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Abstract

Design, Fabrication and Control of the Micromechanical Flying Insect

by

Srinath Avadhanula

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Ronald S. Fearing, Co-Chair

Professor Andrew Packard, Co-Chair

The Micromechanical Flying Insect (MFI) project aims at achieving some of the ex-

traordinary flight performance of insects by creating a centimeter-sized flying robot

capable of sustained autonomous flight. The core mechanical component used in the

MFI is analogous to the insect thorax. It consists of a series of transmission elements

for converting piezoelectric actuator motion into complex wing flapping and rotation

capable of reproducing some aspects of insect wing motion. This work explores in

detail the design, fabrication and control of the thorax. In particular, we show that by

carefully “tuning” the design of the MFI thorax, while accounting for the aerodynam-

ics, it is possible to utilize a simple control strategy while still generating flight forces
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on a test stand, sufficient for take-off.

Professor Ronald S. Fearing
Dissertation Committee Co-Chair

Professor Andrew Packard
Dissertation Committee Co-Chair
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Chapter 1

Introduction

Insect flight has long been an endless source of fascination (and a little mystery).

The spectacle of a wasp hovering steadily in mid-air and then moving an arm’s length

sideways in the blink of an eye is sufficient to inspire awe, curiosity and a desire to

explain and duplicate, in any scientist or engineer. The applications of a robot which

can duplicate (even in part) the exceptional flight performance of insects are immense.

From the perspective of an army general, an insect-like robot would provide an

unparalleled way of gathering intelligence. The small size and extreme maneuver-

ability of such a robot would enable it to remain almost invisible while being able

to penetrate highly inaccessible places. See [Yan 02] for an exploration of other fac-

tors which make an insect-like robot invaluable in an intelligence gathering scenario.

A small insect-like robot would also be invaluable in a search and rescue scenario

because flight would enable a robot to bypass the highly unstructured environment

which would make larger (or ground based) robots useless. Finally, small, highly mo-

bile robots provide a good means of sensor dispersal of small sensor nodes enabling
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distributed sensing.

The Micromechanical Flying Insect (MFI) project at the University of California,

Berkeley aims at creating just such a robot. The project was started in Berkeley

in May 1998, with the aim as stated on the project website1: “to develop a 25 mm

(wingtip-to-wingtip) device capable of sustained autonomous flight”.

The MFI project uses a biomimetic approach in trying to build an insect-like robot.

This implies taking inspiration from similar natural systems and methods found in

nature. At the scale of the MFI, we need to look no further than the abundance of

insects all around us. There is obviously a vast variety of insects which we can take

inspiration from. For the size scale of the MFI, we chose to base our design on the

blowfly (Calliphora erythrocephala), which has a wing span of about 25mm and a

weight of around 100mg.

Flying insects, although small and almost omnipresent, are extremely complex

machines. To quote Dudley [Dudley 00], “Flight is energetically very costly, and the

metabolism of winged insects represents an extreme of physiological design among

all animals”. Next, although some aspects of the insect morphology have been in-

creasingly well-studied, for example, the insect musculature [Dudley 00], the cuticular

structure of the insect thorax [Chen 02], and the wing morphology [Ellington 84d],

to the best of this author’s knowledge, the precise mechanical micro-structure of the

insect kinematics is still not precisely known.

The MFI project, therefore, utilizes a functional biomimetic approach towards the

design of the robot. We do not try to precisely imitate the morphology of the insect

musculature, but instead try to imitate it at an aerodynamic level. As the following

1http://robotics.eecs.berkeley.edu/˜ronf/MFI/
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section will elaborate, the MFI project started when biologists empirically studied the

intricacies of insect aerodynamics and derived a minimal set of requirements which

were deemed necessary for successful hovering flight. It is at this level that we can

be said to “imitate” insects.

1.1 Aerodynamic Theory

The first step in explaining insect flight is to record the actual kinematics of

insect flapping. This has been done successfully for various insects [Ellington 84b,

Dickinson 99, Altshuler 05]. However, recording the instantaneous flight forces in real

time was never quite as successful because of their small size and high frequencies

[Birch 03]. There have been attempts at measuring the total body forces in insects

[Clopeau 79, Dickinson 96], however these are hard to interpret because the inertial

forces produced by the body significantly contaminate the much smaller aerodynamic

forces.

Predicting the correct aerodynamic forces corresponding to a given kinematics

of the wing is a much harder problem and still remains an active area of research.

The primary difficulty arises because steady state aerodynamics fails spectacularly

in predicting the lift forces which insects generate. As described in [Altshuler 05], in

1934, August Magnan and André Sainte-Lague concluded from a simple aerodynamic

analysis [Magnan 34] that bee flight was “impossible”. Although the assumptions

in this paper were later shown to be false, it is true that steady state aerodynamic

theory cannot predict sufficient lift forces to fully explain insect flight. The failure

of steady state aerodynamic theory arises because of the extremely high flapping
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and rotations present in insect flight. As described in [Ellington 84c], “the large

amplitude flapping and rotation in the absence of a mean flight velocity makes even

the most severe examples of the catastrophic flutter of man-made wings seem like

gentle calisthenics”.

In 1984, [Ellington 84c], Ellington proposed a set of unsteady aerodynamic mecha-

nisms, which could better explain insect flight forces. The primary mechanism which

was proposed was termed “delayed stall”. In the case of a traditional airfoil the-

ory, when the angle of attack is increased beyond a small angle, termed the critical

angle of attack, the leading edge vortex sheds and the lift generated by the airfoil

falls dramatically. This well known phenomenon is termed stall. However, Ellington

noticed that when an insect wing is rotated rapidly through an angle, the vortex is

formed very gradually and is not shed for a majority of the stroke. It is theorized

that a span wise flow along the insect wing stabilizes the leading edge vortex (LEV)

[Ellington 96, Birch 01, Birch 04]. The LEV generates an area of low pressure over

the insect wing and significantly adds to the lift generated by the insect wing.

For a while, delayed stall was considered sufficient to explain the forces which

insects experienced during flight. However, Dickinson later showed [Dickinson 99]

that although delayed stall is sufficient to explain some of the aspects of insect flight,

it was not sufficient by itself to explain the maneuverability and the ability of some

insects to lift twice their body weight while flying. Using a dynamically scaled model

of a fruit fly wing (called Robofly), he empirically observed two important unsteady

state effects which were previously not considered.

The first, termed as rotational lift, is additional lift caused by the rotation of the
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wing. This is akin to the lift generated by a spinning tennis ball while in flight (the

Magnus effect), although it is subtly different as will be explained in Section 3.2. The

next unsteady state mechanism observed is termed wake capture. This arises from

an interaction of the wake generated by the insect and the motion of the wing itself.

After the wing rotates at the end of each stroke, it hits the wake it has generated in

the previous half-stroke leading to dramatic increases in the observed aerodynamic

forces. The unsteady aerodynamic mechanisms will be described in much better detail

in later sections.

Since we will be using the model derived in [Dickinson 99] extensively in a later

part of this work, it is pertinent to expand briefly on the experimental setup and

scaling methods employed in Robofly. Robofly is based on the theory of similitude. A

central theorem in this area is the Buckingham-Pi theorem [Buckingham 14], which

states that in a system whose behavior depends on N physical parameters, all of

which can be expressed in terms of K fundamental units, the system can equally well

be described in terms of N − K dimensionless numbers. In case of an insect wing

flapping in a fluid, we can see that the important physical parameters are L, the

“size” of the wing (this can be any characteristic dimension), ρ, the density of the

fluid, ν, the viscosity of the fluid and V , the velocity of the wing. An application

of the Buckingham-Pi theorem readily yields the familiar Reynolds number as the

relevant dimensionless parameter. This parameter is defined as:

Re =
ρV L

ν
(1.1)

It can be thought to represent the ratio of the inertial forces (due to the fluid mo-

tion) acting on the wing to the viscous forces (due to fluid shearing). The theory
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of similitude says that as long as there is kinematic similitude (i.e., the geometry is

similar) and dynamic similitude (i.e., the relevant dimensionless parameters are the

same) between two systems, then the basic behavior of the systems is identical up to

a scaling factor. In the case of a flapping wing, this means that the flow around two

wings will be the similar if the Reynolds numbers corresponding to the two wings

are the same. As described in [Fry 05], the scaling between the forces measured on

Robofly and the actual forces on the insect wing is given by:

FFly = FRobot ×
ρAir
ρOil

×
( nFly

nRobot

)2

×
(

RFly

RRobot

)2

×
SFly

SRobot
×

r̂2
2(S)Fly

r̂2
2(S)Robot

,

(1.2)

where ρ is the fluid density, n is the frequency of flapping, R is the wing length, S

is the wing area and r̂2(S) is the normalized second moment of area as defined in

[Ellington 84a].

In the case of Robofly, the Reynolds number was matched to that of a fruit-fly,

which is around 160. For a typical MFI wing, we have L = 6.5mm (this corresponds to

a 10mm wing with an equivalent radius of 0.65 times the wing span as in [Wang 04]),

V = 8 m/s and ρ = 1 kg/m3 and ν = 1.56 × 10−5 Pa-s. This gives a Reynolds

number of around 1600, which alerts us to the fact that the scaling law does not

quite hold between Robofly and MFI. Another possible source of discrepancy is due

to the fact that Robofly, being modeled after the fruitfly, has distinctly different wing

trajectories than those utilized on the latest MFI structures. For example, the fruitfly

(hence Robofly) exhibits large flapping angles (up to 160◦) at relatively low frequen-

cies (150Hz). On the other hand, the latest MFI structures have quite low flapping

amplitudes (< 90◦) at very high frequencies (between 275Hz and 325Hz). This implies
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that the kinematic similitude between the MFI and Robofly is also lacking. Recent

research on honey-bee flight which more closely approximates the MFI [Altshuler 05]

has shown that indeed the aerodynamic mechanisms change significantly between

fruitflies and honeybees.

Apart from getting an understanding of the underlying aerodynamic mechanisms

for lift generation, Robofly was also used to guide the design of the kinematics of the

MFI. It was shown in [Dickinson 99] that although insect wing trajectories have 3

degrees of freedom: flapping, rotation and deviation from the stroke plane, the first

two are most important for successful lift generation. Subsequently, the MFI kine-

matics is designed to convert two independent actuator motions into a wing flapping

and rotation, such that the flapping and rotation can be independently controlled.

1.2 An Overview of the MFI

The MFI can be divided into a number of distinct functional components. Fig. 1.1

shows an artist’s rendering of a futuristic MFI showing these various components as

they would look completely assembled:

Battery and Power Electronics : The lightest state of the art, commercially

available off the shelf (COTS) batteries are currently still too heavy to be used

as is, on the MFI. The power density of the 0.81g Kokam battery2 is around

450 W/kg. An insect-like flying robot will need at least around 30W/kg power

density delivered to the environment. Assuming an overall efficiency of around

10%, we can see that the afore-mentioned battery is adequate from the power

2available from http://roomflight.com
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Antenna
Onboard Processing Unit

Forward
looking imager

Battery

Landing Gear

Skeleton

Transmission

Wing

Figure 1.1: Futuristic view of MFI (courtesy Quan Gan)

density perspective although it is still 20 times too heavy to be useful for the

MFI. See [Steltz 06] for more details on the current state of the art in battery

technology. It is believed that a strategy of using solar cells to charge lithium

ion batteries will ultimately be needed to supply the needed power with the

required power density and weight requirements. Since the actuator technology

currently used in the MFI requires high voltages (on the order of a few hundred

volts) not normally produced by batteries, the MFI will also require circuitry

to perform charge recovery [Campolo 03] during the process of boosting the

voltage [Steltz 06].
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Actuators : The MFI uses piezo electric bending actuators to convert electrical

energy into mechanical motion. These actuators are described at great length

in [Wood 04]. Briefly, these actuators consist of electro active piezo materials

bonded to an elastic layer. By applying a voltage across the PZT plates, the

induced strain in the PZT is converted into a bending motion. The design of the

(a) Actuator Layup

(b) Top view of latest bimorph actuator

Figure 1.2: Photo of piezo-electric bimorph actuator

PZT actuators is carefully optimized to increase the power density and life-time

of the actuators. The PZT bimorph actuators used in the MFI have a power

density exceeding the best electromagnetic motors at the scale [Wood 04].
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For the rest of this work, we will assume that the actuators are ideal force

sources with an internal spring, damper and inertia. The bimorphs described

in [Wood 04] can generate very high forces on the order of 130 mN, with an

accompanying displacement of around about 400 µm. The self-resonance of

these actuators is very high, around 3000Hz, so that we can assume that in the

frequency range of interest (up to 500Hz), the actuators behave quasi-statically.

We should note however, that this is a significant simplification of the actual

behavior of the actuator. In practice, PZT actuators exhibit non-linear behavior

such as creep, hysteresis, softening and velocity dependent damping (i.e., the

quality factor decreases with increasing amplitude). Characterizing the behavior

of PZTs is still an ongoing research topic.

Mechanical Transmission : The mechanical transmission system is the focus for

the rest of this thesis. Since the actuators used in the MFI are very high stiff-

ness, low displacement actuators, a mechanical transmission system is needed

to convert this motion into the high amplitude, relatively low torque motion

required at the wing hinge. Briefly, it consists of three separate components:

1. A slider crank mechanism for converting the linear motion of the actuator

into a pure rotation and to provide initial amplification. The present day

MFI slider crank provides a nominal transmission ratio of about 35◦ of

angular motion for about a millimeter of actuator motion.

2. A fourbar mechanism for providing additional mechanical motion amplifi-

cation. The present MFI fourbar provides a rotational amplification of 6
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(input angle to output angle).

3. Each wing of the MFI is driven by two independent actuators. The motion

from the two actuators is amplified by two independent slider crank / four-

bar chains. The rotational motion at the output of the fourbars is coupled

through a spherical five bar mechanism described in detail in Section 2.3.

Briefly, the differential couples the two fourbar motions in such a manner

that moving the actuators (and hence the fourbars) in phase allows the

wing to purely flap, while moving the fourbars out of phase leads to wing

rotation. This is the critical component for achieving the required 2 DOF

motion necessary for generating lift.

Sensors : The sensors required for the MFI can be divided into several hierarchical

levels. At the lowest level are sensors needed to sense the wing position if closed

loop control around the wing trajectory control is required. The current strategy

for the low level wing control is to do an off-board characterization of the wing

dynamics followed by a table lookup on the final scale robot. See [Steltz 05] for

one possible strategy of doing off-line characterization. Previously, strain gage

sensors were also used for wing position sensing [Avadhanula 02]. At a higher

level, we require body attitude sensors in order to stabilize the body dynamics.

Some possible body orientation sensors inspired by naturally occurring counter-

parts in insects are halteres, ocelli and optic flow sensors [Wu 03, Wood 04].
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1.3 Previous Work

There has been a dramatic increase in micro air vehicle (MAV) research over the

last several years. We can roughly divide MAVs into three groups: fixed wing MAVs,

rotary wing MAVs and flapping wing MAVs. There are presently a large number of

fixed wing MAVs, many of which are commercially available. For example, researchers

at Didel [did 06] and EPFL [Nicoud 02] have created a class of “slow flyers”, which are

indoor MAVs capable of impressive maneuverability. Other smaller fixed wing MAVs

include the Black widow from Aerovironment [bla 06], a much smaller and faster fixed

wing MAV used for outdoor reconnaissance and the Microglider [Wood 05] from the

University of California, Berkeley. For sizes much below the Microglider, rigid wing

MAVs will be too excessively fast to be maneuverable.

One way of avoiding this is to use rotary flight to increase the Reynolds number

over the airfoil while maintaining a low body velocity. There have been a number

of miniature rotary MAVs built. Currently the smallest of these MAVs built using

traditional manufacturing tools are the 8.9g Epson microrobot [eps 06] and the 6.9g

Pixelito [pix 06] developed by Alexander Van de Rostyne. The smallest rotary MAV

is the Stanford mesicopter [mes 06] developed by a team headed by Ilan Kroo.

There are considerably fewer flapping fliers than rigid wing or rotary MAVs. One

very interesting flapping flier is the CIA dragonfly [cia 06], which is an ingenious de-

vice powered by liquid propellant and stabilized by a laser beam. Some recent flapping

flyers are the flapping bird developed by Sunil Agrawal at the University of Delaware

[Banala 05, Madangopal 05] and the Microbat being developed by Caltech and the

University of California at Los Angeles [Pornsin-Sirirak 01, Pornsin-Sirirak 00]. Both
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these flapping robots are the size of a small bird and their wing morphology seems

to imitate flapping flight in birds rather than insects. To the best of this authors

knowledge, there are no groups who are working at the same size and scale as the

MFI.

1.4 Contributions

The purpose of this work was to design and fabricate the mechanical transmission

of the MFI capable of generating adequate lift forces. Towards this end, the main

contributions of this thesis are:

1. The kinematic design of a wing differential mechanism for converting two inde-

pendent actuator motions into wing flapping and rotation.

2. A thorough dynamic modeling of this mechanism including aerodynamic models

derived in [Dickinson 99].

3. A method for dynamically tuning the performance of the thorax in order to

make it dynamically easier to drive.

4. Improvements to the novel micro composite fabrication method described in

[Wood 04] to account for various flexure performance issues.

5. Finally, and most importantly, the various design methods described here were

validated by empirically demonstrating a lift of 1400µN from a single wing.

This represents a major breakthrough for flapping fliers at this scale. To the
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best of this author’s knowledge, this is the first time that a mechanical system

has been constructed at this scale capable of generating these flight forces.
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Chapter 2

Kinematics

This chapter is taken almost directly from [Avadhanula 01] with some modifica-

tions to account for the changed differential design. It also treats the slider crank

mechanism in more detail accounting for the non-ideal fabrication and alignment

parameters.

As described before, the MFI uses piezo-electric actuators as the primary electro-

mechanical elements, which we model as force sources with associated inertia, stiffness

and damping. The displacement from each PZT goes through a two step amplifica-

tion process via a slider crank mechanism and a fourbar mechanism. Finally, the two

independent inputs from the fourbars are coupled through a wing differential mech-

anism. This kinematic chain is represented shcematically in Fig. 2.1. This chapter

describes the geometrical aspects of the various components in the mechanism.
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Figure 2.1: Overview of MFI kinematics

2.1 The Slider Crank Mechanism

The first stage of the amplification mechanism is a slider crank mechanism. Geo-

metrically, it is a variant of the classical fourbar mechanism (and is often referred to

as a fourbar mechanism). Its purpose in the MFI is to convert the linear motion from

the PZTs into a rotary input for the fourbars and also provide a preliminary stage of

amplification.
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Figure 2.2: Kinematics of the slider crank

Fig. 2.2 shows the kinematic diagram of a slider crank mechanism in the presence

of arbitrary misalignment. Ideally, we require that d = l1 and γ = 0. With these as-

sumptions, the kinematic diagram simplifies to the one described in [Avadhanula 01].

2.1.1 Inverse Kinematics

As we will see in subsequent chapters, from the point of view of analysing the

dynamics, we are more interested in the inverse kinematics of the slider crank, i.e.,

finding the motion x of the actuator for a given rotation θ of the input link of the

fourbar in Fig. 2.2.

We first define x = 0 when θ = 0. The coordinates of the point Q (written as a
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complex number in the Argand plane) can be written as:

q̄ = p̄0e
jθ + l3e

jθ2 , (2.1)

where p̄0 are the initial complex coordinate of the point P when θ = 0, which is

p̄0 = −l2 + jl1

Alternatively, the coordinates of Q can also be written as

q̄ = dej(π/2+γ) + (x+ x0)e
jγ (2.2)

Equating (2.1) and (2.2), we can solve for x in terms of θ. Note that in (2.2) we want

to set x0 to a value which gives x(θ = 0) = 0. The solution of the inverse kinematics

problem becomes:

x = v1 + l3 cos β − x0 (2.3)

θ2 = γ + β (2.4)

where

v1 = Re{p̄0e
j(θ−γ) − dejπ/2} (2.5)

β = sin−1

(

v2

−l3

)

(2.6)

v2 = Im{p̄0e
j(θ−γ) − dejπ/2} (2.7)

x0 can be solved from (2.3) by

x0 = v1(θ = 0) + l3 cos(β(θ = 0))
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2.1.2 Effect of Fabrication Errors on Kinematics

It is important to analyze the importance of various fabrication errors and mis-

alignments on the actual kinematics achieved. For the slider crank, the two major

causes of misalignment arise from d 6= l1 and γ 6= 0. In order to study this, we find

how the nominal inverse slider crank transmission ratio:

Nsc,i(θ = 0) :=

∣

∣

∣

∣

dx

dθ

∣

∣

∣

∣

θ=0

varies as a function of d and γ. As described in [Avadhanula 01], without any fab-

rication errors, we expect this to be l1. Fig. 2.3 shows the variation of Nsc,i(0) with

respect to d and γ. We see that Nsc,i varies sharply with γ while not depending very

critically on d. It is also significant that the range of variation in Nsc,i over these l

and d is quite large, from as low as 1.25 to as high as 2.3, almost a factor of 2.
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2.2 The Fourbar Mechanism

The fourbar mechanism is one of oldest and most commonly used mechanical

transmission elements. Its many uses include quick return mechanisms used in lathes,

crank and piston elements used in car engines and path following mechanisms used

in many robotic manipulators. Recently, there have been attempts at fabricating

micro and meso scale fourbars using MEMS techniques for micro-bots [Shimoyama 93,

Yeh 94, Pornsin-Sirirak 00]. The fourbars used on the MFI are aimed at providing a

large motion amplification with little inertial loading and damping losses.

2.2.1 Forward Kinematics

β

β

β
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θ
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l
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l

l

l

1
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2

33 3

13

0

2

Figure 2.4: Forward Kinematics of the Fourbar Mechanism.

