767 Electric Power System Modeling in
SysML

Authors:

John Finn

Mohammad Mostafizur Rahman Mozumdar
Alberto Sangiovanni Vincentelli

University of California, Berkeley

Version & Date:
Ver.02 - April 19t, 2011

Reviews:
Ver.01-02/09/2011: Preliminary version
Ver.02 - 04/19/2011: First Draft of Complete Power System

Abstract

This document provides a preliminary description for SysML modeling of the 767
electrical power system, a part of the design methodology to the MuSyC/DSCS
avionics challenge problem. It starts with a short overview of the aircraft’s electric
power system and then highlights the components that have been modeled. Rational
Rhapsody is used as a SysML modeling interface.

Description of Power System

The Electrical Power System (EPS) is an important subsystem of a typical avionics
vehicle management system. The scope of the EPS is to provide electrical power to
the different aircraft subsystems. Typically it consists of power generators, switches,
contactors and electrical loads. Figure 1 shows a simplified schema of the Boeing
767 Electrical Power System.

?L‘ !J

=3

5
e

)

- GND HANDUING
VAl AC BUS — L fi —{AUTOLAND AC —] [wam Ac BUS — 7)
It T AN oC Gvo
oy || e = | [Gno svee |
) -
[nuc-‘] [ocous =t J——|ifuroanpoc~g [oCOUS— R |
T =
+ 28VAC — GS
' o= [2vac - 3]
E 4 HOPTION)
T - APU
AC—ST8Y | [BAT BUS | oy

T BATT CHAG BATT CHAG frb—t]
= APU BATTERY
[
l HOT BATTERY BUS

BATTERY

HiH

Figure 1 - Simplified Boeing 767 Electrical Power System

There are two generators in the aircraft that serve as a primary power sources
(shown as L-Gen and R-Gen in Figure 1). Each of them provides power to their
respective AC Bus through a Generator Control Breaker (GCB), which is controlled
by a local Generator Control Unit (GCU). Next, each AC Bus powers the local DC Bus
through a Transformer Rectifying Unit (TRU). The Bus Power Control Unit (BPCU)
controls the Bus Tie Breakers (BTB), which in the event of main generator failure,
the BTB allows for the other generator, Auxiliary Power Unit (APU) or the External
Power (EXT) to compensate for the lost generator. Similarly, the DC Tie allows one
DC Bus to compensate the other in the event of a TRU failure. Lastly, the Left DC Bus
or the onboard batteries can power the Battery Bus. This primitive functionality was
incorporated into SysML as described in the next section.

Modeling Electrical Power System in SysML

The EPS can be viewed as an interaction between three entities, the pilot, control
system and power system. The pilot has the ability to start/stop the right or left
engine. The control system controls the power system based upon its current status
and commands from the pilot. Finally, the power system generates power for the
various aircraft loads from passenger lighting to anti-ice devices for the wings. This
functionality is illustrated in the SysML use case diagram of Figure 2.

System Boundary Box

StopEngines

Pilot @

Figure 2 - Use Case Diagram of EPS

EnginesController

qincludfe»

PowerSystem

PowerFlowBetweenEngines

System Architecture

Figure 3 illustrates the top-level view of the EPS using a block diagram, which
consists of the pilot, control system, left/right side of the power system, Bus Tie
Breaker, DC Tie Breaker, External and APU Power Units, AC/DC Standby Buses,
Battery Bus, and the Battery. All these components contain ports by which they are
connected with each other. Using ports, components can communicate with each
other by means of events, which can carry specific data values.

As shown in the figure 3, the pilot sends the start/stop commands to the control
system. The engine control system consists of two GCUs (one for each engine) and
one BPCU (shown in figure 4). The GCU sends the start/stop command to each of the
engines and receives (measures) the current generator voltage level. Additionally,
the BPCU controls the BTB. In the current implementation, each side of the power
system contains blocks for engine, AC Bus and DC Bus (shown in figure 5).

bdd [Package] Archiecture [Arc hiecture]

1 itsLefSide_Power System-LefiSide_Power System

ACstanchy ACsianhy [iSDC_BUS_BAT COMPONENTS:DC_BUS_BAT Camporerts

Attibues
Attibuies

LefiEngComm Operaions

& Leftsartsop(command:int=0) DCstarchy DCstarchy
B currentvoltLevelLef(currentvoltev .

