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Abstract 
In this paper a new example of a hopping robot is 

considered, consisting simply of two links (the end of 
one link acts as the foot) joined by an actuated, revo- 
lute joint.  For the stance phase a nonlinear controller 
is derived that maintains the balance o f t h e  robot and 
periodically accelerates the center of mass vertically. 
For large enough oscillations the robot can slide or take 
off. If flight is achieved, the drift caused b y  non-zero 
angular momentum can typically be canceled by rotat- 
ing the actuated joint an integral number of times, and 
the robot can land in the same configuration in which 
it took 08. This i s  due t o  the holonomy of a single 
rotation of the actuated joint.  Results of simulations 
are presented in which the robot achieves both sliding 
and hopping gaits. 

1 Introduction 
Most of the previous work on hopping in robotics 

has focused on the mechanism designed and built by 
Raibert [12]. His design consisted of a body joined to 
an actuated, prismatically-jointed leg by an actuated, 
revolute joint (Figure 1). It was capable of hopping 
in place, hopping at various forward speeds, and leap- 
ing over small obstacles. Two-legged and four-legged 
versions were also built. 

Biihler and Koditschek, Vakakis and Burdick, 
M’Closkey and Burdick, and Li and He [2, 13, 10, 71 
all studied the hopping cycle of Raibert’s robot. By 
considering simplified dynamics of the hopper, var- 
ious predictions could be made about the hopper’s 
behavior as a function of parameters. Among the 
interesting results were the existence of stable limit 
cycles with doubly periodic Poincari! maps (so-called 
“limping gaits”). More importantly, the approaches 
used should be applicable to general legged robots. Li 
and Montgomery [SI studied the dynamics of the flight 
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Figure 1: Schematic of Raibert’s Hopper 

phase for Raibert’s robot and considered the problem 
of optimally performing a somersault in the air by us- 
ing the holonomy generated by internal motions. Al- 
though the goal in this paper is also to use internal 
motions to achieve a particular orientation while in 
flight, no attempt is made to perform the motions in 
an optimal fashion. 

Recently, Kanai and Yamafuji [6] have built a three- 
link hopping mechanism where, apparently, one revo- 
lute joint was used to balance and the other was used 
to provide thrust for jumps. 

Much was learned from studying Raibert’s mech- 
anism. However, it is important to consider new ex- 
amples. Typically, it is only by comparing the results 
of many specific examples of a phenomenon that a 
general understanding of the unifying principles can 
be realized. In this paper a new example of a hopping 
robot is considered, consisting simply of two links (the 
end of one link acts as the foot) joined by an actuated, 
revolute joint. Unlike with Raibert’s hopper, it is not 
immediately clear how to achieve a hopping gait. 

It is necessary to divide the control problem into 
two parts: control of the robot in the stance phase and 
in the flight phase. While in the stance phase, as long 
as the foot does not slide, the dynamics of the two-link 
hopper are identical to those of a double pendulum 
with actuated second joint (Figure 3). An example 
of this mechanism, named the "Acrobat," was built in 



1988 in the UC Berkeley EECS Robotics Lab. Indeed, 
the Acrobot provided part of the inspiration for this 
research. Hauser and Murray have already considered 
the problem of controlling this mechanism in [4]. They 
applied the nonlinear control method of approximate 
linearization to cause the Acrobot to move along the 
set of inverted equilibrium positions, i.e., those posi- 
tions where the center of mass was directly above the 
free joint. The method worked well in simulations but 
required slow motions, which ruled it out as a possi- 
bility for hopping. In this paper a nonlinear controller 
is derived that maintains the balance of the Acrobot 
in inverted positions and periodically accelerates the 
center of mass vertically (for suitably chosen masses 
and link lengths). For large enough oscillations this 
control can cause the hopping robot to slide or take 
Off. 

If flight is achieved, the drift caused by non-zero 
angular momentum can typically be canceled by ro- 
tating the actuated joint an integral number of times, 
and the robot can land in the same configuration in 
which it took off. This is due to the holonomy of a 
single rotation of the actuated joint. 

The paper is organized as follows: Section 2 gives 
the details of the control schemes used for stance and 
flight phases. In Section 3 simulations of the two-link 
robot are presented in which the robot achieves both 
sliding and hopping gaits. The work is summarized 
and future research is described in Section 4. 

