
DESIGN METHODOLOGY FOR DSP

Edward A. Lee, Principal Investigator

Department of Electrical Engineering and Computer Science
University of California, Berkeley CA 94720

Final Report 2001-02, Micro Project #01-048
Industrial Sponsors: Agilent, Cadence, Philips

ABSTRACT

The Ptolemy project studies modeling, simulation, and design
of concurrent, real-time, embedded systems. The focus is on
assembly of concurrent components. The key underlying prin-
ciple in the project is the use of well-defined models of compu-
tation that govern the interaction between components. A
major problem area being addressed is the use of heteroge-
neous mixtures of models of computation. A software system
called Ptolemy II is being constructed in Java. The overall
Ptolemy project is fairly large, with additional support from
DARPA, GSRC, and a number of other companies, and is
strongly collaborative. The MICRO project has focused on
real-time signal processing, although the larger project is
broader.

1. The Context

The objectives of the Ptolemy Project include many aspects of
designing embedded systems, ranging from designing and sim-
ulating algorithms to synthesizing hardware and software, par-
allelizing algorithms, and prototyping real-time systems.
Research ideas developed in the project are implemented and
tested in the Ptolemy software environment. The Ptolemy soft-
ware environment, which serves as our laboratory, is a system-
level design framework that allows mixing models of computa-
tion and implementation languages.

In designing digital signal processing and communications sys-
tems, often the best available design tools are domain specific.
The tools must be able to interact. Ptolemy allows the interac-
tion of diverse models of computation by using the object-ori-
ented principles of polymorphism and information hiding. For
example, using Ptolemy, a high-level dataflow model of a sig-
nal processing system can be connected to a hardware simula-
tor that in turn may be connected to a discrete-event model of a
communication network.

A part of the Ptolemy project concerns programming method-
ologies commonly called “graphical dataflow programming”
that are used in industry for signal processing and experimen-
tally for other applications. By “graphical” we mean simply
that the program is explicitly specified by a directed graph
where the nodes represent computations and the arcs represent
streams of data. The graphs are typically hierarchical, in that a
node in a graph may represent another directed graph. In
Ptolemy II the nodes in the graph are subprograms specified in
Java.

It is common in the signal processing community to use a
visual syntax to specify such graphs, in which case the model is
often called “visual dataflow programming.” But it is by no
means essential to use a visual syntax.

Hierarchy in graphical program structure can be viewed as an
alternative to the more usual abstraction of subprograms via
procedures, functions, or objects. It is better suited than any of
these to a visual syntax, and also better suited to signal process-
ing.

Some other examples of graphical programming environments
intended for signal processing the Advanced Development
System (ADS), which is based on Ptolemy Classic, from Agi-
lent, the signal processing worksystem (SPW), from Cadence,
CoCentric Design Studio, from Synopsys, and Simulink, from
The MathWorks. SPW and CoCentric both use dataflow mod-
els that were developed as part of this project.

All of these software environments define applications as
assemblies of components that are coordinated in some way.
Many possibilities have been explored for precise semantics of
the coordination. Many of these limit expressiveness in
exchange for considerable advantages such as compile-time
predictability. In Ptolemy, a domain defines the semantics of
the coordination between components. Domains are modular
objects that can be mixed and matched at will, thus getting a
rich and rigorous approach to heterogeneous modeling.

Graphical programs can be either interpreted or compiled. It is
common in signal processing environments to provide both
options. The output of compilation can be a standard proce-
dural language, such as C, assembly code for programmable
DSP processors, or even specifications of silicon implementa-
tions. A major part of the work in the next period will be on
such compilation.

2. Results of Micro Support

2.1. Ptolemy II
We have built a second generation of design software called
Ptolemy II. It is written in Java, is fully network-integrated, is
capable of operating within the worldwide web and enterprise
software architectures, and is multithreaded.

Ptolemy II offers a unified infrastructure for implementations
of a number of models of computation. The overall architecture
consists of a set of packages that provide generic support for all
models of computation and a set of packages that provide more
specialized support for particular models of computation.

Examples of the former include packages that contain math
libraries, graph algorithms, an interpreted expression language,
signal plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered
graph representations of models, packages that support execut-
able models, and domains, which are packages that implement a
particular model of computation.