B LefiTRU_Swaws(TRUstaws:int=1) DCTie

¥ LefACbus Staus (Bus Statws:in)

B otherPowerSourcesSrvLeft()

Leftsarsop, currentvolievelLeft ¥ noPowerSourc esForLet()

Operatiors

1 itsContr o PanelFor PilotCc ACTieLeft

DCTieLet

TieLeft
LeftEngComm 1 SBTBSBTBS Attitues

1 itsContr o Sytem Contr dSytem

1 isExtPower_APUgenExtPower

BPCU L BTB BUS Operaiors APU ExtPower
Iy

Attibues

Operators
® LeftpCbus Satws..
¥ PowerFromRight..
¥ RighDCbus Statw.

EnaineComm

BPCU_R_BTB_BUS|

B currentvolt evelLet(curr

PCU_APU_EXPWR_BUS

EngineComm_R] TieRiaht

DCTieRight

RighEngComm

BPCU APU EXPWR BU.

RightSariSop, currentvolt evelRight
ACTieRiaht

1 itsRightSide Poer System RigftSide PowerSystem

Atibues

RighEnaComm Operations pCTie
Il

& RighSarsop(commandint=0)

B currentvoltLevelRight(c urrentvokteveli.
8 otherPowerSourcesSrvRight()

B noPower Sourc esForRight()

Figure 3 - System Architecture

Control System

As mentioned earlier, the control system in Figure 4 has three components, a GCU
for each engine and a BPCU for the BTB. Each GCU is connected to its corresponding
engine through a flow port by which it sends and receives data and events. The GCU
can start/stop its corresponding engine based on commands from the pilot. In
addition, the GCU monitors the generator’s output voltage, and if this voltage is
outside a specified range, the GCU will shut down the engine. If an engine is shut
down by the GCU, the GCU signals the BPCU to configure the BTBs to compensate for
the lost engine. The configuration of the BTBs depends on the status of the available
power sources, which are EXT, APU or the other generator (in that priority order).

ibd [block] ControlSy tem [ControlSystemInternal] J

1 LeftGCU B

Attributes
LeftEngComm

1

LeftEngineComm LeftEngComm

[] Operations [T

8 currentvoltLevelLeft(curr...
® StartLeftEngine()
B StopLeftEngine()

I

1

GCUsync

GCUSyncLett
1 BPCU =

Attributes
H APUstate:int
EngineComm_L 0 = EXT_PWRstate:int BPCU_R_BTB_BUS
H leftEngineStatus:int
= richtFnaineStatus:int
8 EXT_PWRstatus (state:inty |[BPCU_APU_EXPWR_BUS
® externalPowerON() Ll [] BPCU_APU_EXPWR_BUS
8 APU_ON()
& externalPowerOF F()
8 APU_OFF()
o .
GCUSy ncRight

BPCU_L_BTB_BUS

flj BPCU_L_BTB_BUS

BPCU_R_BTB_BUS

EngineComm R "1 |

GCUsync
1 RightGCU 3

Attributes

RightEngComm
[Z Operations 1 [] RightEngComm

) currentVoltLevelRight(curren
= StartRightEngine()
& SstopRightEngine()

RightEngineC omm

Figure 4 - Internal Block Diagram of Control System

Left/Right Power System

Each side of the power system contains three blocks including the engine, AC Bus
and the DC Bus as shown in Figure 5, which illustrates the left side. These blocks
communicate through ports, which send and receive events. The engine acts as the
generator, which when active, generates an output voltage to power the AC bus,
which in turn powers the DC Bus through the TRU. The GCUs control the engines
(via the LeftEngComm port) based on the pilot’'s commands and whether or not a
satisfactory voltage is being supplied. Additionally, both the AC and DC Buses have
ports to their respective Tie Buses in the event of a system failure.

ACstandby DCstandby

Tod [block] LeftSide_PowerSystem [LeftSide_PoverSystemirteral
DCstandby
LeftDCBUS B
Attributes
DCPowerSupply | I LeftTRUzint
ACstandby D
LeftACBUS B
Attributes O perations DCTie
H BusStatus:int & PowerFromRight(Status:int) C
LeftEngComm [LeftTRU_Status(TRUstatus:int=1)
L ACPowerSupply 0 § LeftACbusStatus(BusStatus:int)
perations DCP {8 LeftDCbusStat us(BusStatus:int)
8 ReqPowerFromRight ()
[stablevotage()
¥ VottageDown()
- DCTie

[® LeftACbusStatus(BusStatus:int) L

! LeftEngine E 8 OtherPowerSourcesSrvLeft()
Attributes [® noPowerSourcesForLeft()
= currentvoltLevetint
0
LeftEnaComm) [ACPowerSupply ACTieleft
O perations
B LeftStartStop(command..
& stablevottage()
ACTieLeft”