The forward kinematics of the fourbar mechanism involves calculating the output

link angles (θ2 and θ3 in Fig. 2.4) given the input link angle (θ1) and the various
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lengths of the fourbar. This can be calculated as

θ2 = β1 + β2 (2.8)

θ3 = β1 + β3, (2.9)

where

l13 = (l21 + l20 − 2l1l0 cos θ1)
1/2 (2.10)

β1 = sin−1

(

− l1 sin θ1

l13

)

(2.11)

β2 = cos−1

(

l22 + l213 − l23
2l2l13

)

(2.12)

β3 = atan2

(

− l2 sin β2

l3
,
l13 − l2 cos β2

l3

)

(2.13)

The variation of θ3 vs θ1 is shown in Fig. 2.5(a). As seen in Fig. 2.5(b), the fourbar

mechanism transmission ratio, defined as
dθ3

dθ1

varies by a factor of 2 over the range

of output motions.
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2.2.2 Inverse Kinematics
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Figure 2.6: Inverse Kinematics of the Fourbar Mechanism.

The inverse kinematics of the fourbar involves finding θ1 and θ2 given θ3. This

can be derived from Fig. 2.6 as follows:

θ1 = β1 + β2 (2.14)

θ2 = β1 + β3, (2.15)

where

l02 =
(

(l0 − l3 cos θ3)
2 + l23 sin θ2

3

)1/2
(2.16)

β1 = atan2(−l3 sin θ3, l0 − l3 cos θ3) (2.17)

β2 = cos−1

(

l1 + l202 − l22
2l1l02

)

(2.18)

β3 = atan2(−l1/l2 sin β2, (l02 − l1 cos β2)/l2) (2.19)
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2.2.3 Singularities of Motion

Since we are interested in a stroke angle of ±60◦ it is of interest to calculate the

singularities of the fourbar mechanism. Geometrically, these are points at which the

fourbar hits a joint limit and cannot move further when driven by the input link.

θ

θ θ
θ1,min

3,min

1,max 3,max

(a) (b)

Figure 2.7: Fourbar Singularities (a)“Lower” Singularity (b)“Upper” Singularity.

These angles can be calculated as follows (see Fig. 2.7):

θ1,min = cos−1

(

l21 + l20 − (l2 − l3)2)

2l1l0

)

(2.20)

θ1,max = cos−1

(

l21 + l20 − (l2 + l3)
2)

2l1l0

)

(2.21)

θ3,min = sin−1

(

− l1 sin θ1,min

l2 − l3

)

− π (2.22)

θ3,max = sin−1

(

− l1 sin θ1,max

l2 + l3

)

(2.23)

Mathematically, these are points at which the forward and inverse transmission ratio

functions go to ∞ or 0 respectively. This has a significant effect on the effectiveness

of the fourbar in driving the output as will be seen in Chapter 3.
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2.3 The Wing Differential Mechanism

The kinematics of the wing differential mechanism was described previously in

[Avadhanula 01]. However, since that time, the mechanism has undergone a signifi-

cant kinematic improvement. The spherical joint in the original differential consisting

of 3 orthogonal flexures has been replaced by a single transverse flexure. This was

made possible by improved fabrication techniques which permit much better align-

ment than in previous methods described in [Shimada 00].

The kinematics of the latest wing differential mechanism are shown in Fig. 2.8.

The mechanism consists of four mobile links labelled 1 - 4 and five joints: 2 about

the Z and one each about X, Y and W . The differential is constructed such that all

the axes intersect at a single point. This implies that the differential is a spherical

mechanism as described in [Releaux 76].

The fourbar output links drive links 1 and 4 . The wing lamina is attached to

link 2 . Link 3 passively rotates about θy to provide the required mobility to the

differential. The question of the mobility of the differential is non-trivial and will be

addressed later. For now, we claim that we can solve uniquely for θx, θy and θw given

arbitrary values of θ1 and θ2 as long as |θ1 − θ2| is not too large. In particular, when

θ1 = θ2, then all the links rotate about the global +Z axis. This is defined to be pure

flapping. When θ1 6= θ2, then in addition to some rotation about the +Z axis, the

links also undergo rotations about the θx and θy axes. We call θx the rotation of the

wing and θy the deviation. Note that θy is analogous to the deviation from stroke

plane mentioned in [Dickinson 99].
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Figure 2.8: Kinematic representation of the wing differential mechanism.

2.3.1 Kinematics of the Wing Differential

In this section, we derive the forward and inverse kinematics of the wing differential

mechanism. We define α as the difference in the fourbar angles:

α = θ1 − θ2 (2.24)

It should be noted that the angles θx and θy depend purely on α. Therefore we can

restrict the leading spar rotation to zero (i.e, θ2 = 0) and consider the lagging spar

to have rotated through α (i.e, θ1 = α). The coordinates of the point P in Fig 2.8 in
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this configuration can then be found in 2 ways:

p = Tz(θ1)p0 (2.25)

p = Ty(θy)Tx(θx)p0 (2.26)

where p0 is the initial position of the point P when θ1 = θ2 = 0. Including a scaling

factor, we can always consider the initial position of the point P to be (λ, 0,−1). This

λ is defined to be the differential transmission ratio. More formally:

λ := tan(6 (OP,OQ)) (2.27)

Substituting p0 = (λ, 0,−1) and θ1 = α into (2.25,2.26) and equating, we get















λ cos(α)

λ sin(α)

−1















=















cos(θy)λ− cos(θx) sin(θy)

sin(θx)

− sin(θy)λ− cos(θy) cos(θx)















(2.28)

In the above equation, we want to solve for θx and θy given λ and α. This involves

equating three equations in two variables. Therefore, it is not obvious that we will

get a solution at all. This concern will be addressed later. For now, equating the

second element of the two vectors, we can solve for θx as:

θx = sin−1(λα) (2.29)

If we equate the first element of the two vectors in (2.28), then we get:

λ cosα = λ cos θy − cos θx sin θy (2.30)
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In the equation above θy is the only unknown. We solve for it by defining two new

constants A and β which satisfy

λ = A cos β (2.31)

cos θx = A sin β (2.32)

This gives us

θy = cos−1

(

λ cosα

A

)

− β (2.33)

where

A =
√

λ2 + cos2 θx (2.34)

β = tan−1

(

θx

λ

)

(2.35)

To solve for θw given α, we consider the situation where θ1 = 0 and θ2 = −α (so that

θ1 − θ2 = α). The coordinates of the point Q in Fig 2.8 can then be found in two

ways

q = Tz(−α)Ty(θy)q0 (2.36)

q = Tw(θw)q0 (2.37)

where q0 is the initial position of the point Q. Including a scaling factor, this is

simply (1, 0, 0)′. In the first of the two equations above, we already know θy given

α from (2.33). Therefore, in the second equation above, the only unknown in the

equation is θw. This is the well known Paden-Kahan subproblem-1 [Murray 93]. To

solve, define the vector

ŵ =
(λ, 0,−1)′√

1 + λ2
(2.38)
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which represents the axis W . (Note that ‖ŵ‖ = 1). We want to find the rotation θw

about ŵ takes the point Q from q0 to q. Define q0,T and qT as the “components” of

q0 and q along ŵ. These can be found simply as:

q0,T = (ŵ′q0)ŵ (2.39)

qT = (ŵ′q)ŵ (2.40)

The components perpendicular to ŵ are simply

q0,N = q0 − q0,T (2.41)

qN = q− qT (2.42)

For the Paden Kahan problem to be solvable, we require

q0,T ≡ qT (2.43)

‖q0,N‖ ≡ ‖qN‖ (2.44)

It is not trivial to see that these two conditions will always be satisfied for any α

(assuming ‖α‖ is not too large). For now, we assume that this is true. Once the

normal components are known, we can find θw as

θw = arctan2
(

ŵ′(q0,N × qN),qT
0,NqN

)

(2.45)

The kinematic relationships derived in this section are shown in Fig 2.9.
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Figure 2.9: Kinematics of the Wing Differential.

It will also be useful for later to define the derivatives of the various angles,

especially θx with respect to α. We can compute analytical expressions for the various

derivatives using the symbolic toolbox of MATLAB. Although the analytical forms

of these derivatives are not particularly useful, it is of interest to note that

dθx

dα
=

λ cosα√
1− λ2 sinα

(2.46)

which gives

dθx

dα

∣

∣

∣

∣

α=0

= λ

which is the reason why we call λ the differential transmission ratio. In order to get

an idea of the non-linearity of the differential, it is useful to see how much dθx/dα

varies with α. This is shown in Fig 2.10.
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2.3.2 Singularities

As in the case of the fourbar, the singularities of the wing differential represent

the physical limits on the motion of the wing. The singularities follow directly from

eqn. 2.29 as:

θx,min = −π/2 (2.47)

θx,max = π/2 (2.48)

αmin = − sin−1

(

1

λ

)

(2.49)

αmax = sin−1

(

1

λ

)

(2.50)

It is of interest to note that the maximum rotation possible mathematically is π/2.

However, it can be shown that the differential transmission ratio (dθx

dα
) goes to infinity
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very rapidly as θx → π/2, which means it becomes increasingly difficult to generate

larger angles of attack. For example, when λ = 2, the differential transmission ratio

increases five-fold for a rotation of 80◦ from its nominal value and ten-fold for a

rotation of 85◦.

2.3.3 Mobility of the wing differential

It is important to note that the fact that the differential works in a kinematic

sense is not obvious at all. In other words, it is not trivial that there are solutions to

the forward and inverse kinematics for arbitrary θ1 and θ2. To get a sense for why this

is true, we can begin by analysing the mobility of the spherical five bar mechanism

using the 3D version of Gruebler’s mobility criterion. In 3D, each (ungrounded) link

has 6 degrees of freedom and a revolute joint between two bodies adds 5 geometric

constraints. This means that simplistically speaking, the total degrees of freedom in

a mechanism Nl links and Nj joints should be

Ndof = 6×Nl − 5×Nj (2.51)

The wing differential has 4 mobile links and 5 joints. This gives Ndof = 24−25 = −1.

Thus the simplistic Gruebler’s criterion claims that the spherical five bar mechanism

should have a mobility of −1, whereas we claim a mobility of 2. The reason why

Gruebler’s criterion underestimates the mobility is due to the fact that the geometric

construction of the differential makes some of the constraints added by the joints

redundant. The mathematically rigorous way of finding local mobility of a mechanism

is to write down all the constraint equations and then find the rank of its Jacobian.

A more direct (and constructive) way to prove that the mobility of the differential is
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2 is by proving that we can solve self-consistently for the angles θx, θy and θw given

arbitrary θ1 and θ2 (under the assumption that |θ1 − θ2| is not too large). Moreover,

since we will obtain unique values for the other angles (θx, θy and θw), the mobility

is not more than 2.

To prove this, we need to prove the following

• When θ1 = θ2, then the differential moves as a single rigid body about the

global Z axis. Therefore, it has a mobility of at least 1. Notice that this

mobility depends on the fact that the θ1 and θ2 axes are collinear. If this is not

true, then even this mobility is not possible.

• When θ1 6= θ2, then we simply need to prove that the vector equality in (2.28)

yields a unique solution for θx and θy. This will give us another degree of

freedom when α 6= 0. If we equate the third element of the vectors of (2.28),

then we get

1 = sin(θy)λ+ cos(θy) cos(θx) (2.52)

Using the same constants A and β defined in (2.34),(2.35), we can solve similarly

for θy as

θy = sin−1

(

1

A

)

− β (2.53)

We need to prove that the values of θy obtained in (2.33) and (2.53) are identical.



34

To prove this, we rewrite A as

A =
√

λ2 + cos2 θx (2.54)

=
√

λ2 + 1− sin2 θx (2.55)

=
√

λ2 + 1− λ2 sin2 α (2.56)

=
√

1 + λ2 cos2 α (2.57)

With this in place, all that is left to prove is that

sin−1

(

1√
1 + λ2 cos2 α

)

= cos−1

(

λ cosα√
1 + λ2 cos2 α

)

(2.58)

This is true since cos−1(x) = sin−1(
√

1− x2).

2.4 Summary

This chapter described the kinematics of the various components which make up

the mechanical transmission of the MFI. These kinematic equations will be used in

the next chapter to build a thorough dynamic model of the MFI.
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Chapter 3

Dynamics of the MFI Thorax

In this chapter, we derive the complete non-linear dynamic model of the MFI

thorax, which consists of the entire mechanical transmission as shown in Fig. 2.1

including the slider cranks, the fourbars, the wing differential and the wing.

The dynamics of the MFI was previously derived in [Avadhanula 01], but one of

the important missing components was a model for the aerodynamic forces. This

chapter incorporates the aerodynamic force models derived previously [Dickinson 99,

Sane 02, Schenato 01, Sane 03] into the MFI wing dynamics. We then describe how

we adjust the mechanical design of the system to make the overall dynamics easier

to control (as described more precisely in Section 3.5).
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3.1 The Euler Lagrange Formulation

The Euler-Lagrange equation formalization states that for a system with holo-

nomic constraints, the following differential equation is satisfied:

d

dt

(

∂L

∂q̇

)

− ∂L

∂q
=

∂Wext

∂q
(3.1)

where, L, the Lagrangian is defined as

L(q, q̇) = KE(q, q̇)− PE(q), (3.2)

and q is the generalized position vector, q̇ is the generalized velocity vector and Wext

is the work done on the system by external forces. In this section, we derive the

complete nonlinear equation based on this formula.

The contributions to the energy arise as follows:

KE = KEactuators +KEfourbars +KEwing-diff (3.3)

PE = PEactuators + PEslider-cranks

+ PEfourbars + PEdifferential (3.4)

The effect of the damping and aerodynamics terms on the overall dynamics (3.1) is

seen via the last term, i.e, ∂Wext/∂q. In general, external non-conservative forces

such as damping forces acting on the mechanism will depend on the position and

velocity of the system. Let us assume for the moment that one of the external forces

is Fext(q, q̇) acting at the point p(q). The work done for a small change in q is given

by

dWext = FT
extdp

= FT
ext

∂p

∂q
dq.
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Thus

∂Wext

∂q
= FT

ext(q, q̇)
∂p(q)

∂q
(3.5)

The external forces arise from the aerodynamic force felt by the wing as well as

internal damping forces (which need to be modeled as an external force):

Wext = Waero +Wstruct (3.6)

For our analysis, we choose the generalized position and velocity vectors as

q = {θ2, α}t (3.7)

q̇ = {θ̇2, α̇}t (3.8)

In the following sections, we derive expressions for each of the terms in (3.3), 3.4 and

3.6 in terms of q and q̇.

3.2 Aerodynamics of the MFI thorax

In this section we describe in detail the aerodynamic model described in [Dickinson 99,

Sane 02, Schenato 01]. We perform some preliminary aerodynamic optimizations of

the wing trajectory which gives us an idea of what to aim for, for getting good lift.

Finally we describe how to incorporate this model into the overall dynamic model of

the MFI.

[Dickinson 99] performed scaled model experiments to experimentally measure

the complex aerodynamic forces generated by the motion of an insect wing. The

apparatus consisted of a 25 cm scaled model of the insect wing moving in a large tank
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of mineral oil. By choosing the appropriate velocities and viscosities, the Reynolds

number which insects experience in actual flight was reproduced in this apparatus.

Force gages mounted at the base of the scaled wing measured the forces experienced

by the model wing in real time. By careful analysis of the measured forces, three

primary lift producing mechanisms were discovered: delayed stall, rotational lift and

wake capture.

[Schenato 01] and [Sane 02] used these experimental measurements and combined

them with theoretical analysis to come up with a mathematical model which predicts

the instantaneous aerodynamic forces experienced by an insect wing in real time.

This model only uses the instantaneous value of the orientation and velocity of the

wing, thus ignoring the effect of wake capture. Wake capture is thought to contribute

to about 10% of the total aerodynamic lift in a typical insect wing trajectory. It is

reasonable to ignore wake capture for the MFI since we are for the present restricted

to much slower rotations than in an actual insect so that the interaction between the

present rotational velocity with previously generated wake is expected to be lesser

than in an insect. See Fig. 7 from [Schenato 01] for a comparison of the scaled mea-

surement data to the theoretical prediction for a smoothly sinusoidal wing trajectory.

3.2.1 Geometric Specification

Consider a wing lamina attached to the MFI wing differential as shown in Fig. 3.1.

The wing is initially assumed to lie in the (+X,−Z) quadrant and subsequently

undergo rotations about the Z, Y and X axes (in that order). The direction of the
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Figure 3.1: Wing Aerodynamics (a) Aerodynamic Force acting on wing (b) Cross-
section of wing showing aerodynamic forces

wing normal is given by:

n̂ = Tz(θ2)Ty(θy)Tx(θx)n̂0, (3.9)

where n̂0 is the initial orientation of the wing normal when θ1 = θ2 = 0 and Tr(γ)

represents a rotation through angle γ about the axis r̂. For our particular geometry

n̂0 = {0, 1, 0}′. Moreover, since θx and θy depend purely on the phase difference α,

as in the case of the kinetic energy of the wing, it becomes convenient to define:

T1(θ2) = Tz(θ2) (3.10)

T2(α) = Ty(θy)Tx(θx) (3.11)

This lets us define

n̂ = T1(θ2)T2(α)n̂0 (3.12)
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The position of the wing center of pressure is given by:

paero = Tz(θ2)Ty(θy)Tx(θx)p0, (3.13)

= T1(θ2)T2(α)p0 (3.14)

where p0 is the initial position of the wing center of pressure when θ1 = θ2 = 0.

This force can be decomposed into a normal component (which acts normal to

the wing lamina) and a tangential component (which acts in the plane of the wing

lamina) as shown in Fig. 3.1(b).

In order to explain results from literature, we will also rigorously define the “angle

of attack”. This angle is defined as the angle made by the direction of the translation

velocity of the wing center of pressure with the wing lamina. This angle is shown as

ξ in Fig 3.1. Mathematically, this angle can be expressed in terms of ψ and Ucp as

follows:

ξ = π/2 + ψ sgn(Ucp) (3.15)

Thus

ξ̇ = ψ̇ sgn(Ucp) (3.16)

which gives

sgn(ξ̇) = sgn(ψ̇)sgn(Ucp) (3.17)
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3.2.2 Delayed Stall

The magnitude of the aerodynamic force exerted on the wing due to delayed stall

is given by the following components:

|Ftr,N(t)| =
1

2
ρAwCN(ψ(t))U2

cp(t) (3.18)

|Ftr,T (t)| =
1

2
ρAwCT (ψ(t))U2

cp(t) (3.19)

In the equations above, Ucp(t) refers to the instantaneous velocity of the wing center

of pressure relative to the fluid and Aw refers to the wing area, ρ is the density of

air, ψ is the angle of attack and Aw is the wing area CN and CT are dimensionless

aerodynamic constants which will be described later. Ucp is calculated as

Ucp(t) = r̂2Rθ̇2 (3.20)

In the equation above, r̂2 refers to the equivalent radius of the area moment of the

wing normalized by the longitudinal wing length, R. In other words, the area moment

of the wing is the same as if the entire area were concentrated at a distance r̂2R.

Therefore, if the chord length of the wing varies as c(r), r̂2 can be calculated as:

r̂2 =

∫ R

0
c(r)r2dr

R2Aw

(3.21)

Note that if we substitute (3.21) into (3.20) and back into (3.18), (3.19), we see that

the translational forces depend purely on the second moment of area of the wing.

Another thing to note is that the instantaneous translational forces depend on the

current orientation of the wing in addition to its velocity, due to the dependence of



42

CN and CT on the rotation angle ψ. This dependence is given as [Dickinson 99]:

CN(ψ) = 3.4 cosψ (3.22)

CT (ψ) =











0 0 < ψ < 45◦

0.4 cos2(2ψ) otherwise

(3.23)

Fig. 3.2 shows the variation of CN and CT with respect to the wing rotation ψ. It

is clear that CT is very small compared to CN , which therefore means that Ftr,T is

significant only for very large rotations. In practice, we want to avoid rotations of

more than about 60◦, which means that CT is restricted to be about 0.1. This means

that for all practical wing trajectories, we can reasonably neglect the effect of Ftr,T

on the wing dynamics. Therefore the magnitude of the translational force is given
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Figure 3.2: Variation of force coefficients with wing rotation

by (3.18). The direction of the translation force F̂tr is always either parallel or anti-

parallel to n̂ and it always points away from the direction of Ucp. We can write this

dependence as:

F̂tr = −sgn(Ucp)n̂ (3.24)



43

In summary, the translation force is given by:

Ftr = |Ftr|F̂tr

= −1

2
ρAwCN(ψ(t))U2

cp(t)sgn(Ucp(t))n̂

= −1

2
ρAwCN(ψ(t))Ucp|Ucp(t)|n̂ (3.25)

3.2.3 Rotational Lift

The aerodynamic effect of wing rotation has undergone extensive study. Some

of the first studies into its effect was done by [Fung 69], where the effect of small

oscillations on aerofoils in a low angle of attack and very high Reynolds number

regime was explored. Some of the circulation assumptions made there have been

carried over by biologists [Dickinson 99, Sane 02] to aerofoils which are undergoing

large rotations in a very low Reynolds number regime (Re about 150). A major

assumption consistently made in literature is that the rotational force is a normal

pressure force. Therefore, it always acts normal to the wing lamina. The magnitude

of the rotational force is calculated in [Sane 02, Schenato 03] as

|Frot(t)| =
1

2
ρAwĉcmaxCrot| ˙ψ(t)||Ucp(t)| (3.26)

In the above equation, cmax is maximum wing chord width, and ĉ is the normalized

rotational chord which is calculated as:

ĉ =

∫ R

0
c2(r)rdr

r̂2RAwcmax

(3.27)

The rotational coefficient of lift, Crot is given by

Crot = 2π

(

3

4
− x̂0

)

(3.28)
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In the equation above, x̂0 is the normalized distance of the rotational axis from the

leading edge. In most insects, this is believed to be around 1/4 [Dickinson 99]. For

the moment we will assume that it is the same for the MFI. It should be noted that

this formulation ignores the effect seen in [Sane 02] of the dependence of Crot on ψ̇.