2.2. Specification of control flow in Ptolemy
Most modern systems include control logic for the proper
sequencing of computational tasks, and for switching and coordi-
nating between different operating modes. Finite state machines
(FSMs) have long been used to specify control flow for control-
dominated problems. In large systems, however, the control
functionality can become so complex that the flat, sequential
FSM model becomes impractical. Hierarchical concurrent FSMs
(HCFSMs) increase the usefulness of FSMs by extending them
with structuring and communication mechanisms. However,
most formalisms that support HCFSMs, such as Statecharts and
its variants, tightly integrate the concurrency semantics with the
FSM semantics. Based on the Ptolemy philosophy of hierarchical
composition of heterogeneous models of computation, a formal-
ism called “*charts” (pronounced “starcharts”) allows embed-
ding hierarchical FSMs within various concurrency models, in
particular continuous time, dataflow, discrete event and synchro-
nous/reactive models. In this heterogeneous model, the semantics
of FSM, concurrency and hierarchy are naturally supported. Our
scheme decouples the FSM from the concurrency models,
enabling selection of the most appropriate concurrency model for
the problem at hand.

Xiaojun Liu has developed an FSM domain in Ptolemy II, which
is integrated with a number of other domains (such as CT, DE,
SDF, and Giotto). We are currently working on integrating the
FSM domain with process-based domains such as CSP and PN.
We will also investigate what formal verification methods can be
applied to the *charts formalism.

2.3. Distributed processing in Ptolemy
A large number of embedded systems applications require the
coordination of physically separated components, or networked
embedded sub-systems. Distributing system components across a
network can improve the robustness of a system and simplify its
architecture by allowing components to run concurrently and
independently. It also facilitates the exploitation of the intrinsi-
cally parallel nature of specialized hardware, offering the prom-
ise of improved execution speed.

Traditional distributed computing is built on the client-server
model, which lacks object-orientation and presents obstacles to
scaling it up. Middleware technologies, like the Common Object
Request Broker Architecture (CORBA) and the Distributed
Component Object Model (DCOM) offer object models and scal-
ability, but the programming model is too liberal to allow any
analysis of formal properties of a system. We use Ptolemy’s sup-
port for the definition of new models of computation to define
and implement well-structured models for the interaction of dis-
tributed components. The intent is to explore the concept of mod-
els of computation in distributed software systems and study the
implication of Ptolemy component architecture, message passing
mechanisms and execution models.

In an early study, we have demonstrated importing a remote
model as a component of a larger model and executing it in a dis-
tributed fashion over a network, and implemented a publish/sub-
scribe type of message passing mechanism based on JINI,
JavaSpaces and the CORBA Event Service.

In order to support distributed components, three distributed
objects -- receivers, parameters, and executable interfaces -- were
exported via CORBA. These objects are the basis of Ptolemy II
support of models of computations that govern interacting com-
ponents. Distributed Ptolemy II entities make use of these
CORBA objects to pass messages and transfer execution control,
obeying the model of computation defined by the director,
regardless of their locations on the network.

In this report period, Yang Zhao and Xiaojun Liu implemented a
new domain in Ptolemy II in order to study the communication
behavior, resource management and model partitioning among
distributed components or sub-systems. By decoupling the com-
munication behavior from the computation behavior of a compo-
nent or sub-system, we can achieve higher modularity, and better
component reuse.

Current work includes the definition of a clean interface for dis-
tributed components and their interaction, and the exploration of
real-time issues under the framework. We also plan to formalize
the CI domain and refine it with more features, such as time, pri-
ority, etc.

2.4. A model of computation for networked
embedded systems
Networked embedded systems such as wireless sensor networks
are usually designed to be event-driven so that they are reactive
and power-efficient. Programming embedded systems with mul-
tiple reactive tasks is difficult due to the complex nature of man-
aging the concurrency of execution threads and consistency of
shared states. Elaine Cheong collaborated with Judith Liebman
(UC Berkeley), and Jie Liu and Feng Zhao (at the Palo Alto
Research Center) in designing and implementing a globally asyn-
chronous and locally synchronous model, called TinyGALS, for
programming event-driven embedded systems. Software compo-
nents are composed locally through synchronous method calls to
form modules, and asynchronous message passing is used
between modules to separate the flow of control. In addition, we
have designed a guarded yet synchronous model, TinyGUYS,
which allows thread-safe sharing of global state by multiple
modules without explicitly passing messages. Our notions of
synchrony and asynchrony, which are consistent with the usage
of these terms in distributed programming paradigms, refer to
whether the software flow of control is immediately transferred
to a component.

With this highly structured programming model, all asynchro-
nous message passing code and module triggering mechanisms
can be automatically generated from a high-level specification.
The programming model and code generation facilities have
been implemented for a wireless sensor network platform known
as the Berkeley motes. TinyOS is an event-based operating sys-
tem for these networked sensors being developed by the group of
Prof. David Culler. Our implementation of TinyGALS uses the
component model provided by TinyOS, which has an interface
abstraction that is consistent with synchronous method calls. The
TinyGALS code generator is designed to work with preexisting
TinyOS components, thus enabling code reuse.