Figure 5 - Internal Block Diagram of Left Power System

Generator Control Unit- GCU

The state flow shown in the Figure 6 (left side) illustrates the operation of each GCU.
Initially, the GCU is in the idle state waiting for a start command from the pilot
(StartLeftEngine). Once the start command is issued, the GCU will transition to the
StartEngine(Left/Right) state. On entry to this state, the GCU sends the start
command to the engine. For example to send the start command from the left GCU, it
uses following action language of SysML,

OUT_PORT(LeftEngComm)->GEN(LeftStartStop(1))

Here, LeftEngComm is the flow port between the left GCU and the left side of the
power system (see Figure 3), and LeftStartStop is the event with argument value of
1 (1= start, 0=Stop). Once in the StartEngineLeft state, the GCU will transition to the
LeftEngineStarted state if the output voltage from the engine is acceptable. If not, the
statechart will transition to the StopEngine state. While in the LeftEngineStarted
state and the voltage suddenly become unacceptable or a stop command is received,
the statechart will transition to the StopEngine state. From here, the engine can
transition back to the StartEngineLeft state with the LeftStartStop event from the
pilot.

N

Idle

l StartLeftEngine

StartEngineLeft =)
Reactions
currentVoltLev elLef t[params->current VoltLev el==115]
currentVdltLev elLef t[
params-pcurrentVoltLev el<=110 ||
paramsy{>currentVoltLev el>=120]
| LeftEngineStarted
StartLeftEngine
currentVoltLev elLef t[params->current VoltLev el==115]
StopLef tEngine,
currentVoltLev elLef t[params->current VoltLev el<=110 ||
params->currentVoltLev el>=120]
StopEngine @:)

Reactions

Figure 6 - Statechart Implementation of Left GCU

Engine

Initially, each engine waits for the start command in the idle state. Once the GCU
sends the start command (for example, LeftStartStop(1) from the left GCU), the
engine will make transition to the EngineStarted state. Once started, the engine will
send its output voltage to the GCU every 1000ms via the LeftEngComm port. On
entry to the EngineStarted state, the engine sends an event to the AC Bus indicating
its operating voltage level, which based on its status; this event is either
StableVoltage or VoltageDown via the ACPowerSupply port. Lastly, if the GCU sends a
stop command (for example, LeftStartStop(0) from the left GCU), the engine will
transition to the idle state and send VoltageDown to the AC Bus.

StatechartOfLeftEngine J

LeftStartStop[params->command==0]/ Idle '%
OUT_PORT(ACPowerSupply)->GEN(VoltageDown);

E currentVoltLev...

LeftStartStop
[params->command==1

EngineStarted f*?'J

"% ~urrant\/altl ownl=118

tm(1000)/
OUT_PORT(LeftEngComm)->
GEN(currentVoltLevelLeft(currentVoltLevel))

Figure 7 - StateChart Implementation of Left Engine

ACBus

The state flow in Figure 8 illustrates the Left AC Bus. In this state flow, the Left AC
Bus is initially in the NotInService state, which implies the AC Bus is not powered. On
entry to this state, the AC Bus sends an event to both the DC Bus and AC Standby
Bus, which indicates the AC Bus is not in service, and therefore, the DC Bus cannot
be in service either, but the AC Standby Bus can be in service from the Battery Bus.
Once the left generator produces a stable voltage, the AC Bus will transition to the
InService_PowerFromLeftGenerator state. If the engine fails, then the VoltageDown
event generated by the GCU will transition the AC Bus back to the NotInService state.
When the BPCU closes the BTBs, the OtherPowerSourcesSrvLeft event will transition
the AC Bus to the InService_ PowerFromOtherSources state, which implies either the
EXT Power, APU or the Right AC Bus is supplying power to the Left AC Bus. When
the NotInService state is exited, the AC Bus sends an event to both the DC Bus and AC
Standby Bus, which indicates the AC Bus is in service, and therefore, the DC Bus and
AC Standby Bus can be in service as well.

The same state flow was implemented for the Right AC Bus, except there is no
Standby Buses on the Right Side, and therefore, there is no need to report its status
to the Standby Bus.

StatechartOfLeftACBus)

NotInService @J]

StableV oltage

OtherPow er SourcesSrvLeft

oPow erSourcesForLeft

InService_Pow erFromLeftGenerator |

| InService_Pow erFromOtherSources

StableV oltage

Figure 8 - StateChart Implementation of AC Bus

DC Bus

The state flow in Figure 9 illustrates the Left DC Bus. The functionalities of the DC
Bus are implemented using two parallel state machines. The first state machine (left
side) represents the actual DC Bus, and the second one updates the TRU status.