2 Control Strategies for the Two-Link 
Robot 

In this section the control schemes for stance and 
flight phases are described. Throughout this section 
the approach of Nijmeijer and van der Schaft [ll, 
Chapter 121, which deals specifically with mechani- 
cal control systems is used. The basic requirement for 
using this approach is that the dynamical equations 
come from Hamilton’s equations. 

The control systems for both Subsections 2.1 
and 2.2 take the form 

2 = xHo(2) - XHl(z)u 

with x E M, the 2n-dimensional phase space mani- 
fold. X H ~ ,  i = 0, 1, is the vectorfield associated with 
the Hamiltonian function Hi. u is the torque at the 
actuated joint. 

The standard Poisson bracket in local coordinates, 
(q,  P) = (q1, , qn,P1, * - - Pn), is given by 

Figure 2: Coordinates for Two-Link Robot 

The qi’s are the generalized configuration coordinates, 
and the pi’s are the associated generalized momenta. 
Notice that {F, G}(q,p) is the derivative of the func- 
tion G in the directionXF(q,p). The standard Poisson 
bracket is assumed throughout the remainder of this 
sec tion. 

Figure 2 gives the coordinates used for the two-link 
robot. 

2.1 Stance Phase 
Control of the Acrobot (which has the same dynam- 

ics as the two-link robot if forces are kept within the 
friction cone) is difficult since the system must main- 
tain its balance while at the same time accelerate its 
center of mass upward to slide or take off. With only 
one input it is not immediately obvious how this can 
be accomplished. In this subsection a nonlinear con- 
troller is described which is capable of accomplishing 
these goals for appropriately chosen masses and link 
lengths. It is assumed that the controller has access 
to all four states. In actual implementation the leg’s 
angle and angular velocity could be measured by at- 
taching a passive “ski’’ with encoder to the foot, A 
gyroscope could also be used and would have the ad- 
vantage of supplying the leg’s angle and angular ve- 
locity even while the foot was not on the ground. 

Let 4 be some constant. If one solves the equations 

(1) 281 + 82 = 4 
(2) 28, + e2 = { ~ ~ , 2 e ~  + e2) = o 
for 82 and pea in terms of 81 and pel and then sub- 
stitutes them into the equations of motion for the Ac- 
robot, the equations for 81 and pel become 

Pe 1 el = 
(m2 + m3)rT - m31: (3) 

(4) lie, = (m2 + m3)gh sin81 + 
mBd2 sin(e1 - 4) 

These equations are basically those of a single degree- 
of-freedom pendulum since the two sin(.) terms can be 
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Figure 3: Hopping Motion 

combined into a single sin( .) term using trigonomet- 
ric identities. Notice that a particular orbit of Equa- 
tions l - 4 can be specified by two parameters. One 
is the constant 4, and this specifies the equilibrium 
point about which the oscillation in Equations 3 and 4 
occurs. The other parameter corresponds to the mag- 
nitude of the oscillation. Depending on the choices of 
the masses, link lengths, and the two just-mentioned 
parameters, a variety of motions are observed. In par- 
ticular, motions suitable for hopping can be achieved. 
Figure 3 attempts to convey one of these motions (Also 
see the simulations in Section 3). 

First, a feedback will be found to maintain (2& + 
& ) ( t )  = 0 V t .  Clearly, with this feedback and with 
initial conditions on a desired orbit of Equations 1 - 
4, the states will continue to follow this orbit. In the 
field of nonlinear control this is the problem of finding 
the input to produce the zero dynamics of the output 
function 281 + 02 - 4. Next, an additional feedback 
term to include is described so that even with initial 
states not exactly on a desired orbit, the motion will 
asymptotically approach the orbit. 

Since 

2 i 1 + e 2  = { H ~ , { H ~ , ~ ~ ~ + ~ ~ } } - { H ~ , { H ~ , ~ ~ ~ + ~ ~ } } u  

the desired feedback is given by 

where v is the input for the transformed system. 
Regulation Theory of Isidori [5] is the approach used 

to converge to a particular orbit of Equations 1 - 4 
if the initial conditions are not on the orbit.’ The 
application of this theory is particularly simple in this 
case. Let the Jacobian linearization of the Acrobot 
equations with the feedback a(x) about a particular 
equilibrium point be 

x = A z  + bv, A E b E R4 
‘Credit for this idea goes to Andy Teel. 