The key contribution of TinyGALS is in the way developers can
view the system they are creating. Developing such a highly con-
current embedded system in a traditional programming language
leads to a structure that is oriented along functionally similar
entities and the messages they exchange (see figure 1), but it
reveals nothing about the relation between these messages, the
common access to global state, or the various concurrent threads
running in the system.

These aspects are made explicit in a TinyGALS model of the
same system (see figure 2). It directly represents threads and glo-
bal state, and it makes explicit the dependencies between the sig-
nals received and set by a component.

We are currently working on formalizing the dynamic properties
of TinyGALS, as well as developing a more robust implementa-
tion for communication and scheduling. TinyGALS is currently
intended for running on a single node. We plan to extend the
TinyGALS model to multiple nodes for distributed multi-tasking.

2.5. Actor language
Ptolemy II provides a sophisticated software infrastructure for
the development of actor-based models, as well as definition of
individual actors themselves. However, defining actors directly
in Ptolemy’s host language (Java) requires a degree of familiarity
with this infrastructure that might deter many more casual users
of the system. The CAL actor language was designed to address
this issue, allowing users to express actors in a small domain-
specific language.

Johan Eker (now at Ericsson), Ed Willink (at Thales Research),
and Jörn W. Janneck have collaborated on the language design
and on tools for parsing, analyzing, and transforming actors in
that language. Lars Wernli has contributed a code generator
translating actors to Java so that they can be run inside the
Ptolemy II framework. Johan Eker and Yang Zhao have written
an experimental C code generator.

2.6. Code generation
The high-level of abstraction possible in component-based mod-
eling offers many advantages, such as simulation speed, the
strength of formal models of computation, etc. However, the fun-
damental weakness of high-level modeling is the difficulty of
actual implementation. Traditionally the easiest way to get high
performance has been to translate the model by hand into a low-
level implementation language. Automatic code generation from
the model is sometimes possible by assembling the component
specifications, but only with serious performance penalties.
These penalties come from several sources:

• A component in the modeling environment is inevitably
built to be easy to design with. Components can often
accept a variety of data types (type-polymorphism), can be
used in a variety of control or communication models
(domain-polymorphism), can be configured with different
parameters (operational-polymorphism), and can be used in
a variety of environments (context-polymorphism). This
flexibility directly conflicts with the goals of most opti-
mized implementations.

• A model consists of components, their ports, and the con-
nections between those ports. The model of computation
associated with a model determines how connected compo-
nents communicate and control their execution. In some
cases the boundaries of components correspond to physical
boundaries of the implemented system. For example, there
might be one component for each physical processor that is
connected to a system bus. However, the boundaries of
components often have no physical importance in a system.
They are specified arbitrarily by the system designer, or
because of the social structure of group designing the
model, or because of the availability of reusable compo-
nents. Simple code generation strategies blindly preserve
the structure of the model, which can result in unnecessary
overhead.

At some level, these problems can be ameliorated using tradi-
tional code generation strategies. If a component is too flexible to

MAIN

TARGET_TRACKING

CLOCK

GENERIC_COMM

BLESS

Init
C

lock
Send

Send
done

LEDS
Send
Send done

R
eceive channel 8Send

Send done
R

eceive channel 7

InitInit Start

Init
Fire event

On Off

PHOTO

Init
G

et data
D

ata ready

MAIN

TARGET_TRACKING

CLOCK

GENERIC_COMM

BLESS

Init
C

lock
Send

Send
done

LEDS
Send
Send done

R
eceive channel 8Send

Send done
R

eceive channel 7

InitInit Start

Init
Fire event

On Off

PHOTO

Init
G

et data
D

ata ready

Figure 1. Traditional structure.

POT

Clock logic

CLOCK

Get sensor data

PHOTO

sensing

clock Send local data

GENERIC_COMM

Send BLESS mesg

BLESS send

Receive packets

GENERIC_COMM

receiving

Update local data

init

init

init
init

start

global_nodedata;
global_parent_id;

BLESS receive
GENERIC_COMM

BLESS forward

GENERIC_COMM

Update Routing Table

Routing Table

POT

Clock logic

CLOCK

Get sensor data

PHOTO

sensing

clock Send local data

GENERIC_COMM

Send BLESS mesg

BLESS send

Receive packets

GENERIC_COMM

receiving

Update local data

init

init

init
init

start

global_nodedata;
global_parent_id;

BLESS receive
GENERIC_COMM

BLESS forward

GENERIC_COMM

Update Routing Table

Routing Table

Figure 2. TinyGALS structure.

generate good code, then it can be replaced with a specialized
hand-written version. If there is unnecessary structure in the
model, then change the model so that the structure is removed.
However, these solutions conflict directly with good engineering
practice, and greatly complicate the implementation procedure.
Steve Neuendorffer and Christopher Hylands collaborate on
developing a code generation strategy that attempts to handle
these difficulties automatically. The key idea is to combine code
generation from a model with compilation of the code for indi-
vidual actors. We call this strategy Co-compilation. This strategy
directly addresses the difficulties above. We parse the code for an
actor and specialize it according to its use in a particular model
(the types, the particular domain, the values of parameters and
the connections that have been made to it). We can also perform
cross-actor optimizations to eliminate or reorganize the structure
of a model.