Initially, the Left DC Bus is in the LeftDC NotInService state. On entry to this state,
the Left DC Bus informs the DC Standby Bus and DC Tie Breaker that its status is
“unpowered” via the LeftDCbusStatus(0) event. The LeftACbusStatus(1) event
transitions the state flow to the CheckTRU state, which checks the status of the Left
TRU. If the Left TRU is functioning properly (i.e. LeftTRU = 1), then the Left DC Bus is
powered from the Left TRU, which is signified by the InServiceFromTRU state. In the
event of TRU failure (i.e. LeftTRU = 0), the Left DC Bus transitions back to the
LeftDC_NotInService state, and sends the ReqPowerFromRight event to the DC Tie
Breaker. The same event occurs if the TRU fails while in the InServiceFromTRU state.
When the DC Tie Breaker receives the request, it can close the DC Tie Breaker,

which will allow the Right DC Bus to power the Left DC Bus. In this case, the DC Tie
Breaker will send the PowerFromRight(1) event, which signifies the DC Tie Breaker
is closed and the Left DC Bus will transition to the InServiceFromRight state. If the
Right DC Bus goes down, the PowerFromRight(0) event will transition back to the
LeftDC_NotInService state. On entry to either the InServiceFromTRU or
InServiceFromRight, the DC Bus informs the DC Standby Bus and DC Tie Breaker that
its status is “powered” via the LeftDCbusStatus(1) event.

On the right side of state flow, the Left TRU’s status is determined. Initially, the Left
TRU is functioning properly, which is designated by the LeftTRU_ON state. This state
sets the LeftTRU variable mentioned above to one. The LeftTRU_Status(0) events

transitions the Left TRU to the failed state, LeftTRU_OFF state, which sets LeftTRU to
Zero.

The same state flow was implemented for the Right DC Bus, except there is no

Standby Buses on the Right Side, and therefore, there is no need to report its status
to the Standby Bus.

stm [Class] LeftDCBus)

LeftDC_NotinSevice (2

LeftACbusStatus[(param s->BusStatus==1) Reactions

LeftTRU_ON =)

[LeftTRU == 0]/
OUT_PORT(DCTie)->
GEN(ReqPowerF i

" CheckTRU
PowerFromRight[pafams->Status == Q]

LeftTRU_Status[params->TR Ustatus ¥=(0]

LeftTRU==0]/
OUT_PORT(DCTie)->
GEN(RegPowerFromRight);

[LeftTRU==1] LeffTRU_OFF =

LeftACbusStatuspyaramsf>Bus Status==0]

InServiceFromTRU (2]

. 0lT PORT(InServiceFromRight (%)

Figure 9 - StateChart Implementation of DC Bus

DC Tie Breaker

The DC Tie Breaker state flow is shown in Figure 10. The two state flows on the
right side, update the status of the Left and Right DC Buses. If the Right Bus is
powered, then the value of RightDC is one, otherwise zero. LeftDC is updated

identically. These updates are triggered by the LeftDCbusStatus({0,1}) and
RightDCbusStatus({0,1}) mentioned in the DC Bus section above.

The state flow on the left allows the DC Tie Breaker to open and close based on the
requests and the status updates from Right and Left DC Bus. Initially, the DC Tie
Breaker is open. If the DC Tie Breaker receives the ReqPowerFromRight event, the
state flow transitions to the CheckRightDC state, which checks the status of the Right
DC Bus. If it is powered (i.e. RightDC = 1), then the state flow transitions to the
SendPowerFromRight state which sends the event PowerFromRight to the Left DC
Bus. However, if the Right DC Bus is unpowered (i.e. RightDC = 0) while in either the
SendPowerFromRight or CheckRightDC state, the DC Tie Breaker transitions back to
the Open state. The DC Tie Breaker behaves identically if the ReqPowerFromLeft is
received while in the Open state.

J MainState (%)‘

~

LeftD Cbus Status[params->BusStatus == 1]/
LeftDC =%

LeftD Cupdate
[LeftDC==0] LeftD Chus Status[params->BusStatus == 0]/

CheckeftDC LeftDC=0;

RightDCbusStatus[params->Bus Status == 1]/
RightDC =1;

[LeftDC==0] RightDCupdate

ReqPowerFromRigh

[Righﬁthy

CheckRightDC ‘

RegPowerFromLeft

[RightD C==0]
[RightD C==1]

‘ SendPowerFromRight (%
|

[LeftDC==1

SendPowerFromLeft (% Q
|

RightDCbusStatus[params->Bus Status ==|0]/
RightDC = 0;
- J

Figure 10 - StateChart Implementation of DC Tie Breaker

BPCU

The BPCU state flow implementation of Figure 11 consists of three parallel state
machines. The two statecharts on the right get the status of the APU and EXT Power.
These statuses are updated by events from the corresponding APU/EXT block
within the Architecture of Figure 3 via the BPCU_APU_EXPWR_BUS port. Figure 12
shows the APU status update state flow, which sets the variable APUstate according
to the status of the APU, which is either ON (APUstate = 1) or OFF (APUstate = 0).
Figure 13 shows the EXT Power status update state flow, which sets the variable
EXT PWRstate according to the status of the EXT Power, which is either ON
(EXT_PWRstate = 2), OFF (EXT_PWRstate = 0) or AVAIL (EXT_PWRstate = 1). The

AVAIL state indicates EXT Power is available, but not being used while the ON state
indicates the EXT Power is being used to power the AC Bus(s).