Assume that the pair ( A ,  a) is stabilizable, i.e., there 
exists a row vector k such that all the eigenvalues of 
( A  + bk)  have negative real part. Now, let the desired 
orbit of Equations 1 - 4 be given by tu(-). Then the 
feedback 

causes the system’s states to asymptotically converge 
to a w( a )  sufficiently close to the equilibrium point for 
initial conditions sufficiently close to the equilibrium 
point. This type of controller is called a regulator. The 
feedback a(z) + k(z - w )  was used with a high degree 
of success in simulations. 
2.2 Flight Phase 

As in [SI the goal here is to achieve some desired 
orientation (6 , )  by using internal motions (changes of 
02 by integral multiples of 27r). However, no attempt 
is made to satisfy an optimality condition. 

If the robot’s center of mass is used to give its pcr 
sition while in flight, then the positional dynamics are 
completely decoupled from the angular dynamics. The 
positional dynamics are of course trivial; their graph 
is a parabola. Thus, instead of having to consider the 
full eight states, only the four states associated with 
the angular dynamics need to be considered. The bal- 
listic trajectory of the robot does, however, put a time 
constraint on the problem. 

Angular momentum is conserved during the flight 
phase. This is known as a nonholonomic constraint 
since the equation for angular momentum involves 
derivatives of the configuration variables, and it can- 
not be integrated so that it is a function of the config- 
uration variables only. For a classic discussion of an 
athlete’s movements subject to the angular momen- 
tum constraint, see Frolich’s paper [3]. Much work 
has been done recently on path planning for systems 
with nonholonomic constraints; however, the two-link 
robot is simple enough to yield a straightforward so- 
lution. 

When Hamilton’s equations are used, the conserved 
quantity is simply p e l .  From the equations of motion, 
the following differential relationship can be derived: 

21 = qz - w )  

c4 cos e2 - c3 

c2 + c3 - 2c4 cos e2 dB2 

CI = m l +  mz + 7733, cz = ml(m2 + 
c3 = m3(m1+ m ~ ) l ; ,  c4 = mlm3llh 

Integrating this equation gives the relationship be- 
tween the robot’s orientation (01) and its internal an- 
gle (&). Consider a change of O2 by 27r. Then, the 
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integral of the second term is called the geometric 
phase or holonomy. Clearly, it is the same for any 
function e,(.) that is used to achieve a change of 217. 
The integral of the first term of Equation 5 is called 
the dynamic phase, and its value does depend on the 
choice of e,(.). For the case of Po, = 0, there is no dy- 
namic phase. For a mathematically oriented account 
of phases see the paper by Marsden et al. [9]. 

Assume it is desired to have the angular coordi- 
nates when impact occurs be the same as at takeoff. 
The simplest solution would be to take off with zero 
angular momentum. Unfortunately, though, with the 
controller for the stance phase described in Subsec- 
tion 2.1, this is virtually impossible. Thus, it is nec- 
essary to cancel the drift of the orientation caused by 
non-zero angular momentum. Since it is desired to 
land in the same configuration as at takeoff, the time 
of flight is simply 2vy/g, where vy is the vertical com- 
ponent of the center-of-mass velocity at takeoff. This 
assumes, of course, that the leg does not prematurely 
impact the ground. Bounds can be placed on the inte- 
gral of the first term in Equation 5 by simply replacing 
cos 02 by f l  and then multiplying the term by the time 
of flight 2vY/g. Let these bounds be Pmin and p m u ,  
and then define the open set U = (Pmin,pmax) c R. 
Let P : R 4 S1, p H p (mod 27r), and let & be the 
geometric phase. Then, canceling the drift is possible 
if 

(6) P(n4g) E W )  
for some n E %. The value of ( -n)  is the number of 
times the leg must be rotated. 

If a value of n is found to satisfy Equation 6 then 
a function for &(.) to exactly cancel the drift can be 
found, for example, by using a particular set of basis 
functions and numerically solving for the coefficients. 

It is apparent that the controller must cause the 
actuated joint angle, 82,  to track some desired 62d(*). 