Looking at Fig (3) from [Sane 02], the following deduction can be made about

the direction of the rotational force. Firstly, since its a normal pressure force, it is

always either parallel or anti-parallel to the wing normal. In the case where the angle

of attack is increasing, then the rotational force points in the same direction as the

translation force (away from the wing translational velocity). In the case where the

angle of attack is decreasing, then the force points opposite to the direction of the

translation force (towards the translational velocity). Mathematically, this directional

dependence can be summarized as:

F̂rot = sgn(ξ̇)F̂tr (3.29)

As explained in [Sane 03], the rotational force is not analogous to the Magnus force

to which it was previously likened [Dickinson 99], but in fact, it is a manifestation of

the Kramer effect. For example, consider the case of advanced rotation of the wing.

Just before the end of the downstroke, the wing has an angle of attack > 90◦ and still

increasing while the wing is still moving forward. This corresponds to the situation

as shown in Fig. 3.3. Thus although the Magnus effect would predict a lift increase

in this situation, we actually get a negative lift due to rotation. To summarize, we

find the direction of rotational lift by substituting (3.17) and (3.24) into (3.29).

F̂rot = (sgn(ψ̇)sgn(Ucp))(−sgn(Ucp)n̂)

= −sgn(ψ̇)n̂ (3.30)
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Figure 3.3: Difference between rotational lift and the Magnus effect. The left image
shows the rotational component of the force on a wing lamina. In this situation, θx

denotes the angle of attack. In this case, it is still increasing. According to [Sane 02],
this leads to a rotational lift force as shown which has a negative lift component. An
equivalent tennis ball spinning as shown would experience a positive lift.

Therefore, the vector representation of the rotational force is given by:

Frot = |Frot|F̂rot

= −1

2
ρAwĉcmaxCrot| ˙ψ(t)||Ucp(t)|sgn(ψ̇)n̂

= −1

2
ρAwĉcmaxCrot

˙ψ(t)|Ucp(t)|n̂ (3.31)

3.2.4 Wake Capture

Wake capture is a complex phenomenon which arises due to an interaction of

the insect wing with the wake which it creates due to a previous flap. When an

insect rapidly moves its wings through a fluid, the fluid is given some momentum

and continues to move forward. The insect wing leads this wake during the forward

stroke. When the wing reverses direction and begins to travel backwards, it encounters

this moving fluid, leading to an increased relative fluid flow and thereby increased

aerodynamic forces. This mechanism is hard to model because it would require a

model of how flow induced in a fluid by a wing decays with time. In addition, it is a
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highly transient effect which only generates lift in the very beginning of a stroke. We

do not include this mechanism in modeling the aerodynamic force due to the wing

motion.

3.2.5 Total Aerodynamic Force

Summarizing the last few sections, we can model the total aerodynamic force

acting on the wing as:

Faero = Ftr + Frot

= Faero(ψ, ψ̇, Ucp)n̂, (3.32)

where Faero is defined as the scalar quantity

Faero(ψ, ψ̇, Ucp) = −1

2
ρAw

{

CN(ψ(t))Ucp(t)|Ucp(t)|+ ĉcmaxCrot
˙ψ(t)|Ucp(t)|

}

(3.33)

and n̂ is defined in (3.12). From this, we can extract the lift force as the component

of the total aerodynamic force along the vertical direction. In other words:

FL = (FT
aeroẑ)ẑ, (3.34)

where ẑ refers to the unit vector along the global +Z direction. The drag force is

defined as the component of the total aerodynamic force in the X −Z plane opposite

to the flapping velocity.

FD = (Faero − FL)sgn(Ucp) (3.35)

It should be noted that this is not equivalent to the thrust force, which we will define

as the component of the total aerodynamic force along the global +Y direction:

FT = (FT
aeroŷ)ŷ (3.36)
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3.2.6 Preliminary Aerodynamic Optimization

Given a model of how the lift and drag vary with the wing trajectory, the natural

question which arises is “What is the wing trajectory (within certain constraints)

which maximizes the aerodynamic performance?” The aerodynamic performance can

be characterized in various ways. The two most intuitive measures are the mean lift

produced over a wing flapping cycle and the mean lift/drag ratio over a flapping cycle.

In the following simplified analysis, we restrict the flapping frequency to 200Hz and

the flapping amplitude to ±50◦ and try to find out the rotation amplitude and timing

which will optimize these measures. As before, we have defined the wing flapping to

be the angle made by the leading spar of the wing differential (θ2 in Fig. 2.8) and the

rotation to be the angle θx in Fig.2.8. In other words, with:

θ2(t) =
50π

180
cos(2π200t)

θx(t) = Θx cos(2π200t+ γ),

we try to find Θx and γ which will optimize one of the aerodynamic performance

measures. Note that γ = π/2 corresponds to symmetric wing rotation, while γ < π/2

(γ > π/2) corresponds to advanced (delayed) rotation.
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Figure 3.4: Time history of wing flapping and rotation for a typical wing trajectory.

Fig. 3.4 shows a typical wing flapping and rotation trajectory (Θx = 55◦ and

γ = 67◦ for this trajectory). Fig. 3.5 shows the lift and drag forces generated by this

wing trajectory.
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Figure 3.5: Time history of lift and drag forces on a wing. These forces correspond
to ±50◦ flapping and ±55◦ rotation with slightly advanced rotation. The solid lines
represents the contribution from delayed stall, the dashed lines represents the contri-
bution from rotational lift and the dashed-dotted lines represents the total lift force.

Figure 3.6: Cross-sectional view of wing chord with aerodynamic forces overlaid for
an “insect” facing to the right. The top figure therefore shows the downstroke and
the bottom figure the upstroke. This kinematic pattern corresponds to a slightly
advanced rotation (65◦ phase difference between flapping and rotation) and a 55◦

rotational amplitude.
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Fig. 3.6 shows the cross-section of the wing with these forces overlaid. Using

(3.33) and substituting values of ψ(t), ψ̇(t) and Ucp(t) calculated from θx, θ̇x and θ̇2,

we can get the time history of the lift and drag forces FL(t) and FD(t). By averaging

this over one wing flapping cycle, we can calculate the mean lift and drag over a

wing beat. These mean lift and drag numbers are functions of Θx and γ. Fig. 3.7

shows the variation of the mean lift over a wing beat as a function of the rotational

amplitude (Θx) and the rotation timing (γ). From the figure, we immediately see that

the maximum lift is obtained from a wing trajectory which has a rotation of about

55◦ and with a rotation phase of about 67◦ (i.e, advanced rotation). This optimal

wing trajectory gives a lift of about 750 µN.
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Figure 3.9: Contour of mean lift to drag ratio over the two kinematic parameters of
interest.

Fig. 3.8 shows the variation of the mean drag over a wing beat as a function of

rotational amplitude and timing. From this figure, we observe that the wing drag
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over a cycle decreases with increasing rotational amplitude and delayed rotation. For

all practical purposes, it is not feasible to attain rotations of more than 65◦ with the

current differential design. Thus there is no “optimal” trajectory which minimizes

wing drag. Instead, the rule is to merely increase the rotation amplitude and delay

the wing rotation.

Fig. 3.9 shows the variation of the ratio of the mean lift to the mean drag over a

wing beat. Like in the case of the drag, there is no clear “optimal” wing trajectory

which maximizes this ratio. For the range of reasonable rotation angles, we find the

maximum ratio at the maximum possible rotation (65◦) and a delayed rotation (the

zero rotation point lags the zero flapping velocity point by 20◦).

3.2.7 Incorporating Aerodynamics into MFI dynamics

Incorporating the aerodynamic models derived thus far into the wing dynamics of

the MFI is simply a matter of using (3.5) and substituting the value of Faero (3.32)

for F and paero (3.13) for p.

∂paero

∂θ2

=
∂

∂θ2

(T1(θ2)T2(α)p0)

= T ′
1(θ2)T2(α)p0

(3.37)

∂paero

∂α
=

∂

∂α
(T1(θ2)T2(α)p0)

= T1(θ2)T
′
2(α)p0

(3.38)

Faero = Faero(θ2, α, θ̇2, α̇)n̂

= Faero(θ2, α, θ̇2, α̇)T1(θ2)T2(α)n̂0

(3.39)
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∂Waero

∂θ2

= (T1(θ2)T2(α)Faero(q, q̇))
T T ′

1(θ2)T2(α)n̂0

= pT
0 T

T
2 (α)T T

1 (θ2)T
′
1(θ2)T2(α)n̂0Faero(q, q̇)

(3.40)

∂Waero

∂α
= (T1(θ2)T2(α)Faero(q, q̇)p0)

T T1(θ2)T
′
2(∂α)n̂0

= pT
0 T

T
2 (α)T T

1 (θ2)T1(θ2)T
′
2(α)n̂0Faero(q, q̇)

(3.41)

Since the wing is assumed to be a plane lamina initially in the (X,−Z) quadrant, we

can use

p0 = {x0, 0,−z0}T (3.42)

n̂0 = {0, 1, 0}T (3.43)

Defining

r1 := pT
0 T

T
2 (α)T T

1 (θ2)T
′
1(θ2)T2(α)n̂0

= x0 cos θy cos θx − z0 sin θy (3.44)

r2 = pT
0 T

T
2 (α)T T

1 (θ2)T1(θ2)T
′
2(α)n̂0

= −x0θ
′
y sin θx + z0θ

′
x (3.45)

where θ′y =
∂θy

∂α
and θ′x =

∂θx

∂α
. As expected, r1 and r2 are independent of θ2 and

depend purely on α. Substituting this back into (3.40) and (3.41), we get

∂Waero

∂θ2

= (x0 cos θy cos θx − z0 sin θy)Faero(α, θ̇2, α̇) (3.46)

∂Waero

∂α
= (−x0θ

′
y sin θx + z0θ

′
x)Faero(α, θ̇2, α̇) (3.47)

where Faero is calculated from (3.33). It is of interest to see that when α = 0, we get

∂Waero

∂θ2

= x0Faero(α = 0, θ̇2, α̇) (3.48)

∂Waero

∂α
= λz0Faero(α = 0, θ̇2, α̇) (3.49)
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3.3 Structural dynamics of the MFI thorax

In this section, we describe the contribution to the overall dynamics from the struc-

tural components of the MFI thorax, such as the actuator, slider-crank, fourbar and

wing differential. Some of these models were described previously in [Avadhanula 01].

However, we very briefly repeat them here for the sake of completion and also to ac-

count for slight improvements in the model.

3.3.1 Kinetic Energy of the Actuator

The KE of the actuators is given by:

KEact =
1

2
(mpzt,1ẋ

2
1 +mpzt,2ẋ

2
2), (3.50)

where x1 and x2 are the positions of the actuators and mpzt,1 and mpzt,2 are the

equivalent linear inertia of the actuator in the actuator coordinate systems. The

positions of the actuators, xj are related to the fourbar output angles θj by the

inverse transmission ratio Tinv. In other words:

xj = Tinv(θj), j = 1, 2 (3.51)

Substituting this into (3.1) gives:

(

d

dt

(

∂

∂q̇

)

− ∂

∂q

)

KEactuators =







mact,1(θ1) +mact,2(θ2) mact,1(θ1)

mact,1(θ1) mact,1(θ1)













θ̈2

α̈






,

where mact,j are the equivalent inertias of the actuators in the fourbar output coor-

dinate system and are related to mpzt,j as

mact,i = (Tinv(θi))
2mpzt,i (3.52)
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To get an idea of what mact is for a typical actuator, we get mpzt = 12 mg for

an actuator with a linear stiffness of 500N/m and a resonant frequency of about

1000Hz. From this, we get mact = 1.4 mg-mm2 for a fourbar transmission ratio T−1
inv

of 3000 rad/m. Note that mact will actually vary with θ since Tinv varies with θ.

3.3.2 Kinetic Energy of the Slider Crank and Fourbar

The kinetic energy of a fourbar mechanism is given by:

KEfb(θ, θ̇) =
1

2

i=3
∑

i=1

ml,iẋ
2
cg,i, (3.53)

where ml,i is the mass of the ith link of the fourbar mechanism and ẋcg,i is the velocity

of the CG of the ith link, which depends both on θ and θ̇ as:

ẋcg,i =
∂xcg,i(θ)

∂θ
θ̇ (3.54)

We can calculate xcg,i, the position of the CG of the ith link using the kinematic

solutions (2.8), (2.9) and (2.14). For our analysis, we make the following assumptions:

1. The slider crank is assumed to be a part of the fourbar input link for purposes of

calculating the inertia. This is a very safe assumption to make since the slider

crank contributes almost nothing to the overall inertia.

2. Links 3 and 4 of the differential (Fig. 2.8) are assumed to make up the output

link of the top fourbar, while link 1 is assumed to make up the output link

of the bottom fourbar. This makes the inertias of the two fourbars slightly

unequal.
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Figure 3.10: Fourbar Inertia components

Finally, the contribution of the fourbar KE to the overall dynamics can be derived

as:

(

d

dt

(

∂

∂q̇

)

− ∂

∂q

)

KEfour-bars =







mfb,1(θ1) +mfb,2(θ2) mfb,1(θ1)

mfb,1(θ1) mfb,1(θ1)













θ̈2

α̈






,

where the equivalent fourbar inertias in the wing hinge coordinates are given by:

mfb(θ) =
i=3
∑

i=1

ml,i

(

∂xcg,i

∂θ

)2

(3.55)

The variation of the fourbar inertia with fourbar output angle for the latest MFI

fourbar model is given in Fig. 3.10. The asymmetry in the fourbar inertias is due

to the inertia of links 3 and 4 of the differential being considered part of the top

fourbar (mfb,2), while only the inertia of link 1 of the differential is considered part

of the bottom fourbar (mfb,1).
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3.3.3 Kinetic Energy of the Wing

Note that for purposes of calculating the inertia, the total kinetic energy of the

wing is calculated as:

KEwing-diff = KEwing +KEdiff,3 +KEmatch, (3.56)

where KEwing is the KE of the wing itself. KEdiff,3 is the inertia of link 3 of

the differential (Fig. 2.8) and KEmatch is the inertia of the matching spar. The

analysis for incorporating the wing inertia into the overall dynamics has been done

in [Avadhanula 01] and is given as:

(

d

dt

(

∂

∂q

)

− ∂

∂q

)

KEwing-diff =







mw,1 mw,12

mw,12 mw,2













θ̈2

α̈






+







0

1/2m′
w,2α̇

2






(3.57)

where














mw,1

mw,2

mw,12















=















c2θy
1− c2θx

· c2θy
−s2θy

cθx

θ
′2
y θ

′2
y c

2
θx

+ θ
′2
x −2θ

′

yθ
′

xsθx

0 θ
′

ysθx
cθy
− θ′

xsθy
θ
′

xcθy
cθx

+ θ
′

ysθy
sθx





























Jxx

Jzz

Jxz















(3.58)

where θx and θy are the angles shown in Fig. 2.8 and cγ and sγ are short forms for cos γ

and sin γ respectively. Jxx, Jxz and Jzz are the components of the inertia distribution

of the wing in the wing local coordinate system. If we assume that the wing (along

with link 3 of the differential and the matching spar lie in the X − Z plane in the

configuration shown in Fig. 2.8), then these components are found as:






Jxx Jxz

Jxz Jzz






=

∫

W

ρ







xw

zw













xw

zw







T

dxwdzw (3.59)

For the latest MFI differential, these inertia terms vary with θx, the wing rotation as

shown in Fig. 3.11
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Figure 3.11: Wing inertia components

3.3.4 Potential Energy of the Actuator

The stiffness of the actuator in the linear actuator coordinates is assumed to be

constant. This gives the PE of the actuator as:

PEact =
1

2
Kpzt(x− xp)

2 (3.60)

where Kpzt is the linear stiffness of the actuator and x is the linear displacement of

the actuator in the actuator coordinates, which is related to the fourbar output angle

θ via Tinv the inverse fourbar transmission ratio. xp represents the “placement” of

the actuator relative to the fourbar. Recall from the kinematics of the fourbar and

slider crank that Tinv is defined such that

Tinv(θ3 = π/2) = 0 (3.61)
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Since θ3 = π/2 corresponds to the fourbar position for which the fourbar flexures are

all stress free, this corresponds to saying that we define the kinematic zero position

of the actuator as the minimum PE position of the fourbar. xp accounts for the fact

that we can (and do) place the actuator in such a way that the resultant total PE

minimum is at a different θ3 than for the fourbar minimum PE.
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Figure 3.12: Variation of Actuator torque with fourbar output angle for xp = 0.

From this we can calculate the contribution to the overall dynamics as:

∂PEact
∂q

=







Fact,1(θ1) + Fact,2(θ2)

Fact,1(θ2)






(3.62)

where Fact,i is the restoring torque produced by the ith actuator in the wing hinge

coordinate system:

Fact(θ) =
∂PEact

∂θ

= Kpzt(Tinv(θ)− xp)
Tinv(θ)

∂θ

(3.63)
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Figure 3.13: Nominal actuator stiffness for small motions

The variation of Fact with respect to the fourbar output angle is given in Fig. 3.12

The following two important points about this variation should be emphasized:

1. The actuator restoring torque is not symmetric about the zero torque angle if

we place the actuator such that it is stress-free when the fourbar flexures are

stress-free.

2. The actuator restoring actually changes direction for large enough fourbar an-

gles. In other words, the nominal actuator stiffness actually becomes negative

as shown in Fig. 3.13. This extremely non-intuitive result arises from the ex-

treme non-linearity in the fourbar transmission. As we will see later, this is the

most important reason for the “jump resonant” behavior of fourbars.
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3.3.5 Potential Energy of the Slider Crank and Fourbar

The PE stored in the fourbar and slider crank flexures is given by:

PEslider-crank =
1

2

2
∑

i=1

ksc,iθ
2
sc,i (3.64)

PEfourbar =
1

2

i=4
∑

i=1

kfb,iθ
2
fb,i (3.65)

where θfb,i is the angle which the ith fourbar flexure bends through (from its stress-

free position). kfb,i is the rotational stiffness of the ith fourbar flexure. We assume

that the flexures behave as perfect rotary joints with added rotational springs. The

rotational stiffness can be calculated as:

kfb,i =
Ewit

3
i

12li
(3.66)

where E is the flexural modulus of the flexure material, wi is the width of the flexure,

ti is the thickness and li is the length of the flexure.

From this we can find the contribution to the overall dynamics as:

∂PEfourbars
θq

=







Ffb,1(θ1) + Ffb,2(θ2)

Ffb,1(θ1)






(3.67)

∂PEslider-cranks
θq

=







Fsc,1(θ1) + Fsc,2(θ2)

Fsc,1(θ1)






(3.68)

where:

Ffb(θ) =
4
∑

i=1

kfbθfb,i
∂θfb,i

∂θ
(3.69)
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Figure 3.14: Restoring torque by fourbar and slider crank on wing hinge
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Figure 3.15: Small motion equivalent stiffness of the fourbar and slider crank

The variation of (Ffb+Fsc)(θ) with respect to θ, the fourbar output angle is shown
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in Fig. 3.14. We can also find the equivalent stiffness of the fourbar and slider crank

for small motions about a given position. This is found as:

Keq =
∂

∂θ
(Ffb(θ) + Fsc(θ)) (3.70)

Note that this stiffness is only valid for sufficiently small motions around the given

output angle. For larger angles, it no longer makes sense to talk of a stiffness. The

variation of Keq versus θ is shown in Fig. 3.15.

3.3.6 Potential Energy of the Differential

The potential energy stored in the differential flexures is given by:

PEdifferential =
1

2
(kx(θx + θ0

x)
2 + ky(θy + θ0

y)
2 + kw(θw + θ0

w)2) (3.71)

where kx is the rotational stiffness of the flexure corresponding to the θx axis (see

Fig. 2.8) and similarly for ky and kw. Since we assume that these flexures behave as

ideal rotational joints with a constant rotational stiffness, we can calculate kx (and

similarly ky and kw) as:

kx =
Ew2

xt
3
x

12lx
(3.72)

where wx, tx and lx are the width, thickness and the length of the θx flexure and E

is the Young’s modulus of the flexure material.

θ0
x is the angle made by the θx flexure with respect to the stress-free position when

θx = 0. This is to account for pre-bends which the fabrication process subjects on
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the flexures. In our case, the fabrication process makes:

θ0
x =

π

2
(3.73)

θ0
y = 0 (3.74)

θ0
w = −π

2
(3.75)

Using these equations, we can find the contribution of the differential PE to the total

dynamics as:

∂

∂q
PEdifferential =







0

Fdiff(α)






(3.76)

where Fdiff(α) is the restoring torque produced by the differential to resist the dif-

ference in the fourbar output angles. It is given by:

Fdiff(α) =
∑

ν=x,y,w

kν(θν + θ0
ν)
∂θν

∂α
(3.77)
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Figure 3.16: Fdiff vs. α
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The variation of Fdiff with α is shown in Fig. 3.16. As can be seen, the restoring

torque is highly non-linear. This is apparent if we calculate the nominal differential

stiffness vs α. This is given by:

Kdiff(α) =
∂

∂α
PEdiff (3.78)

This stiffness is of course only valid for very small rotations. The variation of Kdiff

is shown in Fig. 3.17.
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Figure 3.17: Variation of differential stiffness with α.