Figure 11 - StateChart Implementation of the BPCU

APU_Status_Updating

APUstatus[params-=state==0)/
APUstate=0;
GEM(APU_OFF);

APUstatus[params-s&tate==1)/
APUstate=1;
GEM(APU_ON)

UpdateStatus

Figure 12 - StateChart Implementation of the APU Status Update within
the BPCU

0

| ExternalPower_Status_Updating

EXT_PWRstatus[params=state==0]/
EXT_PWRstate=0;

XT_PWRstatus[params-=state=%2]/
XI_PWRstate=2;
MiexternalPowerQn);

UpdateStatus

Figure 13 - StateChart Implementation of the EXT Power Status Update within
the BPCU

The large state flow on the left side of the entire BPCU state flow can be divided into
five states including three “super states” each indicating the flow of power and the
BTB configuration. Recall the priority to power a given AC Bus is EXT Power, local
engine, APU and opposite engine. The initial state, Both_BTB_Open, signifies both of
the BTBs are open and the local engine powers each AC Bus. In the event either
engine fails, the state flow will transition to the AlternativePowerSource, which is a
kind of “junction state” that enforces the priority mentioned above and based on the
statuses of the alternative power sources, determines which source will power the
lost channel. First, if no alternative power source is available, it will transition to the
NoAvailablePowerSourceForACBus state, which indicates the lost channel will
remain unpowered. Next, each of the “super states” represents alternative power
sources which will be explained in the following paragraphs.

As far as the BTBs are concerned, the APU and EXT Power have the same BTB
configuration for each of the given scenarios. Figure 14 shows the APU “super
states” of the BPCU state flow. The state flow of the EXT Power has modeled in
similar fashion. The initial state, CheckEngineFailure, checks the status of each
engine to determine which BTBs to close. An engine status of one indicates proper
operation while zero indicates failure. If only the Right Engine is lost, the Right BTB
will close as indicated by the Close_Right BTB state. Similarly, if only the Left Engine
is lost, the Left BTB will close as indicated by the Close_Left BTB state. However, if
both engines failed, both BTBs will close as indicated by the Close_Both_BTB state.

rightEngin e[params-=ztatus==1}

lefE ngine[params-=statug==1yleftEngin eStaflz=1; rightEngin eStatus =1;

il / PowerFromaPU \

OW

CheckEngineFailure

rightE ngjneStatus=30 &&%
fEn gineStatuz==1]

[IgftEngineStatus==0 &&

MphEngineStatus==11 " peengineStatus==0 &8
rightEnygineStatus==0]

| CLOSE_LEFT_BTB | CLOSE_RIGHT_BTB |

rightEn gine[par@ms-3statuz==1}
rightEngineStajizsl;

l

CLOSE_BOTH_BTB

lefiE ngine[paramg-=statug==1}y
lefiE ngine Status+1;

rightEngin e[params-=status=0)/
rightEngineStatys =0;
leftEdgine[params-=3 8 b s==0}
ngineStatus=0;

I |
. -
Figure 14 - StateChart Implementation of the APU Alternative Source within the BPCU

Figure 15 shows the “super state” in which one engine compensates for the other. In
this case, both BTBs must close regardless of which engine fails. The only thing that
changes in this scenario is the direction of power flow. If the Left Engine fails, the
Right Engine provides power to the Left AC Bus and vice versa if the Right Engine
fails.

|] ¥ y
‘ 1 PowerFromOppositeGenerator

* .
CheckEngineFailure |

leftEngine[params->status==1})/lefifEpgineStatus=1;

[rightEngineS la;Ls==[J]
[leffEngineStatus==0]

APU_ON/
//OPEN RIGHT BTB

[CLOSE_BOTH_BTB_RIGHT_PROVIDING_POWER

N\
| CLOSE_BOTH_BTB_LEFT_PROVIDING_POWER |’_‘\/

externalFPowerON/ |
//OPEN IGHT BTB /

APU_ON/
I/OPEN LEFT BTB

malPowerQMN/
//OPEN LEFT BTB
—_—] é -

Figure 155 - StateChart Implementation of the Other Engine Alternative Source
within the BPCU

When either the Left or Right BTB is command to be opened or closed, the
appropriate event (i.e. openLeftBTB, closeLeftBTB, etc.) is sent from the BPCU to the
Bus Tie Breaker in the Architecture (Figure 3) via the corresponding port(
BPCU_L_BTB_BUS, BPCU_R_BTB_BUS).