Co-compilation also offers a straightforward path to code genera-
tion from heterogeneous models that contain different communi-
cation and control strategies organized in a hierarchical structure.
We anticipate being able to generate code for a model at one
level of the hierarchy and then use the generated code as a com-
ponent at a higher level of the hierarchy. This can result in
reduced overhead as well, since a system designer is not limited
to a single model of computation.

We have implemented this code-generation strategy as the
Copernicus package, which is part of Ptolemy II. Copernicus
parses the Java bytecode for actors, optimizes it, combines it with
code generation from the model and outputs Java bytecode. The
resulting generated code is currently useful for high-speed com-
piled code simulation. We are currently exploring how to gener-
ated code for embedded architectures and for FPGAs.

2.7. Status
In this report period a new major version of the Ptolemy II soft-
ware was released (version 2.0.1 in August 2002). It includes a
limited prototype of our code generation facility that will gener-
ate class files for non-hierarchical SDF models, as well as sup-
port for modal models, a Timed Multitasking domain and a
Synchronous reactive domain.

During this report period HyVisual, a specialized version of the
Ptolemy II software, focussing on the description of hybrid sys-
tems, was prepared for release. It shipped in January 2003.

3. Publications

This project has generated a number of publications during this
reporting period. Here are some of the highlights.

3.1. Journal Articles
[1] Edward A. Lee, "Embedded Software," Advances in Com-

puters (M. Zelkowitz, editor), Vol. 56, Academic Press,
London, 2002

[2] Jozsef Ludvig, James McCarthy, Stephen Neuendorffer,
Sonia R. Sachs,"Reprogrammable Platforms for High-
Speed Data Acquisition," Kluwer Journal of Design Auto-
mation for Embedded Systems, Volume 7, Number 4,
November, 2002

[3] Praveen K. Murthy and Edward A. Lee, "Multidimensional
Synchronous Dataflow," IEEE Transactions on Signal Pro-
cessing, volume 50, no. 8, pp. 2064 -2079, August 2002.

3.2. Conference Papers
[4] Jie Liu, Johan Eker, Jorn W. Janneck and Edward A. Lee,

"Realistic Simulations of Embedded Control Systems,"
Proceedings of the 15th IFAC World Congress, Barcelona,
Spain, July 21-26, 2002

3.3. Ph.D. Dissertations
[5] Yuhong Xiong,"An Extensible Type System for Compo-

nent-Based Design," Ph.D. thesis, Technical Memorandum
UCB/ERL M02/13, University of California, Berkeley, CA
94720, May 1, 2002

3.4. Masters Reports
[6] Stephen Neuendorffer, "Automatic Specialization of Actor-

Oriented Models in Ptolemy II," Master's Report, Techni-
cal Memorandum UCB/ERL M02/41, University of Cali-
fornia, Berkeley, CA 94720, December 25, 2002.

3.5. Other Technical Reports
[7] J. Adam Cataldo, Edward A. Lee, and Xiaojun Liu, "Pre-

liminary Version of a Two-Dimensional Technical Specifi-
cation for Softwalls," Technical Memorandum UCB/ERL
M02/9, University of California, Berkeley, CA 94720,
April 17, 2002.

[8] Jörn W. Janneck, "Actors and their composition," Memo-
randum UCB/ERL M02/37, University of California at
Berkeley, 18 December 2002.

[9] Edward A. Lee and Yuhong Xiong, "Behavioral Types for
Component-Based Design," Memorandum UCB/ERL
M02/29, University of California, Berkeley, CA 94720,
USA, September 27, 2002

[10] H. John Reekie and Edward A. Lee, "Lightweight Compo-
nent Models for Embedded Systems," Memorandum UCB/
ERL M02/30, University of California, Berkeley, CA
94720, USA, October 30, 2002.

[11] Lars Wernli, "Design and implementation of a code gener-
ator for the CAL actor language," Technical Memorandum
UCB/ERL M02/5, University of California, Berkeley, CA
94720, March 2002.