It can be seen that the nominal differential stiffness varies from a minimum of just

0.5mN-mm/rad (when α = 0) to a maximum of 35mN-mm/rad (when α = 26◦), a

change of almost two orders of magnitude. α = 26◦ corresponds to a rotation angle

θx = π
3

for a differential transmission ratio λ = 2. Although this seems to imply that

it is extremely hard to get large rotations from the differential, in practice as well as

simulations it is very easy to get large rotations from the differential (sometimes so
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large that the differential is damaged). This is because although the stiffness with

respect to α is very high (equivalent to a spring with a stiffness of 315 N/m connected

between the actuators in the actuator reference frame), when we consider the stiffness

with respect to the rotation angle θx, it is actually quite low. The equivalent stiffness

with respect to θx can be found simply as:

K̂diff(θx) =
∂2

∂θ2
x

PEdiff(θx) (3.79)

In other words, we need to write the potential energy stored in the differential flexures

as a function of θx and then find its second derivative with respect to θx. This stiffness

is shown in Fig. 3.18:

−80 −60 −40 −20 0 20 40 60 80
0

0.5

1

1.5

2

2.5

θx (◦)

K̂
d
iff

(θ
x
)

(m
N

-m
m

/
ra

d
)

Figure 3.18: Variation of differential stiffness as a function of rotation angle

As can be seen, the stiffness in this reference frame is only 1.5 mN-mm/rad at

θx = π
3
, which corresponds to just 13 N/m in the actuator coordinate system.
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3.3.7 Internal Actuator and Fourbar Damping

The internal damping forces in the actuator and the fourbars need to be modeled

as time varying external force in order to incorporate them into the Euler-Lagrange

formulation. We assume that the work done by these damping forces is of the form:

dWdamp = Fdamp(θ̇1)dθ1 + Fdamp(θ̇2)dθ2 (3.80)

where Fdamp is assumed to be of the form:

Fdamp(θ̇) = Bθ̇, (3.81)

where B is a constant. In other words, we assume that the actuator and fourbar

damping can be treated as a linear damping force (with a constant damping coeffi-

cient) which acts directly on the wing hinge output. Note that recent research has

shown that the actuator model is much more complicated and in particular, its in-

ternal damping might also be stress and velocity dependent. We ignore this effect

for now with the caveat that this might in fact be an important effect for further

study. With this assumption, the contribution of the fourbar and actuator damping

becomes:

∂

∂q
Wdamp =







B1θ̇1 +B2θ̇2

B1θ̇1






(3.82)

3.3.8 Work done by Actuators

The work done by the MFI actuators is given by:

dWact = Factdx (3.83)
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where dx is the differential motion of the actuator in the actuator coordinates. This

is related to the fourbar output angle by:

dx = T ′
inv(θ)dθ (3.84)

Thus, we have:

dWact = FactT
′
inv(θ)dθ (3.85)

Fact is the linear force generated by the actuator. For the moment, we assume that

this varies linearly with the applied voltage to the actuator.

From this, we can write the contribution of the actuator forces to the overall

dynamics as:

dWact

dq
=







T ′
inv(θ1) + T ′

inv(θ2)

T ′
inv(θ1)













Fact,1

Fact,2






(3.86)

3.4 Complete Dynamic model

With the contributions of the various structural components of the MFI and the

aerodynamics derived in the previous sections, we can put these together to write

down the complete differential equation which governs the motion of the MFI thorax.

M







θ̈2

α̈






+ Fdamp + Faero + Fstiff +







0

1
2
m′

w,2α̇
2






= Tin







Fact,1

Fact,2






, (3.87)
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where

M =

























































mfb,1(θ2 + α) +mfb,2(θ2)

+ mact,1(θ2 + α) +mact,2(θ2)

+ mw,1





























mfb,1(θ2 + α)

+ mact,1(θ2 + α)

+ mw,12





























mfb,1(θ2 + α)

+ mact,1(θ2 + α)

+ mw,12





























mfb,1(θ2 + α)

+ mact,1(θ2 + α)

+ mw,2

























































(3.88)

Fdamp =







B1θ̇1 +B2θ̇2

B1θ̇1






(3.89)

Faero =







r1(α)

r2(α)






Faero(α, α̇, θ̇2) (3.90)

Fstiff =







Fact,1(θ1) + Fact,2(θ2) + Ffb,1(θ1) + Ffb,2(θ2)

Fact,1(θ1) + Ffb,1(θ1) + Fdiff (α)






(3.91)

Tin =







T ′
inv(θ1) T ′

inv(θ2)

T ′
inv(θ1) 0






(3.92)
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3.5 Matching Spar Design

In this section, we describe the “dynamically tuned” design aspect of the MFI

thorax. As described previously in [Avadhanula 01], the mechanical design of the

MFI is tuned in a way to give optimal dynamical performance.

3.5.1 Linearized System Dynamics

If we linearize the system described in (3.87) for small motions around θ2 = −135◦

(the minimum PE position of the fourbar flexures) and α = 0◦ (the nominally flat

position of the differential), we get a linear system of the form:

Mlin







θ̈2

α̈






+ Blin







θ̇2

α̇






+ Klin







θ2

α






= Ti,lin







F1

F2






(3.93)

where the linearized system matrices are given by:

Mlin =







m1 m12

m12 m2






(3.94)

Blin =







2B B

B B






(3.95)

Klin =







2Ktot Ktot

Ktot Ktot +Kdiff






(3.96)

Tin,lin = Tinv







1 1

1 0






(3.97)
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where

m1 = mact,1 +mfb,1 +mact,2 +mfb,2 +mw,1 (3.98)

m12 = mact,1 +mfb,1 +mw,12 (3.99)

m2 = mact,1 +mfb,1 +mw,2 (3.100)

Ktot = kact,1 + kfb,1 (3.101)

B = B1 (3.102)

Note that we have made the (reasonable) assumption that kact,1 = kact,2, kfb,1 = kfb,2

and B1 = B2. By using the transformation:







θ2

α






=







0 1

1 −1













θ1

θ2






(3.103)

we can transform (3.93) to get the dynamic equation relating {F1, F2}T (the two

actuator force inputs) to {θ1, θ2} (the two fourbar output angles):







M11 M12

M12 M22













θ̈1

θ̈2






+







B 0

0 B













θ̇1

θ̇2






+







Ktot +Kdiff −Kdiff

−Kdiff Ktot +Kdiff













θ1

θ2






=







F1

F2







(3.104)

where:

M11 = m2 (3.105)

M12 = m12 −m2 (3.106)

M22 = m11 − 2m12 +m2 (3.107)
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We can further convert this dynamic description into a 2 input 2 output transfer

function form:






Θ1(s)

Θ2(s)






=







G11(s) G12(s)

G12(s) G22(s)













F1(s)

F2(s)






(3.108)

3.5.2 Inertial Matching Condition

In the method of “dynamic tuning” described in [Avadhanula 01], we designed

the mechanism such that the following conditions are met:

1. There is minimal coupling at DC, i.e. G12(s→ 0) = 0.

2. The dynamics along the diagonal are identical, i.e., G11(s) = G22(s)

These conditions require the following criteria about the system parameters to be

met:

1. The differential stiffness is very small Kdiff ≪ Ktot.

2. The wing inertia is distributed in a way that enforces mw,2 = mw,12 = 0.5mw,1.

This was accomplished by choosing the wing placement relative to the differen-

tial.

This method has a few drawbacks:

1. The condition Kdiff ≪ Ktot implies that we need to make the differential flex-

ures very thin. This has the very undesirable effect of creating undesirable

vibration modes in the differential. Making flexures thinner also makes the

differential more fragile and hence reduces lifetime.
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2. Choosing the wing placement with respect to the differential is error-prone and

it also only approximately meets the condition that mw,12 = mw,2 = 0.5mw,1

because we are trying to achieve two independent constraints with a single

variable. Moreover, placing the wing at an offset with respect to the differential

creates a somewhat weaker joint between the differential and the wing.

3. That method also does not account for slight differences in the inertias of the two

fourbars (since the differential halves attached to the fourbars are not identical).

4. Moreover, the design aim which we set that there is minimal DC coupling

G12(s ← 0) = 0 is not so directly useful because we finally want to drive the

two fourbars at their resonance. A more direct aim of the design should be to

reduce the coupling between the fourbars at the common resonant frequency.

All these drawbacks inspired an improved dynamic tuning method which relies on

what is called a “matching spar”. In this method, the following design aims are to

be met:

1. The dynamics along the diagonal are identical, i.e, G11(s) = G22(s).

2. The cross-coupling dynamics are reduced at the resonant frequency of the four-

bars. In other words,

ωr = arg max
ω

|G11(jω)| =⇒ ωr = arg min
ω
|G12(jω)| (3.109)

In this method, we place a small low inertia “matching spar”, which is a small bar of

carbon fiber on the differential along with the wing. This changes the total inertia
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of the differential, or the mw,1, mw,12 and mw,2 terms in (3.104). This changes the

transfer function (3.108) in such a manner that the two conditions above will be met.

We proceed by finding the transfer function corresponding to (3.104). This is done

by simply taking the Laplace transform of both sides:







M11s
2 +Bs+ (Ktot +Kdiff ) M12s

2 −Kdiff

M12s
2 −Kdiff M22s

2 +Bs+ (Ktot +Kdiff )













Θ1(s)

Θ2(s)






=







F1(s)

F2(s)







(3.110)

Solving for Θi(s) gives:







Θ1(s)

Θ2(s)






=

1

D(s)







M22s
2 +Bs+ (Ktot +Kdiff ) −(M12s

2 −Kdiff )

−(M12s
2 −Kdiff ) M11s

2 +Bs+ (Ktot +Kdiff )













F1(s)

F2(s)







(3.111)

where

D(s) = (M11s
2 +Bs+ (Ktot +Kdiff ))(M22s

2 +Bs+ (Ktot +Kdiff ))

− (M12s
2 −Kdiff )

2

(3.112)

In order to satisfy the first condition G11(s) = G22(s), we require the following con-

dition to be met:

M11 = M22

=⇒ m2 = m1 − 2m12 +m2

=⇒ m12 =
1

2
m1 (3.113)

In order to satisfy (3.109), we need to find out the resonant frequency of the diagonal

elements of the transfer function matrix. The two resonant frequencies are given by
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the roots of D(s). With the assumption that M11 = M22, we can write down D(s)

as:

D(s) = (M11s
2 +Bs+Ktot +Kdiff )

2 − (M12s
2 −Kdiff )

2 (3.114)

= (M11s
2 +Bs+Ktot +Kdiff +M12s

2 −Kdiff )

(M11s
2 +Bs+Ktot +Kdiff −M12s

2 +Kdiff ) (3.115)

= ((M11 +M12)s
2 +Bs+Ktot)((M11 −M12)s

2 +Bs+Ktot + 2Kdiff )

(3.116)

For the two resonant frequencies to be identical, we require

M11 +M12

Ktot

=
M11 −M12

Ktot + 2Kdiff

(3.117)

Substituting M11 and M12 from (3.105) and (3.106), we can reduce this condition to

the following condition on m1 and m2:

m2 =
Ktot +Kdiff

2Ktot

m1 (3.118)

Note that (3.113) and (3.118) guarantee that there is a single resonant frequency for

the linearized transfer function and that G11(s) = G22(s). We will show that these

conditions automatically guarantee (3.109). Notice that the resonant frequency of

the system is given by:

ωr = arg max
ω

|G11(jω)|

=

√

Ktot

M11 +M12

(3.119)

Substituing this in the expression for G12(s) gives:

G12(jωr) = M12ω
2
r +Kdiff =

M12Ktot

M11 +M12

(3.120)



76

If we use (3.117), we can easily see that

M12

M11 +M12

= −Kdiff

Ktot

(3.121)

which when substituted back into (3.120) gives:

G12(jωr) = 0 (3.122)

Thus we have shown the following:

Inertia Matching

If the wing inertia components mw,1, mw,12 and mw,2 are chosen in such a manner

that the following two conditions are met:

m12

m1

=
1

2
(3.123)

m2

m1

=
Ktot +Kdiff

2Ktot

(3.124)

then the following conditions are met for the performance of the nominally linearized

system:

G11(s) = G22(s) (3.125)

arg min
ω

G12(jω) = arg max
ω

G11(jω) (3.126)

3.5.3 Matching Spar Design

Once the desired ratios m2/m1 and m12/m1 are found, we need to design a match-

ing spar which will ensure that we do attain these desired ratios. Recall that we can
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write m1, m12 and m2 as:

m1 = mact,1 +mact,2 +mfb,1 +mfb,2 + Jxx,w + Jxx,d + Jxx,m (3.127)

m2 = mact,1 +mfb,1 + λ2(Jzz,w + Jzz,d + Jzz,m) (3.128)

m12 = mact,1 +mfb,1 + λ(Jxz,w + Jxz,d + Jxz,m) (3.129)

where Jxx and others are defined in (3.59). The problem now reduces to finding

Jxx,m, Jzz,m and Jxz,m such that (3.118) and (3.113) are satisfied. Since we only need

to satisfy two constraints and we have three design variables, we can arbitrarily fix

one of these variables. Since we will want to minimize the total flapping inertia of

the wing, we fix Jxx,m = 2× 10−12mg-mm2 (below which it will be hard to fabricate

the matching spar) and calculate Jzz,m and Jxz,m such that the inertia matching

conditions are met.

Once Jxx,m, Jzz,m and Jxz,m are calculated, it remains to calculate the shape and

placement of the matching spar to get the desired inertia distribution. We choose

the simplest possible shape for the matching spar, which is a rectangle cut out from

40µm carbon fiber. The design variables are the length, width and placement of the

rectangle on the differential. This is shown in Fig. 3.19. In this figure, we design for

lm, wm and zoff to get the desired inertia distribution. The inertia components in

terms of these design variables are given by:

Jxx,m =
4

3
ρAlmw

3
m + 4ρAlmwmx

2
off (3.130)

Jzz,m =
4

3
ρAwl

3
m + 4ρAlmwmz

2
off (3.131)

Jxz,m = 4ρAxoffzoffwmlm (3.132)

These equations can be solved numerically to get the desired lm, wm and zoff for a
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given Jxx,m, Jzz,m and Jxz,m.

Z

zoff

xoff

X

w

l

Figure 3.19: Placement of matching spar

3.5.4 Example

As a working example, we consider the mass, stiffness and damping parameters

for the recent-most MFI design:

Parameter Value Units

mfb,1 +mact,1 6.77 mg-mm2

mfb,2 +mact,2 8.02 mg-mm2

Ktot 45 mN-mm/rad

Kdiff 20 mN-mm/rad

xoff 3.5 mm

Table 3.1: Inertial and stiffness parameters in latest MFI
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For these parameters, the final design of the matching spar is

Parameter Value (mm)

lm 13.23

wm 0.18

zoff 1.84

Table 3.2: Latest matching spar parameters

With this matching spar, the nominal linearized transfer function is shown in

Fig. 3.20. As can be seen, the two conditions are very neatly met.
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Figure 3.20: Dynamics with optimal matching spar design. Note that the Q is much
higher than in reality because the linearized dynamics does not include the effect
of wing damping which is the major source of damping in the structure. However,
the general “shape” of the frequency response should be unaffected by the additional
wing damping.

Fig. 3.21 shows the experimentally measured frequency response of 04 − χ, a 2

DOF structure. As can be seen, we see a single peak in the diagonal dynamics (i.e.,
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from Vi to θi) and a low coupling in the off-diagonal terms (i.e., from V1 to θ2 and

V2 to θ1). To see the improvement which the matching spar makes to the overall

dynamics, we contrast this with the experimentally measured frequency sweep of a 2

DOF structure made in 2001, which is shown in Fig. 3.22. This structure shows a huge

amount of coupling between the two actuators as shown in Fig. 3.22(b). Moreover,

we see two frequency resonances due to inadequately designed inertia distribution.
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Figure 3.21: Experimentally measured frequency response of 04 − χ, a 2DOF
structure.

3.6 Summary

In this chapter, we modeled the complete dynamics of a 2 DOF structure including

the aerodynamics of the MFI wing. We described a way to optimally design the

MFI differential in order to obtained “tuned” dynamics. This design principle was

validated with experimentally measured frequency responses.
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Figure 3.22: Comparison of predicted (dashed) and actual (solid) strain gage dynam-
ics [Avadhanula 01]. Note that the units do not correspond to degrees of motion but
to strain gage volts.
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Chapter 4

Fourbar Dynamics and System

Identification

The previous chapter described the over-all dynamic behavior of the MFI thorax

including the aerodynamic model described in [Dickinson 99]. Since the derived model

contains significant non-linearities, it is important to provide some validation of the

model. In this chapter, we attempt to do this for part of the overall dynamics. Since a

major part of the non-linearity of the system arises due to the fourbar kinematics, in

this chapter, we concentrate particularly on the non-linear dynamics of the fourbar.

We also validate the system parameters by performing system identification on the

dynamics of a single fourbar.
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4.1 Simplification of Fourbar Dynamics

We consider the dynamics of a single fourbar with a wing connected to it at a

45◦ angle of attack and at the same distance from the wing hinge as in the case of a

full 2 degree of freedom (DOF) structure. This angle of attack was chosen to mimic

the angle of attack which is seen for major part of a typical stroke cycle of a 2 DOF

structure. All the analysis in this chapter was performed on the structure named

06− α.

We begin by re-stating the dynamics of a single DOF fourbar structure. This

can be extracted easily from the overall system dynamics (3.87), by considering only

the state variable θ2. For the remainder of this chapter, we will drop the subscript

and define θ as the angle made by the fourbar output. To summarize, the complete

dynamics is given by:

(mfb(θ) +mact(θ) +mw,1)θ̈

+B1θ̇ + Faero(α = α0, α̇ = 0, θ̇)r1(α = α0)

+ Fk,act(θ) + Fk,fb(θ) = T ′
inv(θ)Vact (4.1)

In this equation, the angle of attack of the wing is fixed at 45◦. This corresponds

to a phase difference α = α0 calculated from (2.29) as arcsin( π
4λ

). The aerodynamic

parameters in the fourbar dynamics are calculated for this equivalent phase difference.

In the above dynamics, non-linearity arises due to the fact that the inertia, damping

and stiffness all vary with the state variable.

The dependence of mfb on θ is given in Fig. 3.10. We can also simplify the
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aerodynamic damping term for the case of constant angle of attack as:

Faeror1 = B2θ̇
2 (4.2)

where B2 is a constant:

B2 =
1

2
ρAwCN(α0)x

3
0 (4.3)

where ρ is the density of air, Aw is the wing area, CN is the normal force coefficient

for θx = π/4 (which evaluates to 2.4) and x0 is the equivalent wing length, i.e, the

distance from the wing hinge at which the aerodynamic forces are assumed to act. B2

has units of torque/(angular velocity squared). Finally, the variation of Fk,act with θ

is given in Fig. 3.12 and the variation of Fk,fb with θ is given in Fig. 3.14.

Thus we can restate the exact dynamics of the fourbar mechanism as:

J(θ)θ̈(t) + Fdamp(θ̇(t)) + Fstiff(θ(t)) = Ti(θ(t))Vact(t) (4.4)

4.1.1 Polynomial Approximation

A first step in the simplification of the fourbar dynamics is to approximate the

terms in the dynamics as polynomials. Since we desire to simplify the polynomial

descriptions, we shift the origin of the various curves such that the polynomial fits

become most succinct. The shift is done both for the state variable θ and the input

Vact in the following manner:

θ ←θ − θ0 (4.5)

Vact ←Vact − Vact,0 (4.6)
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Naturally, we need to choose θ0 and Vact,0 to satisfy:

Fk,fb(θ0) + Fk,act(θ0) = Tinv(θ0)Vact,0 (4.7)

This shift is then equivalent to driving the structure with a constant DC bias of Vact,0

and measuring the displacement of the system about the DC bias of the output.

For the given system parameters shown in Figs. 3.10,3.11,3.12,3.14, we choose

θ0 = −145◦ and Vact = −5V , which enables us to get the following polynomial

descriptions of the various terms:

Ĵ(θ) = J0(1− cθ2) (4.8)

F̂damp(θ̇) = B1θ̇ +B2θ̇|θ̇| (4.9)

F̂stiff(θ) = k0θ(1− aθ2) (4.10)

T̂i(θ) = Ti,0(1− bθ2) (4.11)

Fig. 4.1 shows the comparision of the polynomial approximations of the various dy-

namic terms with the exact value. The polynomials correspond to the values of the

various parameters specified in Table. 4.1.

Thus, we have an approximate “polynomial” dynamical system given by:

Ĵ θ̈ + F̂damp(θ̇) + F̂stiff(θ) = T̂i(θ)Vact (4.12)

4.2 The Describing Function Method

The describing function method is a well-studied technique for analysing the pe-

riodic behavior of non-linear systems. It is defined as a quasi-linear approximation
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Value Units

J 22.3× 10−12 kg-m2

c 0.10

k0 4.18× 10−5 Nm/rad

a 0.38

B1 2.61× 10−9 Nm/(rad/s)

B2 9.77× 10−12 Nm/(rad/s)2

Ti,0 2.0× 10−7 m/rad

b 0.42

Table 4.1: Parameters used in polynomial fit (Fig. 4.1)

technique [Gelb 68]. The particular method described here has been termed as a “Sin-

gle Sinusoid Describing Function” method (DF). The underlying philosophy is both

intuitive and simple. Since we know (intuitively) that the forced response of a fourbar

to periodic input has to be periodic, we approximate the forced response of the four-

bar as a sum of harmonics. The simplification arises from the premise that we can get

a reasonably good approximation to the actual output trajectory by “throwing away”

the higher harmonic content of the output. We note that this is actually a signif-

icant assumption which has received considerable attention [Sanders 93, Bergen 71]

and proceed with the caveat that a mathematical proof that the describing function

method works at all is not going to be provided here. However, we will present

a convincing argument using full non-linear simulation that the describing function

method, at least for our case, works very well indeed.
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Figure 4.1: Comparision of exact and approximate system parameters.

