February 16, 1995

The Ptolemy Kernel —
Supporting Heterogeneous
Design

1 DEPARTMENT OF ELECTRICAL ENGINEERING
by The Ptolemy Team AND COMPUTER SCIENCES

i . UNIVERSITY OF CALIFORNIA AT BERKELEY
Proposed article for the RASSP Digest Newsletter

1. Introduction

A technology base team at the University of California at Berkeley is developing a software
environment calle®tolemythat supports heterogeneous design. An early contribution of this effort
has been the design of a compact software infrastructure upon which specialized design environments
(calleddomaing can be built. The software infrastructure, catteel Ptolemy kernels made up of a
family of C++ class definitions. Domains are defined by creating new C++ classes derived from the
base classes in the kernel.

Domains can operate in any (or all) of three modes:

e Simulation — A scheduler invokes code segments in an order appropriate to the model of
computation.

» Code generation — Code segments in an arbitrary language are stitched together to produce
one or more programs that implement the specified function.

» Compilation — The specification is analyzed and translated into optimized code in any target
language.

At Berkeley, we have built a variety of domains that operate in the first two modes only, although
code generation domains often have elements of optimization from the third.

The use of an object-oriented software technology permits each of these domains to interact
with one another without knowledge of each others’ features or semantics. Thus, using a variety of
domains, a team of designers can model each subsystem of a complex, heterogeneous system in a
manner that is natural and efficient for each subsystem.

2. The Design of the Kernel

The overall organization of the latest release of the Ptolemy system is shown in figure 1. A
typical use of Ptolemy involves starting two UNMX processes, as shown in figure 1(a): the first con-

1 The current Ptolemy team is: Shuvra Bhattacharyya, Joseph T. Buck, Wan-Teh Chang, Brian L. Evans, Steve X. Gu,
Sangjin Hong, Christopher Hylands, Asawaree Kalavade, Alan Kamas, Allen Lao, Bilung Lee, Edward A. Lee, Xiao
Mei, David G. Messerschmitt, Praveen K. Murthy, Thomas M. Parks, José Luis Pino, Farhana Shiekh, S. Sriram,
Juergen Teich, Warren W. Tsai, Patrick J. Warner, and Michael C. Williamson.

l1of 6

The Design of the Kernel

tains the user interface (VEM) and the design database (OCT), and the other contains the Ptolemy
kernel. An alternative is to run Ptolemy without the graphical user interface, as a single process, as
shown in figure 1(b). In this case, a textual interpreter called “ptcl” (Ptolemy Tcl) is used. It is possi-
ble to design other user interfaces for the system, and we are experimenting with one based on Tk.

The executables “pigiRpc” or “ptcl” can be configured to include any subset of the available
domains. The most recent picture of the domains that Berkeley has developed is shown in figure 2.
Many different styles of design are represented by these domains. More are constantly being devel-
oped both at Berkeley and elsewhere, to experiment with or support alternative styles.

@)

VEM

OCT

Py

PC

GRAPHICAL USER

INTERFACE

PIGIRPC (with Tk) (b)
PTCL (with Tcl) PTCL (with Tcl)
DOMAINS DOMAINS
KERNEL ‘ KERNEL ‘

Figure 1. The overall organization of Ptolemy version 0.5.1, showing two possible
execution styles. This report concentrates on the kernel and its relationship

Code generation domains

to the domains .

Q

100100000

BDF DDF) PN) process networks

dynamic dataflow
Boolean dataflow
synchronous dataflow

multidimensional SDF

PTOLEMY
KERNEL

circuit simulation

discrete-event
communicating processes
design methodology management

Figure 2. The most recent view of the set of domains developed at Berkeley. This

article discusses only CG, which underlies all of code generation.

The Ptolemy Kernel — Supporting Heterogeneous Design 20f 6

Models of Computation

The Ptolemy kernel provides the most extensive support for domains where a design is repre-
sented as a network of blocks, as shown in figure 3. A base class in the kernel, called Block, repre-
sents an object in this network. Base classes are also provided for interconnecting blocks (PortHole)
as well as for carrying data between blocks (Geodesic) and managing garbage collection efficiently
(Plasma). Not all domains use these classes, but most current ones do, and hence can very effectively
use this infrastructure.

Figure 3 shows some of the representative methods defined in these base classes. For exam-
ple, note thenitialize, run, andwrapupmethods in the class Block. These provide an interface to
whatever functionality the block provides, representing for example functions performed before, dur-
ing, and after (respectively) the execution of the system.

Blocks can be hierarchical, as shown in figure 4. The lowest level of the hierarchy, as far as
Ptolemy is concerned, is derived from a kernel base class called “Star.” A hierarchical block is a
“Galaxy,” and a top-level system representation is a “Universe.”

3. Models of Computation

The Ptolemy kernel does not define any model of computation. In particular, although the Ber-
keley team has done quite a bit of work with dataflow domains in Ptolemy, every effort has been
made to keep dataflow semantics out of the kernel. Thus, for example, a network of blocks could just
as easily represent a finite-state machine, where each block represents a state. It is up to a particular
domain to define the semantics of a computational model.

Suppose we wish to define a new domain, called XXX. We would define a set of C++ classes
derived from kernel base classes to support this domain. These classes might be called “XXXStar,”
“XXXUniverse,” etc., as shown in figure 4.

Block Geodesic

* initialize() « initialize()

e run() « setSourcePort()
» wrapup() « setDestPort()

Geodesic

PortHole Particle Particle

* initialize() * type()

* receiveData() * print()

» sendData() * initialize()
* type()

Figure 3. Block objects in Ptolemy can send and receive data encapsulated in
Particles through Portholes. Buffering and transport is handled by the
Geodesic and garbage collection by the Plasma. Some methods are
shown.