This can be accomplished by applying a feedback 
which linearizes the dynamics of 82. This type of 
controller is commonly known as a computed torque 
controller. 

Since 

82 = {Ho, W O ,  0211 - 
the input 

(- U = -  
{Hl, W O ,  e 2 1 1  

a i [ { H o , 8 2 )  - b2d] - 
produces the error dynamics 

Thus, for a choice of a1 and a 2  which gives poles of 
the transfer function for the above equation in the left- 
half plane, the actuated joint angle will asymptotically 
track 82d(.). 

3 Simulation Results 
In this section results for simulations of both a slid- 

ing gait and a hopping gait are presented. A fourth- 
order Runge-Kutta integration routine with adaptive 
step size was used to perform the simulations. Values 
used for the parameters were 

ml = 2 kg, m 2  = m 3  = 7 kg 

I1 = 0.5 m, 12 = 0.75 m, g = 9.8 m/s2 
4 = (T - 0.5) rad, ps = 0.5, p d  = 0.4 

ps and pd are the static and dynamic friction coef- 
ficients, respectively, for the foot with respect to the 
ground. Poles for the regulator and computed torque 
controller were all set to be -5 s - l .  Impact was mod- 
eled as an instantaneous inelastic collision. Included 
was the possibility for the foot to instantaneously start 
sliding upon impact if the impulsive constraint forces 
were outside the friction cone. 

3.1 Sliding Gait 

Figure 4 shows the components of the constraint 
force on the Acrobot while following particular orbits 
of Equations 1 - 4. The dashed and solid lines are 
traced in both directions while the orbits are followed. 
The dot-dashed line in the figure is the static fric- 
tion cone boundary, Fy = (l/ps)lFxl. Notice that the 
dashed graph of the constraint force components exits 
the friction cone on the left side periodically. Thus, it 
is not surprising that when the controller for the two- 
link robot tries to follow this motion, the robot starts 
sliding. It is important that the robot slides only in 
one direction. For this particular simulation the slid- 
ing was in the +2: direction. This makes sense since 
F, on the two-link robot is not as negative as it needs 
to be to hold the foot in place. 

Figure 5 shows the configuration variables as the 
robot slides along. The dashed lines are the graphs of 
the orbit the controller is trying to make the system 
follow. Notice how well the regulator keeps 01 and 
82 on track even though it is subject to significant 
disturbances when the robot starts to slide. 

In Figure 6 some frames are shown for a movie of 
the robot in its sliding gait. The sliding takes place 
close to where the robot reaches its maximum height. 
The frames are 0.08 s apart. 
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Figure 4: Constraint Forces for Acrobot Oscillations 
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Figure 5: Configuration Variables for Sliding Gait 

3.2 Hopping Gait 

In Figure 4 the solid curve shows the constraint 
force components for an oscillation of much larger 
magnitude than discussed in the previous subsection. 
The vertical component of the constraint force actu- 
ally must become negative to hold the foot on the 
ground. When the controller for the two-link robot at- 
tempts to follow the orbit which generated this graph, 
the foot slides where the curve exits the friction cone, 
and then the foot lifts off the ground when Fy becomes 
negative. 

Due to the complexity of a hopping gait, only one 

Figure 6: Frames for Sliding Gait 
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Figure 7: Configuration Variables for Hopping Gait 

cycle is shown here. The robot starts at the equilib- 
rium point corresponding to q5 = ir - 0.5 and then is 
excited by the regulator until it takes off. After rotat- 
ing its leg once to cancel the drift, the robot lands 
in the same configuration in which it took off and 
then returns to the same equilibrium point at which it 
started. Since the initial and final states are the same 
(except for X I ) ,  it is clear that this can be repeated as 
needed for a hopping gait. 

Figure 7 shows the configuration variables for the 
hopping gait. The dashed lines before take-off again 
show the orbit the regulator is trying to make the 
robot follow. Notice that some sliding takes place be- 
fore the robot takes off. Also, notice that at takeoff, 
the state is actually quite close to the desired state. 

The sharp discontinuity in 81 and 82 while the robot 
is in flight is due to the fact that the values of these 
coordinates are shown mod 2ir so that it is clear that 
their values when the robot lands are the same as at 
takeoff. 82 was changed by -2ir in a particular manner 
so that the change in was exactly +2ir. Polynomial 
basis functions were used to find a function e,(-) with 
this property. Notice in Figure 7 that the foot comes 
close to touching the ground before the desired orien- 
tation is reached. The clearance here probably could 
be improved by some different function for 8z(.). 21 

advances a total of around 0.4 m during this cycle of 
the hopping gait. 