We will use the describing function method for a relatively simple task, namely

getting the periodic response of the 1 DOF system for a forced sinusoidal input. We

know that since our plant is non-linear, the output is not necessarily sinusoidal for a

sinusoidal input. However, for the moment, we further restrict ourselves to the task

of finding the first harmonic of the output waveform. To do this we proceed by first
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approximating the input and the output by simple sinusoidal trajectories:

u(t) = u0 sin(ωt+ φ) (4.13)

θ(t) = θ0 sin(ωt) (4.14)

We then substitute these waveforms into the polynomial approximation of the dy-

namics given by (4.12). For this given θ(t), we notice that the left hand side of the

dynamics will have higher harmonic content. The Describing Function method pro-

ceeds by approximating this as a pure sinusoid at the driving frequency. This is done

by taking the first harmonic of the various terms. As an example, consider the term

F̂damp(t):

F̂damp(t) = B1θ̇ +B2θ̇|θ̇|

= B1θ0ω cos(ωt) +B2(θ0ω)2 cos(ωt)| cos(ωt)|

The first harmonic of F̂damp(t) can be found as:

F̂damp(t) ≈
(

ω

π

∫ 2π/ω

0

Fdamp(τ) cos(ωτ)dτ

)

cos(ωt)

+

(

ω

π

∫ 2π/ω

0

Fdamp(τ) sin(ωτ)dτ

)

sin(ωt) (4.15)

This gives us

F̂damp(t) ≈
(

B1θ0ω +
8B2θ

2
0ω

2

3π

)

cos(ωt) (4.16)

Similarly

Ĵ(θ(t))θ̈(t) ≈ J0(1−
3

4
cθ2

0)θ0ω
2 (4.17)

F̂stiff(t) ≈ k0θ0

(

1− 3

4
aθ2

0

)

sin(ωt) (4.18)
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Note that for the T̂i(θ(t))u(t) term, we find the first harmonic of the whole compound

term instead of finding approximations of each individual factor. This gives the

following expression

T̂i(θ(t))u(t) = Ti,0(1− bθ2
0 sin2(ωt))u0 sin(ωt+ φ) (4.19)

≈ Ti,0u0

(

1− 3

4
bθ2

0

)

cosφ sin(ωt)

+ Ti,0u0

(

1− 1

4
bθ2

0

)

sinφ cos(ωt) (4.20)

Substituing the approximate expressions for F̂damp(t), F̂stiff(t) and T̂i(θ(t))u(t) into

(4.12), we get the following:

− Jθ0ω
2

(

1− 3

4
cθ2

0

)

sinωt

+

(

B1θ0ω +B2
8

3π
θ2
0ω

2

)

cosωt+ k0θ0

(

1− 3

4
aθ2

0

)

sinωt

≈

Ti,0u0

(

1− 3

4
bθ2

0

)

cosφ sin(ωt) + Ti,0u0

(

1− 1

4
bθ2

0

)

sinφ cos(ωt) (4.21)

Equating coefficients of sinωt and cosωt, we get

−J0θ0ω
2

(

1− 3

4
cθ2

0

)

+ k0θ0

(

1− 3

4
aθ2

0

)

= Ti,0u0

(

1− 3

4
bθ2

0

)

cosφ (4.22)

B1θ0ω +B2
8

3π
θ2
0ω

2 = Ti,0u0

(

1− 1

4
bθ2

0

)

sinφ (4.23)

This is the basic solution obtained using the describing function method. As can

be seen, the method essentially converts a non-linear ODE into a set of non-linear

algebraic equations which give the relationship between the drive amplitude and fre-

quency and the output amplitude and phase.
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The problem now is to find θ0 and φ given u0 and ω. In a linear system, this

relationship is expressed succinctly with the frequency response graph, where we find

the functions θ0(u0, ω) and φ(u0, ω). For non-linear systems such as in our case, it is

extremely difficult to get an explicit solution for θ0(u0, ω) and φ(u0, ω). Instead, we

solve for u0 and φ explicitly given θ0 and ω:

u2
0 =

(

−J0

(

1− 3c
4
θ2
0

)

θ0ω
2 + k0θ0

(

1− 3
4
aθ2

0

)

Ti,0

(

1− 3
4
bθ2

0

)

)2

+

(

B1θ0ω +B2
8
3π
θ2
0ω

2

Ti,0

(

1− 1
4
bθ2

0

)

)2

(4.24)

φ = tan−1

[(

B1θ0ω +B2
8
3π
θ2
0ω

2

−J0

(

1− 3
4
cθ2

0

)

θ0ω2 + k0θ0

(

1− 3
4
aθ2

0

)

)

(

1− 3
4
bθ2

0

1− 1
4
bθ2

0

)

]

(4.25)

If we draw isocontours of constant u0 = ū0, then the points on the contour will

correspond to the solutions of θ0 for the given u0 and ω. Such iso-contours can

be thought to correspond to the solutions of θ0 for a given u0 and ω. If the plant

had been a linear plant, these contours would have corresponded to the frequency

response of the plant at increasing input amplitude. In the case of a non-linear plant

like ours, these contours are called the “Single Sinusoid Driving Response” [Gelb 68].

Fig. 4.2 shows a set of such contours for the plant parameters corresponding to those

in Table 4.1.

4.2.1 Validity of the Describing Function method

Note that in getting the “frequency response” of our plant using the Describing

Function method (DF), we have made two approximations. The first is in approximat-

ing the exact plant dynamics given by (4.4) by a polynomial approximation (4.12).
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Figure 4.2: Contours of constant u0

The next approximation is the DF approximation, i.e, trying to get the frequency

response of the dynamics given by (4.12) by “throwing away” the higher harmonics

of the output. In this section, we study the validity of these two approximations. We

start with the latter approximation.

The DF Approximation

The DF approximation is stated as follows: Given that the dynamics of a system

are given by (4.12), for the input

u(t) = u0 sinωt

the output is given by:

θ(t) = θ0 sin(ωt− φ) +
∞
∑

k=2

θk sin(kωt− φk)

where θ0 and φ are obtained by solving the non-linear algebraic equations (4.24) and

(4.25). We can immediately see that this approximation leads to errors by comparing



92

the exact DC motion with the approximate DC motion. The DF prediction of the

DC motion follows from (4.24) by substituting ω = 0. This gives:

u0,df =
k0θ0

(

1− 3
4
aθ2

0

)

Ti,0

(

1− 3
4
bθ2

0

) (4.26)

On the other hand, we can find the DC motion predicted by the polynomial dynamics

(4.12) by substituting ω = 0 as:

u0,ex =
k0θ0 (1− aθ2

0)

Ti,0 (1− bθ2
0)

(4.27)

Thus the prediction of DC motion using the DF approximation will not be equal to

the prediction using the exact dynamics. However, since the values of the nonlinear

parameters a and b as shown in Table. 4.1 are almost equal, therefore the DC predic-

tions do not vary too much as shown in Fig. 4.3. An interesting consequence of the

fact that a = b is that the input-output relationship is very linear for low frequencies.

In other words, the weakening transmission implied by (4.11) almost exactly cancels

the effect of the softening spring implied by (4.10). Fig. 4.4 shows a comparison

of the frequency response predicted by the DF approximation with a full non-linear

ODE45 simulation done using MATLAB. The solid lines represent the contours of

constant u0 as calculated by the DF approximation. The marker points correspond

to the first harmonic of θ(t) obtained by simulating the dynamics given by (4.12)

using a full ODE45 simulator for the parameters given in Table 4.1. As can be seen,

the predictions match up almost exactly with a small amount of variation at high

amplitudes. This once again implies that the DF approximation, at least for our case

is very accurate at predicting the frequency response.
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The Polynomial Approximation

The DF method of finding the frequency response is preceded by the polynomial

approximation where we approximate the plant dynamics given by (4.4) by the poly-

nomial plant dynamics (4.12). Fig. 4.5 shows a comparison of the frequency response

obtained via a full non-linear simulation of the exact plant dynamics with the re-

sponse predicted by the DF method. The solid lines correspond to the frequency

response predicted by the DF method. The line with the markers correspond to the

frequency response obtained via full nonlinear simulation. Note that since the exact

plant dynamics is non-linear, frequency response here corresponds to driving the plant

with a sinusoidal input and then finding the frequency component of the output at

the driving frequency. As can be seen, we still see a good agreement between the full
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Figure 4.5: Comparison of frequency response of exact plant dynamics (4.4) and DF
frequency response (4.24).

nonlinear dynamics and the DF method.
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4.3 Jump Resonance in Fourbar Mechanisms

The DF method allows us to explore an interesting aspect of the non-linear dy-

namics of the fourbar mechanism called “Jump Resonance”. This is a phenomenon

where there is a sudden jump in the output amplitude for a small change in the input

frequency with the input amplitude kept constant. Such a phenomenon cannot occur

in a linear system. Let us concentrate on the u = ±130 contour shown in Fig. 4.2.
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Figure 4.6: Jump resonance exhibited by one degree of freedom fourbar

This contour corresponds to the possible solutions for the output amplitudes at each

input frequency with the input amplitude held constant at 150. To see how jump

resonance occurs, let us assume that we start with a low input frequency, say 50Hz

and slowly increase it keeping u0 = 150 as shown in Fig. 4.6. Between ω = ωA and

ω = ωB, we have multiple solutions for θ0. The actual steady state solution will

be based on how we approach the frequency ω. To be more precise, while slowly

increasing the input frequency, till ω = ωB, since we always have a local solution, the
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output amplitude increases along the path A−B. Beyond ω = ωB, there is no output

amplitude solution in the vicinity of θ0,B. Therefore, increasing the frequency even

by a small amount suddenly makes the output amplitude jump to the vicinity of θ0,C .

Thus when we start from a low frequency and slowly increase to a high frequency,

the path traced by the fourbar output is low–A–B–C–high, where B–C is a sudden

“jump”. Similarly, when we sweep from a high frequency to low, the path traced is

high–C–D–A–low, where D–A is a sudden “jump”.

It is clear from looking at Fig. 4.6 that not all input amplitudes give rise to a

“jump resonance” behavior. For example, at u0 = ±90, the contour does not “fold

back”, which means that sweeping the frequency slowly will not lead to any sudden

jumps. This phenomenon presents additional constraints on the maximum allowed

input amplitudes which can be applied to the fourbar mechanism.

4.4 Identification of Nonlinear Dynamic

Parameters

The DF method also allows us to perform a system parameter identification of

the various dynamic parameters of the fourbar dynamics.

4.4.1 Problem Statement

Given an experimentally measured set of frequency responses, try to determine the

system parameters which best predict the measurements. More formally, we assume

that the system can be modeled by the following simplified second order nonlinear
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ODE as described in (4.12), where the various mass and stiffness terms are given in

(4.8)–(4.11).

Solving this nonlinear ODE involves finding the output waveform θ(t) given the

input waveform u(t). In particular, we can solve for θ(t) given that the input is a

single sinusoid of the form u(t) = u0 sin(ωt). If we solve the ODE, we will in general

get a non-sinusoidal output waveform. For the present, we are interested only in the

primary harmonic. This can be calculated by first solving the nonlinear ODE and

then extracting the first harmonic by a simple Fourier transform. This yields the

amplitude and relative phase

θ0,m = Sθ0
(u0, ω, λ) (4.28)

φm = Sφ(u0, ω, λ) (4.29)

where λ corresponds to the system parameters:

λ = {J,B1, B2, k0, a, b} (4.30)

Using this method, we can generate a set of “modeled” frequency response (FRSP)

points of the form:

FRSPmodel = {(u0, ω, θ0,m, φm)1, · · · } (4.31)

In this problem, we are given a set of measured frequency responses of the form

{u0, ω, θ0, φ}. A single measurement of this form refers to driving the system with a

known input sinusoid of the form u0 sin(ωt) and measuring the amplitude and relative

phase θ0 and φ of the first harmonic of the output waveform. Thus we are given a

set of measurement points:

FRSPexp = {(u0, ω, θ0,e, φe)1, · · · } (4.32)
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Our problem then is to find λ (the set of system parameters) such that the difference

between the measured and modeled frequency responses is minimized:

min
λ
‖FRSPexp − FRSPmodel‖ (4.33)

4.4.2 Experimental Data

The experimental data consists of a series of frequency responses of a fourbar at

increasing input amplitudes as shown in Fig. 4.7.
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Figure 4.7: Experimental data

Each curve above represents the first harmonic of the output when the input

amplitude is held constant and the input frequency is swept from 10Hz to 500Hz

in steps of 10Hz. The labels on each curve represent the input amplitude (voltage)

applied to the actuator for that sweep.
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4.4.3 Application of the Describing Function method

As described previously, the method of “describing function” gives an approximate

solution to the nonlinear ODE. Without going into detail here, we substitute u(t) =

u0 sin(ωt + φ) and θ(t) = θ0 sin(ωt) into (4.4) and then equate the first harmonic of

both sides of the equation, i.e, the coifficients of sinωt and cosωt. This gives the

following equalities:

−Jθ0ω
2 + k0θ0

(

1− 3

4
aθ2

0

)

= u0

(

1− 3

4
bθ2

0

)

cosφ (4.34)

B1θ0ω +B2
8

3π
θ2
0ω

2 = u0

(

1− 1

4
bθ2

0

)

sinφ (4.35)

Thus for each set of drive amplitude and drive frequency (u0,i, ωi) and the correspond-

ing output amplitude and phase measurements (θ0,i, φi), we get two linear equations

in the system parameters λ as follows:















−θ0,iω
2
i θ0,i −3

4
θ3
0,i

3
4
u0,iθ

2
0,i cosφ 0 0

0 0 0 1
4
u0,iθ

2
0,i sinφ θ0,iωi

8
3π
θ2
0,iω

2
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
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








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u0,i sinφi















(4.36)
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By stacking up a number of such measurements, we can form a regression equation

of the form:

Aλ ≈ B (4.37)

where A is composed by stacking up 2 × 6 matrix blocks on the left hand side of

(4.36) and B is composed by stacking up 2× 1 matrix blocks in the right hand side

of (4.36). To solve for the system parameters λ, we need to perform the following

minimization:

min
λ
‖Aλ−B‖ (4.38)

If we use the L2 norm in the above minimization, the estimated system parameters

can be found as:

λ̂ = A†B (4.39)

where A† represents the pseudo inverse of A. As a first step in making A better

conditioned, we change coordinates so that ω is measured in rads/ms, θ is measured

in rads and u0 is measured in hectoVolts (i.e, 100V is represented by u0 = 1.)

4.4.4 The Problem due to Phase Delay

If we try to apply the procedure above to the measured data, we get a bad fit

as shown in Fig. 4.8. The red lines with labels represent the contours of constant

u0 as found by the describing function using the fitted parameters λ̂. The blue

lines represent the measured magnitude. For this figure, we used all the measured

frequency points for all applied input amplitudes. As can be seen the fit has significant
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Figure 4.8: Comparision of measured magnitude with “fitted” amplitude

deviations from the measurement.

If we try to use the measurement points from a single input amplitude measure-

ment, we see that the fit for that particular frequency sweep improves, while the fit

on the other sweeps deteriorates significantly as shown in Fig. 4.9, which shows the

fit when only the measurement with u0 = ±50V is used. The thick red line with the

label represents the “fitted” frequency response at u0 = ±50V , while the thick blue

line represents the measurement at u0 = ±50V .

Even when trying to fit a single input amplitude sweep, we notice that the fit

is not quite as good as we expect it to be considering that the measured amplitude

looks like a “well behaved” second order system. In particular, the sharp “corner” in

the predicted frequency response is suspicious. In order to understand the source of
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Figure 4.9: Comparision of measured magnitude with “fitted” amplitude when only
the measured frequency sweep at u0 = ±50V is used.

the error in the fit, we break up the matrices A and B from (4.37) as

A =







A1 0N×3

0N×2 A2






(4.40)

B =







B1

B2






(4.41)

where

A1 =

[

−θ0,iω
2
i θ0,i −3

4
θ3
0,i

3
4
u0,iθ

2
0,i cosφ

]

(4.42)

A2 =

[

1
4
u0,iθ

2
0,i sinφ θ0,iωi

8
3π
θ2
0,iω

2

]

(4.43)

B1 = [u0,i cosφi] (4.44)

B2 = [u0,i sinφi] (4.45)
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We also break up the system parameters λ as

λ =







λ1

λ2






(4.46)

where λ1 = {J, k0, k0a, b} and λ2 = {b, B1, B2}. Note that λ1 and λ2 share the para-

meter b, which represents the input saturation. If λ̂1 and λ̂2 represent the estimates

of λ1 and λ2, then we expect that

A1λ̂1 ≈ B1 = u0 cosφ (4.47)

A2λ̂2 ≈ B2 = u0 sinφ (4.48)
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However, as Fig. 4.10 shows, although A1λ̂1 and B1 = u0 cosφ match up pretty

well, the match between A2λ̂2 and B2 = u0 sinφ is very poor. This implies that

u0 sinφ has some behavior which none of the columns of A2 have. This can be easily

seen in Fig. 4.11. As can be seen, none of the basis functions used for fitting u0 sinφ
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ever change sign like u0 sinφ does. Now, u0 sinφ changes sign because as shown in

Fig. 4.7(b), the measured phase decreases below −180◦ due to the constant slope and

offset added onto it due to the delay inherent in the experimental measurement.
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Figure 4.11: Basis functions for fitting u0 sinφ. Note that although ω is depicted on
the X axis in Hz, the values plotted use the value of ω in rads/ms.

To account for this, we change the system identification problem (4.36) to include

an affine phase offset. Thus we get:
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(4.49)
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The parameters to be estimated now are {J, k0, a, B1, B2, b, t0, φ0}. Unfortunately,

the estimation of t0 and φ0 is more complicated due to the fact that the regression

equation is not linear in t0 and φ0. Thus our minimization problem becomes

min
λ,t0,φ0

‖Aλ− B̃‖ (4.50)

where B̃ is defined simply as:

B̃ =







u0,i cos(φi − ωt0 − φ0)

u0,i sin(φi − ωt0 − φ0)






(4.51)

Instead of trying to tackle this as a single nonlinear optimization problem, we break

it up into two separate optimization problems by considering the optimization of t0

and φ0 separately. Thus we get:

min
t0,φ0

min
λ
‖Aλ− B̃‖ (4.52)

The optimization of λ for given values of t0 and φ0 proceeds as before. The op-

timization of t0 and φ0 is done using MATLAB’s fminunc function for unconstrained

optimization.

Accounting for the phase offset imeediately provides us a much better fit with the

experimentally measured data.
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Figure 4.12: Phase after accounting for affine phase offset
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Fig. 4.12 shows the change in the phase of the measurement after accounting for
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the system delay. The figure shows the original phase measurement for the u = ±50V

frequency sweep and the fitted phase after accounting for the delay. As can be seen,

the fitted phase remains above −180◦. This has the desired effect on the B̃2 as shown

in Fig. 4.13. u0 sin φ̂ no longer changes signs which means that the basis functions,

i.e, the columns of A2 have a much better chance of fitting it.
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Figure 4.14: Comparision of actual and fitted B̃

Fig. 4.14 shows the comparision of the actual and fitted B̃ after accounting for the

phase offset for the u0 = ±50V measurement. As can be seen, we immediately get

a much better fit with the measured data. If we utilize this procedure to get the fit

considering all the data points, we get a very good fit as shown in Fig. 4.15. The fit

for large input amplitudes is much better than for small input amplitudes, but overall

this is still a very good fit. Since we know all the geometric and other fabrication

parameters for 06-α (the 1 DOF structure being studied in this chapter), we can also

simulate the frequency response by calculating a-priori the values of J , k0 etc.
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Param SysID Calculation Units

J 22× 10−12 22.8× 10−12 kg-m2

k0 4.19× 10−5 4.18× 10−5 N-m/rad

a -0.3801 -0.3850 –

b 0.4267 0.4186 –

B1 2.6× 10−9 2.6× 10−9 N-m-s/rad

B2 8.24× 10−12 9.77× 10−12 N-m-s2/rad2

Ti,0 1.966× 10−7 2.07× 10−7 N-m/V

Table 4.2: Comparision of parameters obtained with system ID with prameters cal-
culated via dynamics

Fig. 4.16 shows the comparision of the measured frequency response with the

simulated frequency response. Table. 4.2 compares the parameters obtained using

the system ID approach with the parameters calculated using fabrication data. As

can be seen, there is a very good agreement between the calculated parameters and

those obtained via system ID.

