm(k)

)
. (13)

4) Battery Dynamics: It is desirable to keep the battery
charge level higher than a predefined minimum value. The
reason for this limitation is that, completely discharging a
battery will decrease its effective life. Also, a minimum
battery charge can be used in unpredictable hazard cases. We
model the battery charge level as in (14) where the battery
charge level is the state and βj(k) as in (7) is the input, i.e.

Ej(k + 1) = Ej(k) + βj(k) (14)

where Ej(k) is the battery charge level at time k. Equa-
tion (7) shows that the value of βj(k) is a function of output
powers and external loads. We know from the previous
subsections that all these variables are random. Hence, βj(k)
is also a random variable and its statistics depend on the
statistics of powers, loads and contactors, as well as the status
of contactors. Consequently, the battery charge level is also
random. Since battery charge level is random, we cannot
consider a deterministic constraint on it. Instead, we exploit
chance constraints to guarantee that the battery charge level
does not go lower than a given value with a given probability

Pr (Ej(k) ≥ φj) ≥ (1− λj) , j = 1, · · · , N b,∀k ≥ 0 (15)

where φj is the lower bound on the j-th battery charge level
and λj is the maximum acceptable probability of violation.

5) Cost Function: We solve the optimal control problem
at each time k over a horizon H and apply the first optimal
control policy to the system. We aim to minimize the total
number of load shedding as well as used generators. Hence,
we consider a penalty for shedding each load as follows (16).

n+H−1∑
k=n

Nb∑
j=1

ΓTj [1− Cj(k)] (16)

where, Cj(k) = [cj1(k) cj2(k) · · · cjnj
(k)]T is the

vector of load coefficients for each bus j and Γj =
[γj1 γj2 ... γjnj ]T is a vector of weights used to pe-
nalize the act of shedding for bus j. Components of Γj can
be set to have same value, or be used to capture different
priority associated with each load. For instance, if sheddable
load i is more important than j for AC bus b, we choose
γbi � γbj . In fact, satisfaction of load shedding priority
tables is already enforced by (6).

To achieve our second objective, i.e. minimizing the
number of generators utilized at all times, we augment the
cost function with the following summations

µ

n+H−1∑
k=n

Ns∑
m=1

αm(k) (17)

where µ is a constant weight parameter, that allows exploring
the trade-offs in our multi-objective optimization.

Finally, we need to guarantee that the EPS obeys the bus
priority table as much as possible. To this aim, we enforce
that the following summation expression be also minimized

n+H−1∑
k=n

Nb∑
j=1

ΛTj ∆j(k) (18)



where ∆j(k) = [δ1j(k) δ2j(k) · · · δNsj(k)]T is the
source allocation variable vector for bus j and Λj =
[λ1j λ2j ... λNsj(t)]

T is a weighting vector that cap-
tures source allocation priorities, and penalizes the act of
introducing new, unnecessary power sources. For instance,
in the case of three power sources for bus 1, as in Fig. 3,
we can set λ11 = 0 (highest priority or no penalty), λ21 6= 0
(second priority in the list) as a penalty for using the APU
to power bus 1, and λ31 > λ21 (last priority) as a penalty
for using R1 GEN. In general, we have λjj = 0 and
λij 6= 0, ∀ i 6= j. We capture the bus priority requirements
using a penalty function instead of a hard constraint. When
the total required power is within the ratings of more than
one generator, the optimizer will not violate the priority table
as it minimizes the overall cost. Conversely, when a power
source is not able to meet the power requirement at its bus,
a decision needs to be taken on whether a load should be
shed or a new supply should be introduced in the network.
Our formulation is flexible enough to allow exploration of
the trade-offs involved in such a choice by modifying the
weighting vectors.

6) Putting it All Together: Using (3)-(18), the optimal
load management problem at time step n and over horizon
H can be formulated as follows:

min
S

n+H-1∑
k=n


Nb∑
j=1

[ΓTj (1− Cj(k)) + ΛTj ∆j(k)] + µ

Ns∑
m=1

αm(k)


subject to:

βj(k) = Psupj (k)− Preqj (k) (19a)

Preqj (k) =
∑

i∈Isj,h∪I
s
j,f

dji(k)cji(k)Lsji(k)

+
∑

i∈Ins
j,h∪I

ns
j,f

dji(k)cji(k)Lnsji (k) (19b)

Psupj (k) =

Ns∑
m=1

γmj(k)δmj(k)Pmtoj(k) (19c)

Nb∑
j=1

δmj(k)Pmtoj(k) = εm(k)αm(k)Pmaxm (k) (19d)

cji(k) =


1 ∀ j ∈ Insj,h(k)

0 ∀ j ∈ Insj,f (k) ∪ Isj,f (k)

{0,1} ∀ j ∈ Isj,h(k)
(19e)

cjl(k) ≤ cjo(k) ∀l, o ∈ Isj,h(k) and l ≤ o (19f)