The Ptolemy Kernel — Supporting Heterogeneous Design 30of 6

Models of Computation

The semantics of a domain are defined by classes that manage the execution of a specification.
These classes could invoke a simulator, or could generate code, or could invoke a sophisticated com-
piler. The base class mechanisms to support this are shown in figure 5. A “Target” is the top-level
manager of the execution. Similar to a Block, it has methods called “setup,” “run,” and “wrapup.” To
define a simulation domain called “XXX”, for example, one would define at least one object derived
from Target that runs the simulation. As suggested by figure 5, a Target can be quite sophisticated. It
can, for example, partition a simulation for parallel execution, handing off the partitions to other Tar-
gets compatible with the domain.

A Target will typically perform its function via a Scheduler. The Scheduler defines the opera-
tional semantics of a domain by controlling the order of execution of functional modules. Sometimes,
schedulers can be specialized. For instance, a subset of the dataflow model of computation called

XXXUniverse

Examples of Derived Classes

class Star:: Block

class XXXStar:: Star

class Galaxy:: Block

class Universe:: Galaxy, Runnable
class XXXUniverse:: Universe

Figure 4. A complete Ptolemy application (a Universe) consists of a network of
Blocks. Blocks may be Stars (atomic) or Galaxies (composite). The
“XXX" prefix symbolizes a particular domain (or model of computation).

Target:: Block

initialize() / w \

setup()
run()
wrapup()
galaxy
scheduler
children

Target

Csaneauer D)| Caonectuer
(& %

Figure 5. A Target, derived from Block, manages a simulation or synthesis
execution. It can invoke it's own Scheduler on a Galaxy, which can in
turn invoke Schedulers in sub-Targets.

The Ptolemy Kernel — Supporting Heterogeneous Design 4 of 6

Mixing Models of Computation

“synchronous dataflow” allows all scheduling to be done at compile time. The Ptolemy kernel sup-
ports such specialization by allowing nested domains, as shown in figure 6. For example, the SDF
domain (see figure 2) is a subdomain of the BDF domain. Thus, a scheduler in the BDF domain can
handle all stars in the SDF domain, but a scheduler in the SDF domain may not be able to handle stars
in the BDF domain. A domain may have more than one scheduler and more than one target.

4. Mixing Models of Computation

Domains in Ptolemy can be mixed. Thus, one system-level design can contain multiple sub-
systems that are designed or specified using different styles. The kernel support for this is shown in
figure 7. An object called “XXXWormhole” in the “XXX” domain is derived from “XXXStar,” so
that from the outside it looks just like a primitive in the XXX domain. Thus, the schedulers and tar-
gets of the XXX domain can handle it just as they would any other primitive block. However, inside,
hidden from the XXX domain, is another complete subsystem defined in another domain, say “YYY.”
That domain gets invoked through getup run, andwrapupmethods of XXXWormhole. Thus, in a
braod sense, the wormhole is polymorphic. The wormhole mechanism allows domains to be nested
many levels deep, e.g. one could have a DE domain within an SDF domain within a BDF domain.

5. Code Generation

The domains shown in figure 2 are divided into two classes: simulation and code generation.
In the simulation domains, a scheduler invokes the run methods of the blocks in a system specifica-
tion, and those methods perform some function associated with the design. In code generation
domains, the scheduler also invokes the run methods of the constituent blocks, but these run methods
synthesize code in some language. l.e., they generate code to perform some function, rather than per-
forming the function directly. The Target is responsible then for generating the connecting code

XXXDomain

YYYDomain

Figure 6. A Domain (XXX) consists of a set of Stars, Targets and
Schedulers that support a particular model of computation. A
sub-Domain (YYY) may support a more specialized model of
computation.

The Ptolemy Kernel — Supporting Heterogeneous Design 50f 6

Conclusions

between blocks (if any is needed). This mechanism is very simple, and language independent. We
have built code generators for a number of languages, as indicated in figure 2.

An alternative mechanism that is supported but less exploited in current Ptolemy domains is
for the target to analyze the network of blocks in a system specification and generate a single mono-
lithic implementation. This is what we call compilation. In this case, the primitive blocks (Stars) must
have functionality that is recognized by the target. In the previous code generation mechanism, the
functionality of the blocks is arbitrary and can be defined by the end user.

6. Conclusions

In summary, the key idea in the Ptolemy project is to mix models of computation, implemen-
tation languages, and design styles, rather than trying to develop one, all-encompassing technique.
The rationale is that specialized design techniques are (1) more useful to the system-level designer,
and (2) more amenable to high-quality high-level synthesis of hardware and software. The Ptolemy
kernel demonstrates one way to mix tools that have fundamentally different semantics, and provides a
laboratory for experimenting with such mixtures.

The Ptolemy kernel has been used successfully outside Berkeley for a number of domain
designs. A notable example is the work of Berkeley Design Technology, Inc., as part of the Martin
Marietta RASSP program, to use the Ptolemy to connect the SPW and Bones tools from the Alta
Group at Cadence.

More information about the Ptolemy project, plus access to all of the software and documen-
tation, is available on the World Wide Web via the URL “http://ptolemy.eecs.berkeley.edu”.

XXXUniverse

/ XXXDomain
XXXWormhole

YYYDomain

EventHorizon

Particles

XXXfromUniversal YYYtoUniversal
XXXtoUniversal l YYYfromUniversal Particles

_)

Figure 7. The universal EventHorizon provides an interface between the
external and internal domains.

The Ptolemy Kernel — Supporting Heterogeneous Design 6 of 6