The dashed lines after the landing correspond to 
the equilibrium point toward which the regulator is 
steering the robot. 



Figure 8: Frames for Hopping Gait 

Figure 8 is a series of frames of a movie for the 
robot performing its hopping gait. Once again, they 
are 0.08 s apart. 

4 Conclusions and F’uture Work 
In this paper a new example of a hopping robot was 

introduced. Much of the previous research on hopping 
robots has focused on the mechanism Raibert built; 
however, it is important that new examples be con- 
sidered in order to draw general conclusions. Raib- 
ert’s robot is clearly much easier to control than the 
two-link robot. Having a springy leg plus an extra 
degree of freedom accounts for this. Control schemes 
were described for both the stance and flight phases of 
the two-link robot. The feedback during stance phase 
transformed the system into one with dynamics de- 
sirable for hopping. For the flight phase rotating the 
leg an integral number of times could typically enable 
the robot to land in the same configuration in which 
it took off. This was due to the holonomy associated 
with the internal motion of changing 02 by 2 ~ .  Simult+ 
tion results showed that the control strategies derived 
were effective. The robot could slide along the ground 
and hop. 

Future work will include further investigation into 
the control of the two-link robot. Currently, a two-link 
mechanism is being constructed to test the simulation 
results presented here. In addition, similar control 
strategies used here are being applied to a four-link 
biped to attempt walking and running. This work 
will be reported in [l]. 

Acknowledgements 
Much thanks to Richard M. Murray and Andrew R. 

Tee1 for discussions of this project and offering valu- 
able suggestions. 

References 
[l] M. D. Berkemeier. Control of Dunamic Gaits in 

Legged Robots. PhD thesis, UC Berkeley, Dept. of 
EECS, 1992. 

M. Biihler and D. E. Koditschek. Analysis of a simpli- 
fied hopping robot. In Proc. IEEE Int. Conf. Robotics 
Automat., pp. 817-819, 1988. 

C. Frolich. Do springboard divers violate angular mo- 
mentum conservation? Amer. J.  Phys., 47(7):583- 
592, July 1979. 

J. Hauser and R. M. Murray. Nonlinear controllers 
for non-integrable systems: the acrobot example. In 
Proc. Amer. Contr. Conf., pp. 669-671, 1990. 

A. Isidori. Nonlinear Control Systems. Springer- 
Verlag, New York, 2nd ed. 1989. 

H. Kanai and K. Yamafuji. Posture change and 
jumping motion of the controlling arm-leg type mo- 
bile robot. Tmns. Japan Soc. Mechanical Eng. C, 
57(539):2336-2341, July 1991. (in Japanese). 
Z. Li and J. He. An energy perturbation approach 
to limit cycle analysis in legged locomotion systems. 
In Proc. 29th IEEE Conf. Decision Contr., pp. 1989- 
1994, 1990. 

Z. Li and R. Montgomery. Dynamics and optimal 
control of a legged robot in flight phase. In Proc. 
IEEE Int. Conf. Robotics Automat., pp. 1816-1820, 
1990. 

J. E. Marsden, R. Montgomery, and T. Ratiu. Reduc- 
tion, symmetry, and phases in mechanics. Memoirs 
Amer. Math. Soc., 88(436), Nov. 1990. 

R. T. M’Closkey and J. W. Burdick. An analytic 
study of simple hopping robots with vertical and for- 
ward motion. In Proc. IEEE Int. Conf. Robotics Au- 
tomat., pp. 1392-1397, 1991. 

H. Nijmeijer and A. J. van der Schaft. Nonlinear Dy- 
namical Control Systems. Springer-Verlag, New York, 
1990. 

M. H. Raibert. Legged Robots that Balance. MIT 
Press, Cambridge, MA, 1986. 

A. F. Vakakis and J. W. Burdick. Chaotic motions in 
the dynamics of a hopping robot. In Proc. IEEE Ink 
Conf. Robotics Automat., pp. 1464-1469, 1990. 

29 1 