δmj = {0, 1} (19g)
αm = {0, 1} (19h)
Ns∑
m=1

δmj(k) = 1 (19i)

δji(k) = 0 ∀i ∈ Ibj,f (k) (19j)

Ej(k + 1) = Ej(k) + βj(k) (19k)
Pr (Ej(k) ≥ φj) ≥ (1− λj) (19l)

SMPC formulation

where j ∈ {1, · · · , N b}, m ∈ {1, · · · , Ns} and S =
{Cj(k),∆j(k), αm(k), βj(k), Psupj (k), Pmtoj(k)} is the set
of optimization variables. (19a) corresponds to the power
balance for each bus, (19c) allocates power supplies to
buses, (19e)-(19j) define the binary decision variables for the
source selection and load shedding problems. Equations (19i)
enforce that only one power supply powers each bus at all
times, (19f) formulate the shedding priority relations, (19e)
defines the sheddable and non-sheddable load coefficients.
Constraints (19l) enforce that the probability of battery
charge level being larger than a predefined value is greater
than or equal to a specified amount.

IV. SOLVING SIMPLIFIED CASES

SMPC formulation in (19) involves mixed integer non-
linear optimization. Many promising theoretical and method-
ological achievements for this type of problems have been
reported by the researchers in recent years [3]. However, we
will not discuss this approach here, as we prefer to focus on
two special cases and show how they can be reformulated
as mixed-integer linear programming problems that can be
more effectively solved in real time applications.

We first discuss how the problem can be linearized when
the contactors are assumed to be deterministic and then
consider the case in which the loads are deterministic but
the health status of contactors is stochastic.

A. Deterministic Contactors

We assume that health status of contactors is constant,
i.e. dji, γmj and εm in (19) are all 1, and the failure of a
contactor is modeled by constraint (19e). We replace (19l)
with a linear inequality. Statistics of batteries charge level,
Ej(k), are functions of statistics of loads, powers, contactors
and status of contactors. We first derive probability density
function (PDF) for battery charge level and then change (19l)
to an affine inequality between mean and standard deviation
of battery charge level.

1) Battery Charge Level Statistics: Mean and covariance
dynamics of the battery charge level are given by:

µreqj (k) =
∑

i∈Is
j,h
∪Is

j,f

cji(k)µLs
ji
(k) +

∑
i∈Ins

j,h
∪Ins

j,f

cji(k)µLns
ji

(k)

(20a)

σ2
reqj

(k) =
∑

i∈Is
j,h
∪Is

j,f

cji(k)σ
2
Ls

ji
(k) +

∑
i∈Ins

j,h
∪Ins

j,f

cji(k)σ
2
Lns

ji
(k)

(20b)

Similarly, the statistics of Psupj can be characterized by

µsupj (k) =

Ns∑
m=1

δmj(k)µPmtoj
(k) (21a)

σ2
supj (k) =

Ns∑
m=1

δmj(k)σ2
Pmtoj

(k) (21b)

where (19a) links βj(k) to Psupj (k) and Preqj (k)

µβi
(k) = µsupi − µreqi (22a)

σ2
βi

(k) = σ2
supi(k) + σ2

reqi(k) (22b)



TABLE I
DESIGN PARAMETERS

Parameter Value Parameter Value
φ1 1.0× 105 φ2 1.1× 105

λ1 1.0× 10−2 λ2 1.0× 10−2

tmin,1 40s tmin,2 20s
σ2
Ls

ij
/Ls

ij 1.0× 10−1 σ2
Lsn

ij
/Lns

ij 1.0× 10−1

The battery charge level can be found by integrating
the current over the time, which after discretization can be
presented by (19k). Equivalently, we can write Ei(k) as

Ej(k) =

k−1∑
τ=0

βj(τ) j = 1, · · · , N b (23)

where, without loss of generality, we have assumed that
Ei(0) = 0. Finally, we derive the statistics of battery charge
level by exploiting (22) and (23),

µEj
(k) =

k∑
τ=0

µβj
(k), σ2

Ej
(k) =

k∑
τ=0

σ2
βj

(k) (24)

2) Linearization: We use (24) and the method proposed
by [1] to replace (19l) by a linear inequality between mean
and standard deviation of battery charge level (24)

Pr (Ej(k) ≤ φj) ≤ λj

1

2
+

1

2
erf

φj − µEj (k)√
2σ2

Ej
(k)

 ≤ λj
φj + σEj (k)

[√
2erf−1 (1− 2λj)

]
≤ µEj (k)·

(25)

B. Deterministic Loads

We now consider a case where loads and power sources
are deterministic, but source contactors are subject to failure
in a stochastic sense. Suppose that contactor health status
data received just before starting each horizon is valid only
for that time step k, and contactors may fail with some
probabilities during the SMPC horizon. Here we assume:
A0) All the loads and power sources are deterministic.
A1) A contactor remains inoperative if it fails.
A2) Contactors that connect loads to DC buses never fail.
A3) Power sources never fail during one horizon of the

optimization problem – i.e. εm(k) = 1 with probability
1 for 1 ≤ m ≤ Ns.