The last thing to note about the BPCU state flow is that there are transitions
between the five main states mentioned above. The transitions correspond to the
event when a source of higher priority is suddenly available in which there is a
transition from the lower priority source to the higher priority source.

Bus Tie Breakers Internal Block Diagram

The Bus Tie Breaker (BTB) internal block diagram is shown in Figure 16. As
previously mentioned, the BTB consists of two contactors, the Right BTB and the
Left BTB, shown in Figure 16. The ports BPCU_L_BTB_BUS and BPCU_R_BTB_BUS
receive open/close commands from the BPCU as mentioned in the BPCU section.
The TLeft(TieLeft) and TRight(TieRight) either send power to or receive from the
corresponding AC Bus. Lastly, the APU_ExtPower port receives power from the APU,
EXT Power or both, which can be distributed to one or both of the AC Buses.

BPCU_L_BTB_BUS
L

BPCU_R_BTB_BUS

L]

TieLeft
—

ibd [bloc BT Bs [BTBslInternal] J

TLeft

1 BTB Teft

=

BPCU_L_BTB_BUS

L]

]

Attributes

APU_ExtPower

Operations
B closeLeftBTB()
B OtherPowerSour.

B openLeftBTB()
i

—

IAPU_ExtPower
= ——————

GEN_Power
GEN_Power

1 BTB Tight

B

BPCU_R_BTB_BUS

{1

Atributes

Operations
& closeRightBTB()
§ OtherPowerSou.
& openRightBTB()
r

IAPU_ExtPower
—-

TRight I

TieRight

Figure 166 - Internal Block Diagram of the Bus Tie Breaker

Right/Left Bus Tie Breaker State Flow

Figure 17 illustrates the simple state flow diagram of the Left BTB. Initially, the Left
BTB is open. It will close to the corresponding state on the closeLeftBTB event.
Likewise, the openLeftBTB event, will transition back to the initial state. The Right
BTB has an identical implementation.

T

OpenLeftBTB

closeLeftBTB/OUT_PORT(TLeft)->
GEN(OtherPowerSources SrvLeft);

CloseLeftBTB

openLeftBTB/OUT_PORT(TLeft)->
GEN(noPowerSourcesForLeft);

Figure 177 - Right/Left Bus Tie Breaker State Flow

External Power and Auxiliary Power Unit Internal Block Diagram

Figure 18 shows the internal block diagram of the ExtPower_APUgen block in the
Architecture (Figure 3). The BPCU_APU_EXPWR_BUS port allows the BPCU to receive
the status of both the APU and EXT Power. The APU_ExtPower port allows the Bus
Tie Breaker (in Architecture) to receive power from the APU or EXT Power.

ibd [block] ExtPower_APUgen [ExtPowerAPUgenInternall)

1 ExternalPowerController &

Attiibutes
ExtPower

] Operations BPCU_APU_EXPWR_BUS
37
E externalPowerCordConn()
& Push_EXT_PWR_switch()
APU ExtPower E externalPowerCordDisCo... BPCU_APU_EXPWR_BUS
1 APU_Generator B
Attiibutes
APUpower Qperations
T —
]E APUstart() L BPCU_APU_EXPWR_BUS

& closeAPU_GenBreaker()
& openAPU_GenBreaker()
& APUSstop()

& APUstatus(state:int)

Figure 188 - APU and External Power Internal Block Diagram

External Power

The transitions of states for External Power can be seen in Figure 19, in which it
updates the BPCU with the EXT Power status via the BPCU_APU_EXPWR_BUS port.
Initially, the state flow is in the NoExternalPower state, which indicates External
Power is not available and EXT PWRstatus is set to zero and sent to the BPCU. The
event, externalPowerCordConn signifies the external power is available, but is not
supplying power to any of the aircraft’s buses because it requires a pilot command
to supply power to the aircraft loads. This event reports EXT PWRstatus=1 to the
BPCU. The state flow will transition back to the NoExternalPower state if EXT Power
is removed by the externalPowerCordDisConn event. When in the AVAIL state, If the
pilot pushes switch to supply external power (Push_ EXT PWR_switch) to the
required part of the power system buses, the EXT Power will be ready to supply

power to the aircraft loads and EXT_PWRstatus=2 is sent to the BPCU. The EXT
Power state flow transitions to the ProvidePowerToEntireSystem state. If the pilot
sends the Push_EXT PWR_switch event in this state, EXT Power will transition back
to the AVAIL state and send the BPCU EXT_PWRstatus=1.