4.5 Estimation of internal damping

Another important performance criterion in the performance of a fourbar is its

transmission efficiency. This is dependent on the internal damping inherent in the

fourbar flexures. In order to estimate this, we performed a series of system iden-

tification experiments on a single DOF fourbar, by flapping the wing while it was
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enclosed in a vacuum chamber such that the pressure of air in which the wing was

flapping could be controlled. We performed these experiments at 5 pressure points

and estimated the system parameters λ at each pressure. At each pressure point,

we measured experimentally the frequency response of the system to increasing in-

put amplitudes up to ±40V . By extrapolating the estimate of B1 to zero ambient

pressure, we can estimate the internal damping arising purely due to the mechanical

damping inherent in the flexures and the actuator. Fig. 4.17 shows the frequency

response measurements at the 5 pressure points. The pressure in inches of mercury

below atmosphere is denoted beneath each figure. The response of the “fitted” system

is shown superimposed on each measured frequency response. As can be seen, we get

a very good fit between the measured and fitted frequency responses. Fig. 4.18 shows

the variation of the various system parameters with decreasing pressure. We imme-

diately notice that the estimates of the nonlinear system parameters do not agree

with the a priori estimates of the parameters shown in Table 4.2 as well as the pa-

rameters obtained by the system ID with large input amplitudes. This is reasonable

because the effect of non-linearities is felt more acutely with larger input amplitudes

and therefore they can be estimated more accurately by measuring the response for

large input amplitudes. Another thing to note from these measurements is that B1

decreases with decreasing pressure. This implies that in the overall system dynamics,

we cannot really “separate” the influence of aerodynamics from the internal damping.
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Figure 4.18: Vaccuum system ID parameters for 06− α

However, extrapolating B1 and B2 to -29” Hg (i.e, perfect vacuum) still provides a
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good way to estimate the internal material damping of the actuator and flexures. By

extrapolating the data shown in Fig. 4.18(e,f), we see that for very low pressures B1

reduces to 1 mN-mm-ms/rad and B2 reduces to 0.84 mN-mm-ms2/rad2. The power

dissipated by the damping terms is given by:

Pout =
1

2

(

B1 +B2
8

3π
θ0ω

)

θ2
0ω

2 (4.53)

If we compare the power dissipations for the two cases: in full atmospheric pressure

and in vacuum, we see that

Pout,atm = 4.71 mW

Pout,vac = 0.85 mW

where we have used θ0 = π/4, ω = 200Hz and:

Atmospheric pressure Vacuum

B1 3.6 mN-mm-ms/rad 1 mN-mm-ms/rad

B2 7.3 mN-mm-ms2/rad2 0.83 mN-mm-ms2/rad2

From this we can see that the internal material damping in the fourbar and actuator

consume about 18% of the total power. This implies that the transmission efficiency

of the fourbar is at least 80%, if not better.

4.6 Summary

In this chapter, we described a simplification to the fourbar dynamics which al-

lowed us to apply the powerful Describing Function method to study the fourbar

dynamics from a more analytical perspective. We described the jump resonance be-

havior of the fourbar which can be analyzed elegantly using this method. We also
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validated the non-linear behavior of the fourbar by performing parameter identifica-

tion of the fourbar dynamics and showing that we get close agreement to the parame-

ters obtained using a-priori calculations. The internal damping of the actuator and

fourbar system was estimated to verify that the mechanical transmission is highly

efficient at converting mechanical motion from the actuator into wing motion.
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Chapter 5

Design and Fabrication Issues

Thus far, we have concentrated on the theoretical aspects of the MFI such as

the kinematics, dynamic analysis and system identification. In this chapter, we will

concentrate on the mechanical design and fabrication aspects of the MFI. The struc-

tural components of the MFI are described as flexural mechanisms, where rigid links

are joined together by flexures which approximate rotational joints. In this chap-

ter, we will concentrate on various aspects of building flexural mechanisms focussing

particularly on the design of the flexures. Some of the design principles in the con-

struction of flexural mechanisms have been studied previously [Carricato 01, Kang 04]

and have been used in increasingly many applications [Kota 99, Yi 03]. Some of the

basic design issues involved in the fabrication of small length flexural mechanisms

have treated previously in [Howell 94]. Researchers have also studied various kinds

of flexures for obtaining rotational motion from the point of view of optimal force

transmission [Goldfarb 99]. Related work is currently ongoing on methods of au-

tomatically folding flexural mechanisms [Sahai 03] and embedding wiring inside the
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flexures themselves [Sahai 05]. The various performance aspects of the carbon fiber

(CF) links have been elaborated in [Wood 03]. In this chapter, we study an appli-

cation of some of these general design principles and intuition to the manufacturing

process presently used in the MFI project.

During the first few years of the MFI project, the manufacturing process consisted

of folding up flat steel shim into hollow triangular beams as described in [Shimada 00].

This process involved a lot of careful gluing and folding and suffered from excessive

flexure peel. It also limited the alignment to what could be achieved manually. More-

over, the time required to build a typical fourbar mechanism in this process was on

the order of a couple of days.

[Wood 03] introduced a radically improved way of making composite meso-structures

by utilizing flexures sandwiched between carbon fiber sheets. This fabrication method

completely avoids the problem of manually gluing flexures (and the resultant peeling

problems) by utilizing the strong bond formed between carbon fiber epoxy sheets

while curing. It is also a significantly shorter process, taking about 5 times less time

than the previous steel folding technique to build an equivalent part. By “freez-

ing” some of the flexural joints, elaborate 3D structures can be built from planar 2D

patterns.

For this chapter, we use two flexural mechanisms currently used in the MFI project

as driving examples. The first is the fourbar mechanism which is designed to amplify

the motion of the PZT actuators by about 3000 rads/m described in Section 2.2. The

second is differential mechanism shown in Fig. 2.8. Two important performance cri-

teria for judging the performance of the fourbar mechanism are its “parallel stiffness”
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Fwing

Fact

Figure 5.1: Kinematic diagram of a simple fourbar mechanism showing the typical
external forces acting on it.

and its “serial stiffness”. Parallel stiffness refers to the force Fact required to drive

the input joint (Fig. 5.1) with all the links left free to rotate. For planar mechanisms

like fourbars, this stiffness depends purely on the stiffness of the flexures. As we will

later show, for 3D mechanisms, we also need to be very careful about alignment of

the flexures. Serial stiffness refers to the free movement possible at the output link of

the fourbar when the input link is fixed. In Fig. 5.1, this refers to the motion caused

by Fwing when the input link is fixed.

5.1 Force Analysis

In this section we do a force analysis of the fourbar and give a systematic method

for choosing the correct flexure orientations. To see why this is important, we focus

first on a simple flexural setup. Consider two basic singular mechanisms with the

flexures oriented differently (Fig. 5.2(a),(b)). If the flexures were ideal pin joints, then

in both cases, the force F would not cause any motion at all, i.e the two configurations
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would be infinitely stiff. If we perform a small motion finite element analysis (FEA)

of the two configurations, we find that the stiffness in the first case is almost an order

of magnitude more than the second. This result implies that it is advantageous to

have the flexures oriented in such a manner that the force transmitted through them

always points along their length. To utilize this knowledge of flexural hinges, we first

F

F

(a) (b)

Figure 5.2: FEA analysis of two simple flexural mechanisms.

need to find out the direction of the forces transmitted through the various flexures

for the typical external forces acting on the mechanism. Fig. 5.1 shows the typical

forces acting on the fourbar mechanism of the MFI. Here Fwing is the wing force

acting on the output link of the fourbar and Fact is the actuator force acting on the

input link. For this analysis, we make the following simplifying assumptions. First

we assume that each flexure is an ideal pin joint with a torsional spring. Thus it is

capable of transmitting both forces and moments. However, the transmitted forces

are independent of the rotation of the flexure, while the transmitted moment follows

directly from the rotation. Next, we assume that the links move quasi-statically,
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Figure 5.3: Exploded view of the fourbar links showing the flexure forces acting on
the links

i.e., the links have no acceleration. This implies that given a fourbar configuration

(specified by the link angles) and a force Fwing acting on the output link, we also

need to also specify a unique blocking force Fact to retain the fourbar at the given

configuration. Since we know the way in which the actuator is attached to the fourbar,

we will assume that the direction of Fact is known relative to the input link. The

problem statement therefore becomes: Given a force Fwing acting on the output link

of the fourbar, find the four vector forces transmitted through the fourbar flexures

and the magnitude of the required blocking force Fact. Thus we need to solve for 9

unknown quantities.

Fig. 5.3 shows an exploded view of the fourbar links showing the forces and mo-

ments acting on the various links. For our problem, we have to solve for the vectors

Ff,i, i = 1, . . . 4 and the scalar, |Fact|. Ff,i here represents the force transmitted via

the ith flexure from the (i−1)th to the ith link. Similarly, Mf,i represents the moment
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transmitted to the ith link via the flexure connecting it to the (i − 1)th link. The

forces and moments have to satisfy the following equilibrium equations for each of

the link they act upon:

Ff,i − Ff,i+1 + Fi
ext = 0 (5.1)







Ff,i × ri
1 − Ff,i+1 × ri

2

+Mf,i −Mf,i+1 +M i
ext






= 0 (5.2)

i = 1, . . . , 3

Thus there are 9 scalar equilibrium equations involving 9 unknowns.

In the above equation ri
1 and ri

2 are the moment arms of Ff,i and −Ff,i+1 about the

center of gravity (CG) of the ith link. Note that we can simplify the solution method

of (5.1) and (5.2) by proceeding with link 2 which has no external forces acting on

it. This solution method for fourbars is well-known (see [Carricato 01] for example)

and will not be further elaborated upon here. See Here we present the final results of

the force analysis. Fig. 5.4 shows the forces transmitted through the various flexures

super-imposed on the fourbar geometry for various configurations. These forces were

calculated in response to a constant force Fwing acting normal to the output link of

the fourbar for all these configurations.

Fig. 5.5 shows how the transmitted flexural forces vary with the configuration of

the fourbar. At the extremes, where the fourbar exhibits “stiffening” in the actuator

coordinates, we see that we require a much larger Fact to balance the same wing force

Fwing. This analysis tells us the direction in which the forces are transmitted via the

various flexures. This provides us the best way to orient the various flexures in the
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Figure 5.4: Forces transmitted through the fourbar flexures

fourbar during fabrication for the most efficient force transmission. Combined with

various fabrication limitations, this gives the fabricated configuration of our latest

fourbar as shown in Fig. 5.6. Note how all the flexures are oriented to be along the

mean direction of the transmitted forces. We have experimentally measured the serial

stiffness of the optimized fourbar mechanism and found it to be well over 4000 N/m.

This is a huge improvement from the serial stiffness of previous fourbars which had

a measured serial stiffness of about 1000 N/m.

5.2 Buckling strength of the flexures

The force analysis of the fourbar also allows us to calculate the maximum forces

which can be transmitted through it. Alternatively, it allows us to design the fourbar
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flexures to match a given maximum force which needs to be blocked by the actuator.

For the MFI, the maximum blocking force of the actuator is about 100mN. This

allows us to calculate the maximum forces being transmitted through the various

flexures. Using the previous analysis, we find that |F1| = 65mN, |F2| = |F3| = 35mN

and |F4| = 27mN for |Fact| = 100mN. This force configuration is able to withstand a

aerodynamic force of 7mN applied at the centroid of the wing.

We want to design the flexures to not buckle under these kinds of loads. The

maximum force which a flexure of length l can withstand before buckling is given by

Fcr =
EIπ2

l2
, (5.3)

where E is the Young’s modulus, I is the moment of area and l is the length. In

practice, we will design with a factor of safety of 5 since the flexures are not always

exactly parallel to the direction of the transmitted force. For our flexures, fabrication
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Figure 5.6: Latest MFI Fourbar design

constraints restrict us to flexure lengths of 125µm or greater and a thickness of either

12.5µm or 6.25µm. Since a 12.5µm flexure 125µm long cannot be used in the 3rd and

4th joints of the fourbar because the of the large fourbar motions, this puts yet another

constraint on the allowable dimensions of the flexures. Taking all these factors into

account, we finally arrive at the following flexure dimensions:

1 2 3 4

l (µm) 125 125 125 125

w (mm) 3 3 4 4

t (µm) 6.25 6.25 12.5 12.5
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5.3 Calculation of parallel stiffness

The parallel stiffness of a flexural mechanism is easy to calculate if we assume

that each flexure is an ideal rotational joint with a constant rotational stiffness. For

small rotational angles, the rotational stiffness of a flexure is given as

kflex =
EI

l
(5.4)

In an N -link mechanism, the total PE stored in the flexures of the mechanism is

given by:

PEtot =
N
∑

i=1

1/2kiγ
2
i (5.5)

where ki is the stiffness of the ith flexure calculated using (5.4) and γi is the total

deflection of the ith flexure. To find the rotational stiffness of the mechanism with

respect to the driving actuation angle, call it α, we need to first find the restoring

force for a given value of α. This is given by the gradient of the PE as:

F =
∂PE

∂α

=
N
∑

i=1

kiγi
∂γi

∂α
(5.6)

For small displacements about some nominal value of α = α0, the stiffness of the

mechanism is given as:

keq =
∂F

∂α

∣

∣

∣

∣

α=α0

=
N
∑

i=1

ki

(

∂γi

∂α

)2

+ kiγi
∂2γi

∂α2
(5.7)

Note that it doesn’t make sense to use a stiffness number for large motions. For the

complete non-linear dynamics, we should directly use the value of the restoring force

F according to (5.6).
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5.3.1 Effect of flexure pre-stress

Note that in (5.7), γi represents the total displacement of the flexure from its

strain-free state. This displacement depends not just on the kinematics of the mech-

anism but also on the fabrication method, which might impart a pre-stress to some of

the flexures without any driving actuation. In other words, γi in (5.7) can be thought

of as:

γi = γkin
i + γfab

i (5.8)

Here, γkin
i = 0 when the driving angle α = 0 and γfab

i is the pre-stress in the joint

which results from fabrication. Note that γifab is a constant for a given fabricated

part. Since

∂γi

∂α
=

γkin
i

∂α
,

the first term in (5.7) depends purely on the kinematics and not on the initial pre-

stress due to fabrication. Thus, we need to take the initial pre-stress of the flexure

into consideration only for those flexures for which we have

∂2γi

∂α2
6= 0,

about the nominal operating point.

We can see the effect of pre-stressing on the differential stiffness in Fig. 5.7. There

is almost a 100% increase in the differential stiffness when the θy flexure is pre-stressed

by 90◦. To minimize the effect of flexure pre-stress, we have found that its usually

a good idea to “cure” the whole mechanism at a heightened temperature after the

fabrication is complete.
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Figure 5.7: Effect of flexure pre-stress. The solid line represents the stiffness of the
differential w.r.t α when θ0

y = 0◦ and the dotted line represents the stiffness with
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5.3.2 Effect of misalignment

Detailed geometric analysis turns out to be extremely important in mechanisms

where certain geometric constraints need to be met for the mechanism to move.

Consider the wing differential mechanism of the MFI shown in Fig. 2.8. It consists

of two links labeled 1 and 4 which are actuated independently via two fourbars. They

are connected together by a series of 3 links which are interconnected by simple

flexural elements. The basic idea is that when the links 1 and 4 are moved in phase,

then the middle plate 2 rotates along with them about their common axis Z. However,

when 1 and 4 move out of phase, the link 4 in addition to rotating about Z also rotates

about the other axes X, Y and W .

The kinematics of the differential in the absence of any misalignments has already
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been derived in previous work [Avadhanula 02] as

θx = sin−1(λ sinα) (5.9)

θy = β − cos−1(λ sin β) (5.10)

where β = tan−1( 1
λ cos α

)

To emphasize the importance of alignment in the differential mechanism, it is

appropriate to step back and start from one of the most simplistic concerns of kine-

matics, namely to find the available degrees of freedom in the mechanism. If we

simply “count” the number of degrees of freedom in the mechanism using Gruebler’s

criterion:

Ndiff = 6×Nlinks − 5×Nflexures

= 6× 4− 5× 5

Ndiff = −1 (5.11)

What this means is that an arbitrary closed 4 linked (5 with ground link included)

spatial mechanism with flexures along arbitrary axes will be “jammed”. In the MFI

differential, the two extra degrees of freedom come from two of the flexural constraints

becoming redundant in the presence of geometric constraints.

Consider the purely kinematic diagram of the differential shown in Fig. 2.8. From

a kinematic perspective, the mechanism would jam completely if the flexural axes

represented by the axes θ1, θ2, θx, θy and θw were to not intersect exactly at the

single point shown in the figure as the origin. In reality, the flexural compliance

allows some movement albeit at the expense of added unwanted stiffness.

To ensure the kind of alignments we need, we utilized a fabrication design in which
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Figure 5.8: Cut pattern of differential on Carbon fiber. The dimensions are in mm.

the complete differential is cut out under the laser machine as a single part. Fig. 5.8

shows the final design of the differential cuts. The alignment is critical enough that

we needed to account for the width of the laser beam which cuts out the pattern on

the carbon fiber sheet. In addition to this, we also fabricated the output links of the

fourbar links as part of the differential mechanism to ensure the alignment mentioned

above. Features are added to the differential design which mate and thus ensure good

alignment. The latest differential mechanism exhibits a parallel stiffness which is just

1.5-1.6 times the predicted stiffness with perfect alignment. This is quite a gain from

previous designs which were almost 40-50 times the predicted stiffness.
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5.4 Conclusions

To summarize, we need to account for the following factors while designing a

flexural mechanism using the new carbon fiber fabrication techniques:

• Analyze the forces transmitted through the flexures in the fourbar and design

the flexures to always point in the direction of the transmitted forces.

• For flexural mechanisms, it is very important to design the flexures to never

buckle under typical operating conditions.

• It is important to account for flexure pre-stressing in the calculation of mecha-

nism stiffnesses.

• For 3D mechanisms where mobility arises from geometric constraints, it is im-

portant to analyze for the effect of misalignment and design the structure in a

manner which ensures proper alignment.

Fig. 5.9 shows a photo of the latest MFI thorax mechanism which utilizes these various

design rules in construction. For clarity, we also show the 3D sketch of the mechanism

in Fig. 5.10.
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Figure 5.9: Photo of the latest MFI differential

Figure 5.10: 3D sketch of the latest MFI differential. Apart from the matching spar
and the wing, the entire part is made by folding up the planar cut file shown in
Fig. 5.8.The quarter cylinders on the top spar represent cyano-acrylate glue to freeze
the joint at 90◦.
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Chapter 6

Drive Strategy

This chapter describes the drive scheme used in the MFI. Since the primary aim

of any drive strategy used in the MFI is a maximization of lift and other aerodynamic

performance measures, we need to study in detail various periodic wing trajectories

and their aerodynamic benefits. We study these issues in coordination with funda-

mental plant and actuator dynamic limits and motivate the reason for the choice of a

simple sinusoidal drive scheme, which we then describe in detail. Finally, some very

encouraging results from the latest single wing structure are presented which validate

the claim made that simple sinusoidal inputs are more than adequate for good lift

production.

6.1 Background and Motivation

Even before choosing a control strategy, we first need to examine closely the

fundamental aspects of the plant dynamics and the underlying motivation for the
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control. In our case, the following facts about the plant and actuator dynamics and

the final aim of the control endeavour will inform our efforts:

Actuator Force Saturation The most important aspect of our plant is the severe

actuator saturation present in our plant as compared to typical feedback control

problems. The PZT unimorph actuators which we use are typically limited to

voltages of about 200V. For this input actuation, they typically produce forces

of around 200mN (with no displacement). If left free to move, they typically

move around 400-500 microns at this voltage. Beyond this voltage, the actuators

saturate, i.e, they do not produce any additional force or displacement. Beyond

about 300V or so, there is a risk of electrical breakdown across the PZT plate.

Actuator Dynamics The PZT unimorph actuators are used in a bending mode.

Upto their first bending resonance modes, they behave well, but they rapidly

begin to exhibit undesirable bending modes beyond their first bending reso-

nance.

Poor behavior at high frequencies We also wish to avoid exciting high frequency

oscillatory modes which arise if we actuate the complete system beyond about

1000Hz or so. Thus any allowable control system must restrict itself to produc-

ing actuations with frequency content below 1000Hz.

Periodic Motions For our control problem, we are only interested in tracking or

following periodic trajectories in the range 200Hz-300Hz. Since the plant is not

chaotic or naturally unstable, this implies that the input has to be periodic as

well with the same base frequency as the output period we are trying to achieve.
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Lift maximization Finally, we are interested more in the overall lift production

rather than the exact trajectory used to generate this lift. In other words, if

two different trajectories produce equal lifts, we do not differentiate between

them. As a long term problem, we will need to analyze different trajectories

for their efficiencies. However, for now, we restrict ourselves to only considering

the overall lift production.

These considerations allow us to write the following “constraints” on the space of

allowable inputs.

|u(t)| < umax ∀t (6.1)

This ensures that we never saturate the actuators. The condition that the output

and input are periodic implies that if we want to achieve an output period of ω, then

the input has to contain only frequencies at ω, 2ω, 3ω etc1. In other words, u(t) has

to be of the form:

|u(t)| < umax ∀t (6.2)

Since we are interested in base frequencies of up-to 250Hz, we need to additionally

restrict the components of u(t) to≤ 750Hz in order not to excite undesirable structural

resonances. This means that u(t) in fact needs to be expressible as:

u(t) = u1 sinωt+ u2 sin 2ωt+ u3 cos 2ωt+ u4 sin 3ωt+ u5 cos 3ωt (6.3)

1Note that the nonlinearity of the plant implies that we could generate an output at ω with an
input of ω/2 or ω/3 etc. However, this is an extremely inefficient way to generate an output at ω
and we will ignore this scenario for now.
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We can thus represent the set of all allowable inputs by a vector u = {u1, . . . u5}

which satisfy (6.2). Let us define g(u) as the L∞ norm of u(t) corresponding to u.

g(u) = max
t
u(t) (6.4)

where u(t) is formed using the components of u.

Let us define the constrained 6-D space Pu as

Pu = {u : g(u) ≤ umax ∀t} (6.5)

The problem which we desire to solve then is to search over Pu for the trajectory

which maximizes lift production.

For the purposes of analysing the efficacy of various drives, we will for now also

completely ignore the differential dynamics and assume that we have some sort of

“perfect” differential which allows the two fourbar motions to be completely dynami-

cally uncoupled and acts purely kinematically to produce flapping and rotation from

the two fourbar outputs. In other words, we will use the method shown in Fig. 6.1 to

calculate the lift force generated for a given input trajectory u(t).

θf

Fourbar Aerodynamic
Model

∆t

θ1(t)

θ2(t)

u(t) FL(t)Differential

θr

Dynamics

Figure 6.1: Simplified model for calculating mean lift. In this figure, θf (t) represents
the flapping angle of the wing, or the angle made by the leading spar. θr represents
the rotation angle of the wing. These are equivalent to angles θ2 and θx in Fig. 2.8.