Let Ψj(k) be a matrix that contains all the random variables
corresponding to the past health statuses of source contactors

Ψj(k) :=


γ1j(1) γ2j(1) · · · γNsj(1)
γ1j(2) γ2j(2) · · · γNsj(2)

...
...

. . .
...

γ1j(k) γ2j(k) · · · γNsj(k)

 ·
A1 implies that γmj(k1) ≥ γmj(k2) if 1 ≤ k1 ≤ k2 ≤ k,

which will significantly decrease the number of possible val-
ues for Ψj(k). For instance, if the power lines from sources
to DC buses do not share any common contactors, columns of
Ψj(k) are independent and there are only (k+1)N

s

possible
values of Ψj(k). We denote Ψ̄j(k) := {Ψ̄r

j(k)|1 ≤ r ≤

NΨj(k)} as the set of all outcomes of Ψj(k), and NΨj(k) as
the cardinality of this set. Hence, the complementary CDF
in (19l) can be decomposed

Pr (Ej(k) ≥ φj) =

NΨj(k)∑
r=1

tj,kr πj,kr (26)

tj,kr := Pr
(
Ej(k) ≥ φj |Ψj(k) = Ψ̄r

j(k)
)

(27)

πj,kr := Pr
(
Ψj(k) = Ψ̄r

j(k)
)
· (28)

For a given Ψ̄ij(k), prior probability Pr
(
Ψi(k) = Ψ̄ij(k)

)
can be found based on the failure probability of contactors
and the power transmission architecture. The conditional
probability, tj,kr , can be represented as a constraint

Pr
(
Ej(k) ≥ φj |Ψj(k) = Ψ̄r

j(k)
)

= Pr

(
k−1∑
τ=0

βj(τ) ≥ φj |Ψj(k) = Ψ̄r
j(k)

)

= Pr

(
k−1∑
τ=0

[ Ns∑
m=1

γ̄mj(k)δmj(k)Pmtoj(k)− Preqj (k)

]
︸ ︷︷ ︸

EΨ̄r
j

(k)

≥ φj

)

=

{
1 if EΨ̄r

j (k) ≥ φj
0 otherwise

(29)

where γ̄mj(k) is the element (m, j) in Ψ̄r
j(k).

Finally we need to change the logical relations in (29) to
a suitable form for the optimization problem. This can be
done by introducing an auxiliary variable t̄j,kr

t̄j,kr = max
(

0, EΨ̄r
j (k) − φj

)
(30)

tj,kr =
1

ξj
min

(
ξj , t̄

j,k
r

)
(31)

Constant ξj should be chosen such that 0 < ξj < φj .

V. SIMULATION RESULTS

In this section, we show the effectiveness of the proposed
control design methodology by a simulation study for a
particular example of an EPS, which is shown in Fig. 3.
The optimization problem is formulated in YALMIP [4] and
CPLEX-IBM [2] is used as the solver. On a 3.40GHz Quad-
core Intel CPU with 12.0 GB memory the average solver
time was 0.52s. We assume that there are 10 sheddable DC
loads connected to each of the DC buses. The profiles of
the total sheddable and non-sheddable loads are presented in
Fig. 4. The design parameters are listed in Table. I. Figures 7,
5, 6 and 8 respectively shows the load shedding for AC bus
1 and 2, batteries charging status, and batteries charge level.

As it is shown in Fig. 8 we require the battery charge level
to raise above a lower bound after a given time. Here we
assume that the battery charge level is zero at the beginning.
Therefore, the controller has to shed some of the loads and
instead use the power to charge the batteries. Both figures
7 and 5 show that the loads with low priority (i.e. with
smaller subscript) are shed at the beginning to satisfy the
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Fig. 7. Load shedding for AC bus 1.

aforementioned requirements. The other factor that can cause
load shedding is very large amount of required power, such
that the total power supplied by the batteries and generators is
not enough to feed all the external loads. This is shown in bus
2 load profile in Fig. 4, where a huge load spike is considered
from 30s to 40s. The effect of this large required load can be
seen in both the battery charge level and the load shedding
graphs. Since the battery charge level should be higher that
a lower bound with 99% probability, the controller tries to
keep the actual battery charge level always higher than the
lower bound. Note that in Fig. 8 the battery charge level
has never decreased to the lower bound even in those time
intervals that the required power has a large value.
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Fig. 8. Normalized battery charge levels.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a stochastic control design
methodology for aircraft power systems. We introduced
uncertainty in the inputs and dynamics of the system, and
formulated the optimization of system performance as a
stochastic optimal control problem. We derived a linearized
version under a set of assumptions that can be accurate when
the probability of failure in contactors is considerably small
in comparison with the healthiness probability. In future work
we plan to exploit thesparsity of the Jacobian and Hessian
matrices to solve the original nonlinear problem efficiently
with a primal-dual interior point method.
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