NoE xternalPower

externalP owerCordDisConn/
OUT_PORT(BPCU_APU_EXPWR_BUS) externalP owerCordConn/

>GEN(EXT_PW Rstatus(0)); OUT_PORT(BPCU_APU_EXPWR_BUS)
->GEN(EXT_PW Rstatus(1));

AVAIL
Push_EXT PWR_switch/)
OUT_PORT(BPCU_APU_EXPWR_BUS) Push_EXT_PWR_switch/
>GEN(EXT_PW Rstatus(1)); OUT_PORT(BPCU_APU_EXPWR_BUS)

->GEN(EXT_PW Rstatus(2));

ProvideP owerToEntireSystem |

Figure 19 -External Power State Flow

Auxiliary Power Unit

The APU state flow can be seen in Figure 20. This state flow has the responsibility to
update the BPCU with the APU status via the BPCU_APU_EXPWR_BUS port. Initially,
the state flow is in the Off state, which indicates the APU is not available and
APUstatus is set to zero and sent to the BPCU. The event APUstart, starts the APU by
transitioning the state flow to the On state and sending APUstatus=1 to the BPCU.

off |

APUstart/

APUstop/
OUT_PORT(BPCU_APU_EXPWR_BUS) OUT PORT(BPCU APU_EXPWR_BUS)
->GEN(APUstatus(1)); ->GEN(AP Ustatlis (0));
On @J
Figure 20 -APU State Flow
AC/DC Standby Bus

The AC/DC Standby Bus has three modes. Mode 0 is off, which indicates the Standby
Buses are unpowered. Mode 1 is AUTO, which powers the AC/DC Standby Buses
from the Left AC and DC Buses, respectively. However, if the AC/DC Buses are
unpowered while in Auto Mode, the Battery Bus will power the DC and AC Buses
(via an inverter). Mode 2 indicates the Battery Bus must power the Standby Buses.

Figure 21 depicts implementation of the AC/DC standby Bus, which has four parallel
state flows on the right side and one on the left side. On the right side, the top two
get the status of the Left AC and DC Buses (one for powered and zero for
unpowered) via the LeftACbusStatus and LeftDCbusStatus events. The third updates
the operating mode, which is set by the pilot via the StandbyMode event. The last
one gets the status of the Battery Bus via the BatteryBusStatus event.

On the left state machine, initially it is in the NotInService state. If both the Left AC
and DC Buses are powered and mode is in AUTO, then the state flow transitions to
the InServiceFromLeft state. On entry and exit of this state, an event, ACDCbusPower,
is sent to the Battery Bus, which indicates whether or not the Left Side is providing
power to the Standby Buses. However, if any of these variables change, the state
flow will transition back to the NotInService state. If the Battery Bus is powered, and
the mode is BATT, then the state flow will transition to the InServiceFromBatBus
state. It will also transition to this state if in the AUTO mode and either the Left AC
or DC Bus is unpowered and the Battery Bus is powered. However, if the mode
changes to OFF or the Battery Bus becomes unpowered it will transition back to the

NotlnService state. Or, if the mode becomes AUTO and both the Left AC and DC buses

become powered, it will transition to the InServiceFromLeft state.

J Standby

NotinService

[LeftAC==0 ||
LeftbC == 0|
Mode 1= 1]

[LeftAC==1 &&
LeftDC == 1&&
ode==1]

~
LeftAC busStatus[params->BusStatu

LeftAC update

LeftAC bus Status[par

5 == 1JLeftAC = 1;

ams->BusStatus == 0]/LeftAC = 0;

LeftDCbusStatus[paran)

s->BusStatus == 1]/LeftDC = 1;

LeftDCupdate
- LeftDCbusStatus[params->BusStatus == 0]/LeftDC = 0;

StandByM ode[params->moge==1]/Mode = 1,

B

InServiceFromLeft

[(BatBus == 1) &&
((Mode == 2) ||
(Mode == 1) &&
(LeftAC 1= 1| LeftDC ! = 1))]

StandByM ode[paramg->mode==2)/Mode = 2;

)

StandByM ode[params->mode==0)/Mode = 0;

[Mode == 1 &&
LeftAC == 18&
LeftDC == 1]

[Mode ==0]|
BatBus == (]

BatteryBusStatus[params-» Status==1}/BatBus = 1;

BatteryBusUpdate
JﬁﬂeryBusS'alus[params-> Status==0]/BatBus=0;

Figure 191 -AC/DC Standby Bus

InServiceFromBatBus

Battery Bus

The Battery Bus can either be powered from the Left DC Bus or the Battery, but this
depends on the Standby Mode previously discussed. The state flow is shown in
Figure 22, which has three update state flows on the right side. The first one gets the
Standby Mode from the pilot via the StandbyMode event. The second update gets the
value ACDC from the AC/DC Standby Bus, which is one if the Left AC and DC Buses
power the Standby Bus. This update is triggered by the ACDCbusPower event from
the Standby Bus. The last update state flow gets the Battery Status from the Battery
via the BatteryStatus event. Batt = 1 if the Battery can supply power, and Batt = 0
otherwise.