The fourbar dynamics are assumed to be those given by (4.4). The aerodynamic

model is given by (3.34). Let us define F̄L(u) as the mean lift over a cycle for the

input formed from u.
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Problem Statement

The “problem statement” for choosing the drive strategy therefore, is

max
u∈Pu

F̄L(u) (6.6)

In other words, we wish to find the input u(t) which gives the maximum mean lift

over a cycle.

6.1.1 Cost / Benefit Analysis

Before doing any optimization on the input space Pu, we first consider a number

of trajectories which are of the form (6.3) without imposing the constraint (6.2). In

other words, we consider the case of no actuator saturation. The aim here is to

manually sample various “points” in Pu and evaluate them on the basis of the lift

production and the cost in the needed actuation. Note that many of the trajectories

shown here will not lie in Pu as we will see. In the descriptions below, θt,i and θb,i

represent the motions of the top and bottom spars of the differential (equivalent to

θ2 and θ1 respectively in Fig. 2.8) for the ith trajectory. θr,i represents the rotation

(θx in Fig. 2.8) of the wing. Tdiff represents the relationship between α = θ1− θ2 and

the wing rotation θx and is given by (2.29).

Case 1 First we consider the best case scenario (aerodynamically). The flapping is

forced to be a smoothened triangular wave while the rotation is forced to be a
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smoothened square wave. In this case, the angles are given by:

θt,1(t) = θ0 (cosωt+ 1/9 cos 3ωt) (6.7)

θr,1(t) = θr,0 (sinωt+ 1/9 sin 3ωt) (6.8)

θb,1(t) = θt,1(t) + T−1

diff
(θr,1(t)) (6.9)

Note that in this case, the torques required to drive the leading and lagging

spars are unequal because θt,1(t) 6= θb,1(t − η)∀η. In other words, the top and

bottom spar trajectories are not just different phases of the same trajectory.

Case 2 Next we consider a slight variation of Case 1, where instead of directly forcing

the rotation to be a certain trajectory, we assume that the top and bottom spars

are the same trajectory, but offset in time. In other words, we use

θt,2(t) = θ0 (cosωt+ 1/9 cos 3ωt) (6.10)

θb,2(t) = θt,2(t− 2
20

180ω
) (6.11)

θr,2(t) = Tdiff(θb,2(t)− θt,2(t)) (6.12)

In other words, θb,2(t) is θt,2(t) delayed by 20◦ phase.

Case 3 In this case, we force the flapping and rotations to be pure sinusoids.

θt,3(t) = θ0 cosωt (6.13)

θr,3(t) = θr,0 sinωt (6.14)

θb,3(t) = θt,3 + T−1

diff
(θr,3(t)) (6.15)

Like in Case 1, the torques for the top and bottom spars are unequal because

the trajectories of the spars are not just different in phase.
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Case 4 In this case, we use the same sinusoidal trajectory for both the top and

bottom spars but delay them in phase to get rotation.

θt,4(t) = θ0 cosωt (6.16)

θb,4(t) = θt,4(t− 2
20

180ω
) (6.17)

θr,4(t) = Tdiff(θb,4(t)− θt,4(t)) (6.18)

In this case, we will have the same torques on both the top and bottom spars

but delayed in phase.

Case 5 Lastly, instead of actively trying to achieve any specific trajectory, we just

use simple sinusoidal drives on the two actuators and let the dynamics of the

system take them into a periodic trajectory. We drive the two actuators out of

phase and generate the rotation from the difference of the two fourbar outputs.

ut,5(t) = u0 cosωt (6.19)

ub,5(t) = u0 cosω(t− tu) (6.20)

We then solve the dynamics of the fourbar to get the trajectories of the top

and bottom spars of the fourbar. These trajectories will in general, have higher

harmonic content due to the nonlinearities in the fourbar. We note that since we

are assuming no coupling, the top and bottom spar trajectories will be related

by

θb,5(t) = θt,5(t− tu) (6.21)

and the wing rotation follows as:

θr,5 = Tdiff(θb,5(t)− θt,5(t)) (6.22)
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Parameter Value Units

J 22×10−12 kg-m2

k0 4.2× 10−5 N-m/rad

a 0.38 –

B1 2.6× 10−9 Nms/rad

B2 8.8× 10−12 Nms2/rad2

b 0.43 –

Ti 2× 10−7 Nm/V

Table 6.1: Parameters of system used to perform cost analysis
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Figure 6.2: Comparison of flapping angle obtained in the five trajectories
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Figure 6.3: Comparison of rotations obtained with the four trajectories

Fig. 6.2 shows a comparison of the various flapping trajectories obtained in the

various cases and Fig. 6.3 shows a comparison of the rotations obtained in the various

cases. Fig. 6.4 shows a comparison of the lift forces obtained in the various cases.

The mean lift in the various cases is also enumerated in Table 6.2. We see that in all

these cases, the mean lift obtained does not vary too much. The highest lift which

we obtain in the expected case of symmetric wing rotation with a smooth triangular

flapping and a smooth square wave rotation is only 6% higher than in the case of just

purely passively driving the fourbars.
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Trajectory 1 2 3 4 5

Mean lift (µN) 919.4414 781.7782 829.9382 785.8688 866.5127

Required Actuator

Voltage (V)

1110 1110 240 240 220

Table 6.2: Mean lift obtained by various trajectories
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Figure 6.4: Comparison of lift forces obtained from various trajectories

Fig. 6.5 shows the voltage required to drive the actuators to generate the trajectory

in each of these cases. These torques were computed by simply substituting θ(t) into

(4.4) to calculate u(t). Clearly, for trajectories 1 and 2 we are well above the available

force limits of the actuator. The meagre 6% increase in lift comes at the cost of a

five-fold increase in the required input actuation.
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Figure 6.5: Comparison of input voltages required for various trajectories

This analysis presents a convincing case for higher harmonic content not being

necessary in the output waveforms.

6.1.2 Local Perturbation Analysis

The previous section informs us that aggressively trying to control third harmonic

output motion costs too much in terms of the needed actuator forces and that in fact

the passive trajectory obtained from the passive fourbar dynamics is just as good.

The insight gained from this is that sinusoidal output trajectories are at least from

the lift production sense, quite adequate. Thus, if the actuator saturation dictates a

given maximum input voltage umax, we restrict ourselves to a simple sinusoidal input

trajectory of the form:

us(t) = umax sinωt (6.23)
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This corresponds to us = {umax, 0, 0, 0, 0} ∈ Pu. Note that us lies on the boundary

of Pu. In this section, we do a local perturbation analysis and try to find out if there

are any locally better trajectories which yield better lift while still staying within Pu.

It is clear that locally, the best trajectory will still be on the boundary of Pu. Thus

to achieve better lift, we will need to move on the boundary of Pu in the direction of

increasing lift till we achieve maximal lift. To be more precise, we want:

max
g(u)=umax

F̄L(u) (6.24)

To get an estimate of how optimal us is for the above maximization, we need to see

how collinear the local gradients of g(u) and F̄L(u) are at u = us, since we know that

at the extremum the normals to the constraint function and the objective function

are collinear.

Numerically estimating the local gradients for the system parameters given in

Table 6.1 and umax = 80 gives:

nF (us) =
∂FL(u)

∂u

∣

∣

∣

∣

u=us

= {0.93, 0.30, 0.05,−0.10, 0.04}T (6.25)

ng(us) =
∂g(u)

∂u

∣

∣

∣

∣

u=us

= {0.70, 0.09, 0.00,−0.69, 0.18}T (6.26)

We can see immediately that us is not completely optimal since nF and ng are not

collinear.

As a first attempt in finding a locally optimal trajectory, we first approximate

the constraint function g(u) and the objective function F̄L(u) as quadratic functions

and then use the Lagrange multiplier technique to do an analytical maximization. In
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other words, we can approximate

F̄L(us + ∆u) = F̄L(us) + nT
F ∆u + ∆uTHF ∆u (6.27)

g(us + ∆u) = g(us) + nT
g ∆u + ∆uTHg∆u (6.28)

where nF is the local gradient of F̄L(u) at us:

nF =
∂FL(u)

∂u

∣

∣

∣

∣

u=us

(6.29)

and HF is the hessian of F̄L at us:

HF =
∂2FL(u)

∂u2

∣

∣

∣

∣

u=us

(6.30)

If these approximations were numerically stable, we could have obtained the local

extremum by simply solving the Lagrange multiplier problem:

nF +HF ∆u + λ (ng +Hg∆u) = 0 (6.31)

nT
g ∆u + ∆uTHg∆u = 0 (6.32)

Unfortunately, it turns out that the constraint function g(u) is highly nonlinear in the

neighborhood of us. In fact, locally it turns out that Hg(us) is actually rank deficient

although higher order derivatives of g(u) in the neighborhood of us are quite large.

This makes it impossible to use a local quadratic approximation.

A brute force approach of just sampling a grid of points in the neighborhood of us

is also too expensive to be feasible since each call to F̄L involves solving a nonlinear

ODE. This forces us to consider a somewhat restricted subspace of u around us

which will be more tractable. Looking at the values of nF (us) and ng(us) we see

that varying the u1 and u2 components has the largest effect on F̄L. We therefore
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restrict ourselves to optimizing F̄L purely with respect to u1 and u2. In other words,

we restrict ourselves to a Pr ⊂ P which is defined as:

Pr = {u : u = (u1, u2, 0, 0, 0) ∧ u ∈ Pu} (6.33)

Once again, we know that the optimal ur ∈ Pr which optimizes the lift will be on

the boundary of Pr. However, the boundary of Pr is a simple 1-D subspace and

in this restricted space, the optimization can be done along a line. Performing this

optimization numerically yields the optimal u(t) as

u(t) = 78 sinωt+ 5 sin 2ωt (6.34)

which gives F̄L around 1% higher than just us. Thus even in the optimal search

direction, we get a mere one percent increase by allowing for higher harmonics.

6.1.3 Power considerations

A natural concern which arises in driving the fourbar passively instead of trying

to actively “kill” higher harmonic content is that there is aerodynamic power being

wasted in the higher harmonics. However, the harmonics at the higher frequencies

have such little amplitude that they barely affect the power into the wing. To see

this, we simulate the system given by (4.4) with the parameters given in Table. 6.1,

and we get an output of the form:

θ(t) =
k=3
∑

k=0

θ0,k sin(kωt+ φk) (6.35)

The amplitudes of the output harmonics at the various harmonics (θ0,k) are given in

Table. 6.3. If we assume somewhat simplistically that the power calculation remains
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constant across all frequencies and is given by:

Pout =
1

T

∫ T

0

(B1θ̇ +B2θ̇|θ̇|)θ̇dt (6.36)

=
1

2
(B1 +B2

8

3π
θ0ω)θ2

0ω
2 (6.37)

then the power in the various harmonics can be calculated to be as shown in Table 6.3.

Harmonic θ0(
◦)

ω

2π
(Hz)

1

2
B1(θ0ω)2 (W)

8

6π
B2(θ0ω)3 (W)

1 67 175 2.15× 10−3 7.94× 10−3

2 5.21 350 5.24× 10−5 3.0× 10−5

3 1.15 525 5.69× 10−6 1.1× 10−6

Table 6.3: Power dissipated in higher harmonics

Thus we can effectively ignore the power going into the higher harmonic of the out-

put. Thus although higher harmonics induced in the output do not buy us anything

by way of increased lift, they also do not waste any of the available input power.

6.1.4 Experimental Validation

We also performed an experiment on a 1 DOF system to experimentally verify

that it is indeed hard to to control higher harmonic content in the output. For this

experiment, we aimed to simply remove the second harmonic content from the output

of a 1 DOF fourbar, which should be an easier problem than controlling/removing

third harmonic content. We generate input to the fourbar of the form:

u(t) = Re
(

u0(e
jωt + ~rej2ωt)

)

(6.38)
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where ~r is a complex vector which controls the relative phase and amplitude of the

second harmonic of the input. For this input waveform, we will get an output of the

form:

θ(t) = Re
(

~θ0(e
jωt + ~route

j2ωt)
)

(6.39)

where ~θ0 represents the relative amplitude and phase of the first harmonic of the

output with respect to the input. ~rout represents the relative magnitude and phase of

the third harmonic of the output to the first harmonic of the input.

The problem statement is simply:

min
~r
|~rout| (6.40)

Since the complex number ~r can be considered a vector of length 2, this problem

becomes a simple two dimensional optimization problem. The optimization was done

by a simplified steepest descent algorithm2:

1. Begin with ~r = ~r0 = ~0.

2. Find the derivative of |rout| with respect to ~r by measuring the output second

harmonic ratio for the following three input harmonics:

|~rout|1 ← ~r0 (6.41)

|~rout|2 ← ~r0 + δr (6.42)

|~rout|3 ← ~r0 + jδr (6.43)

2Although in practice, it is not recommended to use the steepest descent algorithm to do opti-
mization, it turns out to be the quickest optimization algorithm to prototype on this algorithm just
to test the basic premise of how hard it is to remove/control higher harmonics.
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Then the derivative is given by:

J
def
=
∂|~rout|
∂~r

=
1

δr







|~rout|2 − |~rout|1

|~rout|3 − |~rout|1






(6.44)

3. Perform a one dimensional optimization:

min
λ
~rout(~r0 + λJ) (6.45)

In practice, we use the golden section search [Press 99] to find the optmimum,

λ⋆.

4. Update ~r ← ~r + λ⋆J and repeat from step 2.
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Figure 6.6: Evolution of r1 and r2. r1 and r2 are the real and imaginary parts
respectively of ~r.
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Fig. 6.6 shows the evolution of ~r = r1 + jr2 as the optimization progresses. The

periodic spikes are from the one dimensional golden section search which keeps in-

creasng the step size to quickly bound the minimum λ between two limits. Fig. 6.7

shows the evolution of |~rout|. The experimental results indicate that to reduce the

second harmonic content of the output from 8% of the base harmonic to 5%, we re-

quire a doubling of the input peak force. This indicates that it is hard in practice to

control/eliminate the higher harmonics.

6.2 Description of Drive Scheme used

Now that we have shown that it is not particularly useful and even feasible to

consider higher input harmonics, we need a drive scheme which has the simplifying

constraint that the two inputs are simple sinusoidal inputs at the drive frequency.

This implies that the space of all possible drives to a 2 DOF wing structure can
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be described by the following parameters:

w the drive frequency

Udc,1, Udc,2 the DC offset of the drive voltages of the two actuators

Uamp,1, Uamp,2 the amplitudes of the drive voltages of the two actuators at

the drive frequency

ϕ1, ϕ2 the phases of the drive voltages at the drive frequency

This input space maps into an output space which can be described completely

by the following parameters:

Θdc,1, Θdc,2 The mean position of the outputs of the fourbars (i.e, their

DC positions).

Θamp,1, Θamp,2 The amplitudes of the harmonics of the output waveforms

of the fourbars at the drive frequency.

γ1, γ2 The phases of the fourbar output harmonics at the drive

frequency

We can think of this input output relationship as a complex two input two output

map which takes the two complex numbers (Udc,i +Uamp,ie
jϕi)i=1,2 to the two complex

numbers (Θdc,i + Θamp,ie
jγ1)i=1,2. In order to simplify further analysis, let us define

the complex numbers

Ūi
def
= Udc,i + Uamp,ie

jϕi

Θ̄i
def
= Θdc,i + Θamp,ie

jγi

The 2 DOF plant dynamics can then be thought of as the following complex map:

F :







Ū1

Ū2






−→







Θ̄1

Θ̄2






(6.46)
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The control problem is to find (Ū1, Ū2) which maps to a desired (Θ̄d
1, Θ̄

d
2). This is a

relatively simple function inversion problem. We first note the following properties

about the desired Θ̄d
i and the mapping F :

• F is time invariant. In other words,

F (Ūie
jλ) = ejλF (Ūi) (6.47)

Since we are not interested in maintaining phase with respect to any external

signal, we can therefore safely always drive with ϕ1 = 0 and just vary ϕ2.

• For the moment we are interested in wing trajectories which are symmetric in

the upstroke and downstroke. For such trajectories, it is easy to see that we

desire

Θdc,1 = Θdc,2 (6.48)

6.2.1 The Algorithm

Briefly, the control scheme works as follows:

1. We start with a guess of Gfit which maps (Ū1, Ū2) to (Θ̄1, Θ̄2). We find the

inputs required to generate the desired shape of the output trajectory:







Ū1

Ū2







1

= G−1
fit







Θ̄d
1

Θ̄d
2






(6.49)

Since we are only interested in the “shape” of the input trajectory and we want

to start with a small input amplitude, we scale the input in such a way that
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the maximum of the two inputs is Umax. Thus we transform the inputs to be

applied as:







Ū1

Ū2






←







Ū1

Ū2







|Ū1|
Ū1 max{|Ū1|, |Ū2|}

Umax (6.50)

In other words, we ensure that ϕ1 = 0 and that max{Ū1, Ū2} = Umax.

2. We apply the following three sets of input voltages to the plant:







Ū1

Ū2







1

=







Ū1

Ū2













Ū1

Ū2







2

=







Ū1

Ū2e
jη













Ū1

Ū2







3

=







Ū1

Ū2e
−jη







and for each of these three inputs, we measure the output vectors

[Θ̄1, Θ̄2]i, i = 1 . . . 3

3. With these three sets of input, output measurement sets, we modify the estimate

of Gfit. Since we assume that at every input “level”, there is a transformation

matrix Gfit, this means that we can write:
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This can be re-written as:
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We can stack these relationships for each of the three measurement sets and

then find the elements of Gfit which “solve” the equation in a least square

sense.
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[Ū1 Ū2]1 0 0
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where † represents the pseudo inverse3.

4. We repeat steps 2 and 3 till the estimate of Gfit “settles” down sufficiently.

5. We then step up Umax and return to step 1.

6. We terminate when either max {U1, U2} becomes too high or we reach the de-

sired [Θ̄d
1, Θ̄

d
2].

3In practice, we use the \ operator in MATLAB, i.e, x = A \ b.
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6.3 Experimental Results

6.3.1 2 DOF structure 04-κ
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Figure 6.8: Evolution of |U1| and |U2|

04-κ was a 2 DOF structure made in September 2004. The drive algorithm de-

scribed in the previous section was used to calculate the drive voltages to be applied

to the two actuators. Fig. 6.8 shows the “evolution” of |Ū1| and |Ū2| as the algorithm

progresses. The flat regions are due to steps 2-4 of the drive scheme algorithm being

repeated 3 times each. Fig. 6.9 shows the evolution of the output angles of the four-

bar. As can be seen, we obtained nearly equal flapping angles for the two fourbar

spars. The reason for |Ū1| 6= |Ū2| is simply due to actuator mismatch. Fig. 6.10 shows

a cartoon of how the wing trajectory would look like if we could view it along the

direction of the leading spar of the wing. As can be seen, we get excellent flapping

and rotation and rotational timing. However, this structure, due to actuator limita-

tions was only able to do this at around 150Hz. This gives a calculated lift of around
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480µN and we in fact measured around 430µN . Fig. 6.11 shows a snapshot video of

the actual wing trajectory from the top view.
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Figure 6.9: Evolution of |Θ1| and |Θ2|

Figure 6.10: Final wing trajectory of 04-κ
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Figure 6.11: Wing trajectory of 04-κ

6.3.2 2 DOF structure 06-β

One of the most recent structures was 06-β, a single wing structure shown in

Fig. 6.12. The figure shows a lift measurement setup using the AAA-250L weighing
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balance from Adam Equipment. The 2 DOF structure is placed on the weighing

balance and the change in measured weight caused by lift is measured directly from

the balance. In order to nullify the effect of the air pushed down from the wing hitting

the balance and causing spurious readings, a paper “air sheild” was placed beneath

the wing.

Figure 6.12: Closeup of lift measurement setup for 06-β.

A technique very similar to the one previously described for 04-κ was used on

06-β. After a “good” input trajectory was found, it was applied for 20 seconds to

the structure while polling the AA-250L via RS-232 for its current weight reading.

The raw measurement data taken from the balance is shown in Fig. 6.13. Note that

the wing was not switched on exactly at the same time in each case which is why

the point at which the weight reading begins to suddenly drop changes each time.

However, the duration for which the wing was driven was kept constant at 20 seconds
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each time. As can be seen, we get a negative weight reading of around 1200-1600

µN for this duration, which corresponds to a positive lift measurement of the same

magnitude.
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Figure 6.13: Lift measurement data for 06-β
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Figure 6.14: Post processed lift measurement for 06-β
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It might look like there is a lot of variation in the lift produced by the wing.

However, it is felt that the apparent variation might be caused more by all the wires

which were going across to the structure. Although, these wires would not cause

any measurable change in the steady state reading of the scale if they are completely

stationary with respect to the weighing pan, slight shifts in the position of the wires

can easily cause forces of the order of magnitude of the apparent variation in the lift

force. Another hint that it might be the wires is is given by the fact that although the

scale goes to different peak negative readings and recovers to differing peak positive

readings, the difference between the peak negative readings and the final steady state

value is the same. This is apparent after shifting the X and Y axis of Fig. 6.13 and

is shown in Fig. 6.14.

6.4 Summary

In this chapter we described the drive scheme presently used in the MFI. We

demonstrated that for the present MFI dynamics and the aerodynamic model de-

scribed in [Dickinson 99], simple sinusoidal input trajectories are more than sufficient

to generate good lift numbers from a wing. The efficacy of this drive scheme was

demonstrated on 06-β, a 2 DOF structure which generated a measured 1400 µN of

lift.
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Chapter 7

Conclusions

This thesis describes the design, fabrication and control of the transmission mech-

anism of the Micromechanical Flying Insect (MFI). The kinematic mechanism for

converting independent actuations into flapping and rotation was described in Chap-

ter 2. A thorough dynamic analysis of the mechanical system including transmission

non-linearities and the quasi steady aerodynamic model described in [Dickinson 99]

was derived in Chapter 3. This dynamic analysis enabled a “dynamically tuned de-

sign” of the MFI thorax to achieve optimal symmetry and uncoupling of the nominal

transfer function as described in Section 3.5. The non-linear model was explored using

the Describing Function (DF) method and a systematic parameter identification was

carried out as described in Section 4.4. Fabrication issues inherent in the design of

flexural mechanisms were explored in Chapter 5 and several criteria for improving the

performance of flexural mechanisms were derived. Finally, a simple and robust drive

scheme, based on aerodynamic insight and a careful consideration of the non-linear

aspects of the plant, was derived in Chapter 6.
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Figure 7.1: Latest airframe structure of the MFI

7.1 Future Research Directions

As was demonstrated, we have successfully realized a mechanical transmission

for converting two independent actuations into a flapping and rotation capable of

generating adequate lift. Since this is the first demonstrated mechanism for doing

this, it is inevitable that there is room for a lot of improvement.

As briefly described in Chapter 1, the aerodynamic data derived from Robofly

is not a direct fit for being used on the MFI because of the 10 times difference in
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Reynolds numbers and the lack of kinematic similitude. A better understanding of

the aerodynamics for trajectories and wing shapes more closely resembling the MFI

wing shape and trajectories will be invaluable at further refining the dynamics. A

more thorough understanding of the aerodynamics will also enable us to do a careful

wing sizing to maximize the lift for a given input power. Towards this end, a custom

Robofly mimicking the MFI might prove invaluable.

The transmission mechanism described here is at the target scale. Another future

research direction is to create a “body” or “skeleton” around this air-frame. This

problem has been addressed before in [Wood 03, Wood 04] and there are successful

results already at integrating the transmission into a skeleton. Fig. 7.1 shows the

latest integrated prototype of the MFI which contains at-scale fourbars, slider-cranks

and actuators housed in a rigid tensegrity skeleton. Minor tweaking of this setup

is required to account for some of the improvements made to the fourbar structure.

Other more radical improvements could also be undertaken in designing the skeleton.

For instance, the transmission could be modified to have both leading spars of the

two wings be driven by a single bigger actuator. This should make it easier to tune

the two wings to always be driven at resonance.

Finally, it is hoped that some of the research principles described in this work are

also applicable to other mechanisms and systems. There are already some projects

[Deng 05] and [Sahai 06] which utilize some of the fabrication and design methods

described here to radically different robots as shown in Fig. 7.2.
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(b) Biomimetic Fishbot [Deng 05] (c) Microrobotic Crawler [Sahai 06].

Figure 7.2: Various mechanisms constructed using carbon fiber microfabrication
techniques.
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Appendix A

G-Code utilities

The first step in any of the fabrication steps detailed so far is to lay out a 2-D design

in a CAD program such as Solidworks. In order to cut a 2-D layout on the New-Wave

laser machine, the 2-D layout needs to be converted into a format understandable by

microlaze, the program which controls the New-Wave laser. This format is a slightly

modified version of the standard CNC control language called GCODE.

This appendix describes a set of MATLAB utility functions which were created

with the aim of making it easier to convert DXF files which are produced by Solidworks

into GCODE. Before going into a description of the utilities, a brief description of the

modified GCODE format is given.

A.1 GCODE format

A GCODE file consists of a sequence of lines each of which can be one of the following

formats. Note that all dimensions are assumed to be in mm.
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G01 X<xc> Y<yc> This tells the laser machine to cut from the current location to

the location (<xc>, <yc>).

X<xc> Y<yc> This is equivalent to G01 X<xc> Y<yc>.

G00 X<xc> Y<yc> This tells the laser machine to move to (<xc>, <yc>) without

turning on the laser.

G02 I<cx> J<cy> X<xc> Y<yc> This tells the laser machine to cut a clockwise arc

from the current location to the coordinates given about the center (<cx>, <cy>).

G03 I<cx> J<cy> X<xc> Y<yc> This is identical to the G02 command except that

the arc is cut in an anticlockwise direction.

MMC markersize X<xp> Y<yp> This instructs the laser machine to change its aper-

ture to <xp>% in the X direction and <yp>% in the Y direction.

MMC focusoffset X<xo> Y<yo> This instructs the laser machine to move off by

(<xo>, <yo>) when it tries to refocus.

MMC cutstepsize D<sz> This instructs the laser machine to travel by <sz> to get

to the next cut location.

MMC pulserate R<rate> This instructs the laser to change its laser pulse rate to

<rate> Hz.

The MMC commands are specific to microlaze.
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A.2 PREPGC: Creating G-Code files

prepgc is used for creating GCode files for laser micromachining. It is meant to

be used to convert .DXF files created in a 2-D layout software such as Solidworks into

2-D G-Code files which can be fed into microlaze.

Usage

The simplest way of calling prepgc is without options in which case we simply call

it with the list of file names as

>> prepgc file_1 file_2 ... file_N

You can either provide a single file name or you can provide 3 or more filenames.

Providing exactly two file names is an error. You can either specify the exact file

name or if its a DXF file, skip the extension.

If provided with a single file name, prepgc simply reads in the cuts in that file, does

some post processing on them as described in Post Processing below and writes

out the processed cuts in a new file whos file name is the original file name appended

with ’.go’.

If more than 2 files are supplied, then prepgc does the following:

1. Read in the contents of file_1 through file_(N-1). Call the lines therein

lines_1 ... lines_(N-1).

2. Create lines_N by ”subtracting” lines_2 through lines_(N-1) from lines_1.

In otherwords,

>> lines_N = lines_1 - (lines_2 + ... + lines_(N-1))
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See ”SubtractLines” for an explanation of what ”subtraction” means.

3. Process lines_2 through lines_N as described in Post Processing below.

Write these lines in new files of the form file_2.go, file_3.go etc.

Post Processing

prepgc performs the following post-processing on each file: (These actions can be

optionally disabled based on the optional arguments supplied).

Optimize the order of cuts The order of the cuts within each file is optimized in

a ”nearest-next” manner in order to minimize the traversal time.

Calculate the direction of auto-focussing for each line The direction in which

to move while auto-focussing is adjusted for each line to minimize the proba-

bility of trying to focus on an already cut region.

Shift the bounding box The lines are shifted together so that the bounding box

of the lines lies at (0,0). This makes the initial positioning of the shim easier.

Remove duplicate lines Duplicate lines are removed from the file to avoid the laser

cutting over the same region.

Tweaking the behavior

If you wish to tweak the behavior of prepgc, you can supply optional arguments.

These are supplied after all the file names followed by two dashes. Thus you can do

>> prepgc file1 file2 ... fileN -- option1 value1 ...
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or

>> prepgc(’file1’, ’file2’, ..., ’fileN’, ...

’--’, ’option1’, ’value1’, ...);

Both ways of calling prepgc are equivalent as long as all the options have string

values. If you need to supply numeric option values, then you need to use the second

form of invoking prepgc.

The following optional arguments are recognized.

’shift’ (Default value: [0, 0]’) whether or not to shift the original bounding box.

This optional argument is specified as either a 0, 2 or 3 element vector.

• When specified to be an empty vector, the bounding box is not shifted at

all.

• When specified as a 2 element vector, the bounding box of the resulting

files are shifted to the specified coordinate, i.e, the lower left corner of the

resulting file(s) will be at the specified coordinate.

• When specified as a 3 element vector, the bounding box is shifted relative

to the original location by the amount specified. The relative displacement

is specified by the first two elements of the 3 element vector. The third

element is ignored.

This argument can also be specified as a string, either ’yes’ or ’no’. Specifying

’yes’ is equivalent to specifying [0, 0]’, and specifying ’no’ is equivalent to

specifying [].



175

’optimize’ (Default value: ’yes’) whether or not to optimize the cut order to min-

imize the traversal time.

’remdup’ (Default value: ’no’) whether or not to remove duplicate lines. See

RemoveDuplicateLines.m for what this means. This is a lengthy operation

(grows quadratically with the number of lines). If you are reasonably sure that

you have not created duplicates in your solidworks file, leave this out.

’autofocus’ (Default value: ’yes’) whether or not to find the focus offsets for each

line.

’insertwp’ (Default value: ’yes’) whether to automatically insert way points to

avoid traversing over already cut regions.

’config’ (Default value: ’’) The default Microlaze configuration file to use. When

reading a .go file or a DXF file which does not contain any embedded microlaze

configuration information, then prepgc uses the configuration specified in this

file. The embedded information in .go files will over-ride the configuration

information provided in the config file.

’mmc’ (Default value: ’yes’) Whether or not to embed microlaze commands within

the generated GCode file. By default, prepgc embeds microlaze configuration

commands within the GCode file which allow microlaze behavior to change on a

per-line basis. These lines will cause traditional CNC machines to err. Setting

’mmc’ to ’no’ will generate a *clean* GCode file.

’showgui’ (Default value: ’yes’) Whether to show the resulting post-processed files
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by bringing up the GCode editor.

’layer’ (Default value: ’’) If a non-empty string is specified for the layer option, only

those entities belonging to that layer are extracted. This is useful for drawings

which contain multiple layers.

’outfile’ (Default value: ’’) This option is used only when a single file is being

specifed. If while processing a single file say <file.DXF>, this option is not

specified, then prepgc automatically writes out the processed lines into a file

called <file.go>. If a non-empty string is specified, then prepgc writes out to

the specified file.

A.3 GCEDIT: Editing G-Code files

gcedit is a graphical front-end for editing features in G-code files created by

prepgc.

Usage

>> gcedit file1 file2 ...

The filenames can either be complete file names of .go or .DXF files. If an extension

has not been specified for the file name, then gcedit will attempt to see if there is a

.DXF file of the same name and open that instead.

When gcedit is invoked, it opens up the GUI frontend as shown in Fig. A.1. This

GUI shows all the lines found in the various files in the central view axis. Each group

of lines which shares a common configuration are shown in a single color.
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Figure A.1: GUI frontend of gcedit

With this GUI frontend you can do the following

Toggle visibility of groups You can view/hide all lines which share the same con-

figuration by ticking/unticking the checkbox next to the group name.

Select a set of lines Clicking on a line toggles the selection of that line. You can

also drag a rectangle and select all lines which lie completely within the rectan-

gle. Note that selecting by dragging a rectangle is enabled when the Select

button is showing. If you see Zoom, then dragging a rectangle will zoom into

that rectangle. Hitting the Clear button will clear all lines from the selection.

Changing configuration parameters Once one or more lines are selected, you

can change their microlaze configuration parameters by entering a parameter
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value in the edit box, choosing which parameter you wish to change in the drop

down menu and then hitting the Set Param button.

Overall manipulation You can also do manipulations on the G-code file such as

deleting lines, changing the order in which certain lines are cut, inserting way

points in the middle of two cut lines etc. All these tasks are done by selecting

the desired task from the drop down menu and then hitting the Do Task button.

A.4 COMBINEGCODE: Combining G-Code files

combinegcode is used to combine G-code files into a single job so that multiple

copies of jobs can be cut at the same time.

Usage

Type edit CombineGCode on the matlab prompt and then edit the cell array

combineinfo to run the program.

The ith element of combineinfo is itself a cell array consisting of 3 elements:

[x,y] offset to move the corresponding job (x and y are added to every coordinate

specified in the corresponding job).

cutfilename File name of the G-code file containing the cuts. Leave blank ([] or

’’) if there is no cut file. The cutfilename needs to be specified relative to

MATLAB’s current working directory.
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scorefilename Filename of the G-code file containing the scores. Leave blank ([]

or ’’) if there is no score file.

Example

combineinfo = {

{[0, 0], ’cut1.go’, ’score1.go’ },

{[10,0], ’cut2.go’, ’score2.go’}

};

outputFileNames = {’totalcut.go’, ’totalscore.go’}

combines lines from the jobs 1 and 2, by shifting job 2 by 10 mm along the X

axis and then appending it to job 1. Note that the original files are left intact. i.e

cut2.go and score2.go are not changed.
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Appendix B

xPC utilities

B.1 RUN2DOF: drive a 2 DOF structure with ar-

bitrary wave-forms

This function can be used to provide arbitrary sine/smoothed square wave inputs

to the two actuators. There are three modes of operation for this function.

1. In the first mode, the function runs the structure for 2 seconds and returns a

data structure containing measurements of the A/D readings in this time and

the drive specifications. This is the default behavior.

2. In the second mode, the function begins driving the structure and waits for user

input to interrupt it again. This is useful if you are driving something for long

periods of time. To do this, specify the optional argument ’measure’ as 0 and

’timedCapture’ as 0.

3. In the third mode, the function runs the structure for a specified period of
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time and simultaneously records video from the WinNov Videum video capture

card. It then prompts the user to save the video and also saves a data structure

which specifies the drive specifications. To do this, specify ’measure’ as 0 and

’timedCapture’ to some positive value.

Usage

>> [expdata] = run2dof(input, ...)

input is a mandatory input argument which specifies the drive parameters for the

two inputs of a 2 DOF structure. A utility function formGenSigStruct is provided

to enable the user to create this structure with the required fields, all values of which

are initialized to zero. The user is then expected to give the actual values to each of

the fields.

>> input = formGenSigStruct;

>> input.DC1 = 1;

>> ... etc ...

The fields in this data structure are meant to be:

DC1, DC2 DC input applied to the 2 actuators. This is the value produced by the

D/A port of the Q8 port. If you are feeding this through an amplifier etc., then

the plant will be driven by this value times the amplifier gain.

A11, A12 Drive amplitudes applied to the first actuator at ω and 3ω.

A21, A22 Drive amplitudes applied to the second actuator at ω and 3ω.

g11, g12, g21, g22 Phases of the inputs at the two frequencies (same notation as

Aij).
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w frequency of motion (rads/s).

Note that g11 etc. need to specified in radians, but DC*, A* need to be specified

in volts after including scaling factors for amplifiers/fourbar DC motions etc.

This way of specifying the motion is the most general with the restriction that

the frequency content is restricted to DC, ω and 3ω.

NOTE: The input argument can also be another data structure of the form

returned by square2gen.

>> help square2gen

for more information on specifying the input this way.

Optional Input arguments

For these options, the default values are specified in square brackets just after the

name of the option. These optional arguments are specified in the following manner:

>> run2dof(indata, ’measure’, 0, ’timedCapture’, 20)

’measure’ [1]

A boolean value either 1 or 0. If set to 1, then the function operates in the

measurement mode, where the system runs for 3 seconds and measures the

motion during this time. In this mode, the function returns a data structure

with the following fields:

indata the input specification given to this function. You should be able to

recover the experimental conditions from this structure.

vin1 the voltage input to the first actuator
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vin2 the voltage input to the second actuator

vout1 the voltage output from the first sensor

vout2 the voltage output from the second sensor

time the time signal corresponding to the measurements

When measure is 0, then the system operates in ”non measurement mode” and

no output arguments are returned.

’measurementTime’ [1]

In measurement mode, the number of seconds for which to capture data. Note

that in measurement mode, there are initial and final ramps of 1 seconds each.

This time is for the middle part.

’timedCapture’ [0]

If set to a positive value, then MATLAB automatically invokes WINNOV

Videum capture and records the video stream for however many seconds are

specified by the timedCapture value.

NOTE: This optional argument does nothing when a value of 1 is specified for

’measure’, i.e in measurement mode.

’silent’ [0]

When set to 1, then the program does not display the input waveform and

ask for confirmation. It directly proceeds to feed the input waveforms into the

device.

’calibFile’ [”]
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A file name or structure which contains the output from a run of CalibSen-

sor2DOFPause.

’numdof’ [2]

Whether we are running a single or a two DOF system. Specify either 1 or 2.

Output

B.2 CALIBSENSOR: Calibrate sensors optically

This function is meant to aid in calibrating a displacement sensor by optically

matching the measured sensor reading with visually measured displacement. This

function is capable of measuring either angular displacements or linear displacements.

Note that if it is measuring linear displacement, the edge which is being measured

needs to be a horizontal edge which moves in the vertical direction.

Usage

>> cdata = calibSensor2DOFPause(vin, ...)

The mandatory input argument vin is a vector of nominal drive voltages to be

applied to the two actuators. For best results speficy a vector of values which increases

and then decreases again to 0V. For example, something like

[0.75 1.5 2.25 3.0 2.25 1.5 0.75 0]

Once started, the function performs the following steps:
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1. It opens up two MATLAB figures. The first is an ActiveX control showing live

video being captured by the WINNOV Videum capture card. The second figure

will show captured frames in which the user is asked to draw rectangles around

the measured eges.

2. It first measures the two sensor readings without any input actuation to the

structure. A measurement is done by averaging the sensor reading for 0.1 sec-

onds, sampled at 20KHz.

3. The script then commands the WINNOV driver to capture a frame and displays

the captured frame in the second figure. It asks the user to draw a rectangle

around the edge which corresponds to the body whose displacement is being

measured by the sensors.

4. Once the user draws a rectangle around the measured edge, the function per-

forms edge detection in the chosen portion and extracts an edge.

5. It then ramps up the voltages to the two inputs at 1V/s till both inputs attain

the first value specified by the input parameter vin. If this is a 2 DOF structure,

the function asks the user to hit the j and k keys to adjust the voltage supplied

by the D/A port 5 of the Q8 board. This is typically connected to the second

input port of the system being calibrated. Once the voltage adjustment is done,

the user adjusts presses <enter>. This tells the function that the adjustment

is done.

6. The function then reads in the sensor reading by averaging over 0.1 seconds at

20KHz.
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7. It captures the frame currently displayed in the first figure and once again asks

the user to draw a rectangle around the edge to be measured.

8. It repeats this procedure till all the specified input voltages are applied.

Optional input arguments

For these options, the default values are specified in square brackets just after the

name of the option. These optional arguments are specified in the following manner:

>> cdata = calibSensor2DOFPause([1,2], ’detect’, ’edge’);

’detect’ [’angle’]

By default calibSensor2DOFPause will measure the change in angle of the

detected line. This is useful for calibrating angular outputs. For calibrating

linear outputs such as actuator motion, specify this to be ’edge’.

’displ’ []

This option, if non-empty is assumed to be the values of the displacement at

the given voltage signals. In this case, calibSensor2DOFPause will not invoke

WINNOV to capture pictures. It will only measure the sensor signal. The

length of this vector needs to be same as the length of the mandatory vin

argument.

Output

The output is a structure which has the following fields:
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time This is just an array going from 1 to the number of input points at which the

measurement was taken.

Vin The vector of input voltages applied.

Vout The vector of measured output voltages. Note that the output voltage is mea-

sured by averaging the sensor output for 1 second.

disp The displacement which was measured by processing the images.

images An array of images taken for each of the specified input voltage (and also at

0 voltage).

Experimental Setup

The following experimental setup needs to be created in order to use this function

(This is already setup in 319 Cory hall).

1. First set up the camera above the displacement source which is being measured.

The camera needs to be focussed on a good clean edge which it will measure

the displacement of.

2. The video feed from the camera needs to be fed into the computer running this

function via the WINNOV Videum Video capture board. This function only

understands how to control this particular video capture card.

3. Connect D/A ports 1 and 5 of the Quanser Q8 board to the two inputs of

the system which will drive the displacement. Connect the output from the

displacement sensors into A/D ports 1 and 5 of the Quanser Q8 board. Note
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that port 5 of the Q8 board is connected to the second BNC plug of the pin-out

board.

Recipe for calibrating 2 DOF fourbar structure

The following recipe is meant to be used to calibrate the sensor output to wing

hinge motion of a 2 DOF fourbar structure with an attached differential. Since the

bottom spar of a 2 DOF structure cannot typically be seen because it is completely

obstructed by the differential, this script allows the user to adjust the voltages on the

two actuators

B.3 MFIDSA: Experimental frequency response mea-

surement

This tool was developed to measure frequency responses of two input two output

systems. The tool consists of two Simulink models which gets compiled to run on

the xPC target machine a GUI frontend to control and communicate with the xPC

target.

Usage

Simply type:

>> mfidsa

This opens up the GUI frontend. After specifying all the drive parameters, press the

“Go” button. The tool generates sinusoids of increasing frequency at the D/A ports
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Figure B.1: GUI frontend for experimental frequency response Measurement

of the Q8 board and does a real time fourier transform of the measured A/D signals.

After the sweep is finished, a structure named plantTFData is created in MATLAB’s

base workspace which describes the drive conditions and also contains the recorded

frequency response data.

The GUI allows you to set the following parameters of the frequency response

experiment:

Frequency specification The frequency points at which the frequency response
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will be measured can be specified as either a linear scale by specifying the

intial measurement frequency, the frequency step size and the final measurement

frequency. In this case the frequency range becomes

>> freq_range = [init_freq:step_freq:final_freq];

Alternatively, by selecting the “Log Sweep” radio button, the frequency range

can be specified on a logarithmic scale by specifying the number of points be-

tween the initial and final frequency points. In this case, the frequency range

becomes

>> freq_range = logspace(log10(init_freq), ...

... log10(final_freq), ...

... npoints)

Voltage specification The voltage generated by this function is available on D/A

ports 1 and 5 of the Q8 board. You can specify the DC levels and the amplitudes

of the voltage signals. If you need to drive bimorphs, then the bias voltage has

to be applied by some other external means.

Calibration file You can also use calibration data obtained using calibsensor so

that the frequency response is in the units which are of interest instead of as

sensor volts.

Measurement mode Whether to use the polling mode Simulink model or the in-

terrupt driven Simulink model. The polling mode model runs at 80KHz and

therefore is suitable for frequency ranges upto 40KHz, whereas the interrupt

driven model runs at 20KHz and therefore can only be used upto 10KHz. Note

that in polling mode, there will be no real time update of the frequency response