[nitially, the Battery Bus is not in service. If the Battery can supply power (i.e. Batt =
1) and Standby Mode is either OFF or BATT, then the Battery will power the Battery
Bus, and the state flow will transition to the InServiceFromBatt state. The state flow
will also transition to this state if in the AUTO mode and the Left AC/DC Buses are
not powering the Standby Buses (i.e. ACDC = 0). While in the InServiceFromBatt
state and the Battery becomes depleted (i.e. Batt = 0), it will transition back to the

NotlnService state. Once in either the InServiceFromBatt or NotlnService states, if
Mode becomes AUTO and Left AC/DC Bus is providing power to the AC/DC Standby
Buses (i.e. ACDC = 1), then the Left DC Bus provides power to the Battery Bus, which
is indicated by transitioning to InServiceFromLeft. However, if the mode changes or
the Left Side no longer powers the Standby Buses, the state flow will transition back
to the NotInService state.

stm [Class] BatteryBus [StatechartOfBatteryBus])

J BattBus

[Batt == 0] StandByM odefparams->made == 1}/Mode = 1;

NotinService

[(Modd == 1)&&(ACDC == 1)]

ModeUpdate :

[
Y

StandByM ode[params->mode == 0/M ode|

StandByM pdg[params->mode == 2J/Mode = 2;
(Mode=2|| Mode==0]| M pE(pay !

(Mode =% 1)&8ACDC==0)]

]
IS

[Mode !=/1|| ACDC ==0]

InServiceFromLeft @

ACDChusPower[params-p$tatus == 1)ACDC = 1;

ACDC updat

ACDChusPower [params->Status|= 0 ACDC = 0;

InServiceFromBatt @')

BatteryStatus[params->Status 5 1]/Batt = 1;

BattUpdate
BaneryStatu [paranis->Status == 0]/Batt = 0;
J

[(Mode == 1 && ACDC ==1)]

Figure 202 -Battery Bus

Battery

The Battery model (shown in Figure 23) has two update state flows. The first one
gets the status of the Battery Bus via the BatteryBusStatus event. This event sets
BattBus to one if the Battery powers the Battery Bus otherwise it is zero. If this is
the case, the Battery cannot be charged because the chargers would be supplying
power to a load, which could cause them to fail prematurely. The Left AC Bus
powers the Battery Chargers, and therefore, the second status update gets the status
of the Left AC Bus from the Battery Bus via the BattBusServiceFromLeft event. So if
the Left AC bus is powered, the variable LeftAC=1, otherwise it is zero.

Initially, the battery is Full as indicated by the Full state (charge = 100). If the
Battery Bus is providing power (i.e. BattBus = 1) then the Battery will transition to
the Discharging state, which decrements charge every 1000ms. If charge becomes
zero, the Battery will transition to the Depleted state. If the Battery Bus changes to
not supplying power and the Left AC Bus is powered (i.e. BattBus = 0 and LeftAC =
1) while in either the Discharging or Depleted states, then the Battery can transition

to the Charging state where charge is incremented every 1000ms until it is 100. At
this point, it transitions back to Full However, if the Battery suddenly starts to
supply power while in the Charging State (i.e. BattBus = 1), then it will transition
back to the Discharging state.

A Battery State
N
i Battery BusStatlis[params->Status == 1]/BattBus = 1;
Ful &
[charge == 100]

BattBusUpdate
[BattBus==h\&& LeftAC == 0]
tm(1000) tm (1000)

(BattB 1g& Discharging @.) Battery BusStatus[params->Status==0]/BattBus = 0;
attBus==:
LeftAC==0] - . i

Charging

BattBusServiceFromLeft[params->Status==1]/Lef tAC=1;

[BattBus == 0 &&

LeftACupdate
LeftAC ==1]

[BattBus
LeftAC

=0 &&

1 [charge == 0]

Depleted (%)

BattBusServ iceFromLeft[params->Status==0]/Lef tAC=0;
N\ J

Figure 213 -Battery

