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Abstract-We consider the problem of baviog a group of 
nonholonomic mobile robots equipped with omnidirectional 
cameras maintain a desired leader-follower formation. Our 
approach is io translate the formation control problem from 
the configuration space into a separate visual servoing task 
for each follower. We derive the equations of motion of the 
leader in the image plane of the follower and propose two 
control schemes for the follower. The first one is based on 
feedback linearization and is either string stable or leader- 
to-formation stable, depending on the sensing Capabilities of 
the followers. The second one assumes a kinematic model 
for the evolution of the leader velocities and combines a 
Lnenberger Observer with a linear control law that is locally 
stable. We present simulation results evaluating ow vision- 
based follow-the-leader control strategies. 

I. INTRODUCTION 

Birds flock and fish school without explicit communi- 
cation between individuals. Vision seems to be a critical 
component in animals’ abilities to respond their neighbors’ 
motions so that the entire group maintains a coherent 
formation. Our long-term goal involves enabling groups 
of mobile robots to visually maintain formations in the ab- 
sence of communication, as depicted in Figure 1. Towards 
that end, we propose and compare two new vision-based 
controllers that enable one mobile robot to track another, 
which we dub vision-based follow-the-leader. 
Thanks to recent advances in computer vision, one 

can now address formation control without using explicit 
communication. For example, Vidal et al. [21] consider a 
formation control scenario in which motion segmentation 
techniques enable each follower to estimate the image- 
plane position and velocity of the other robots in the 
formation, subsequently used for omnidirectional image- 
based visual servoing (for a tutorial on visual servoing, 
see [Ill). However, the control law in 1211 suffers from 
singular configurations due to nonholonomic constraints 
on the robots’ kinematics. 

This paper compares two new visual servo controllers 
that employ a modification of the image-based coordinate 
system first presented in [Z], which we have modified for 
omnidirectional imaging. 

Our first controller builds directly on the work of Desai 
er al. [5] and Das et al. [4], who use input-output feedback 
linearization on a clever choice of output function - the 
so-called “separation and bearing” - defined in terms of 
the absolute Canesian configurations of the follower and 
its leader. We show that their approach, which avoids the 

Rent Vidalt Shankar Sastryt 

*Electrical Engineering and Computer Science 
University of California, Berkeley, CA 94720 

above-mentioned singularity [Zl], can be implemented in 
image-coordinates, thus simplifying the state eslimation 
problem and enabling the use of image-based visual 
servoing. Our controller inherits asymptotic convergence 
from [4] when the forward speed of the leader is known, 
and, additionally, is leader-to-formation stable (LFS) [20] 
even without an estimaie of the leader velocity. 

Our second controller uses a linearization of the leader- 
follower dynamics, in image-plane coordinates. We note 
that as long as the leader keeps moving (as also required 
by [4]), one can stabilize the leader-follower formation 
with a simple linear control scheme. Of course, the linear 
controller affords only local convergence guarantees, but 
our simulations suggest that the controller is quite robust 
and has a large domain of attraction. Its relative simplicity 
makes it, in some ways, an appealing alternative to the 
nonlinear control scheme also presented. Both controllers 
are exponentially stable and hence we are able to take 
advantage of results in string and input-to-state stability 
of formations, which we review in Section I-B. 

1 . .  

Fig. 1. An omnidirectional vision-based formation of mobile robots. 

A. Organization 
In Section II we review the imaging model of a central 

panoramic camera. In Section Dl we derive the equations 
of motion of the leader in the image plane of the follower, 
and modify the coordinate system of [21 for the present 
context. In Section IV we design a feedback control 
law using input-output feedback linearization. We show 
that our control law is either string stable or leader-to- 
formation stable, depending on the sensing capabilities 
of the followers. We then linearize the leader-follower 
dynamics about a nominal nonzero forward leader velocity 
and show that the linearized dynamics are stabilizable 
and observable. We then design a simple linear controller 
and observer for the linearized system. In Section V 
we present simulation results evaluating the performance 
of our vision-based follow-the-leader control strategies. 
Section VI concludes the paper. 
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B. Background 
Formution Srabiliry: There is a rich literature address- 

ing the formation control problem when communication 
among the robots is available, including controller synthe- 
sis and stability analysis. For example, Swaroop er al. [IS] 
proposed the notion of string stability for line formations 
and derived sufficient conditions for a formation to be 
string stable. Pant er al. [I31 generalized string stability to 
formations in a planar mesh, through the concept of mesh 
stability. Tanner er al. [I91 concentrated on formations 
in acyclic graphs and studied the effect of feedback and 
feedfonvard on the input-to-state stability of the formation. 
Fax er al. [7] analyzed the stability of formations in 
arbitrary graphs and proposed a Nyquist-like stability 
criteria that can be derived from the spectral properties 
of the graph Laplacian. Egerstedt and Hu [6] proposed 
the use of formation constraint functions to decouple the 
coordination and tracking problems, while maintaining the 
stability of the formation. 

Decentralized “Local” Conrrol: In addition to [21], [4], 
Stipanovic er al. [I61 studied the design of decentralized 
control laws that result in stable formations, provided that 
the leader’s desired velocity is known. As well, Fredslund 
er al. [9] evaluate a heuristic method for solving the 
formation control problem using only local sensing. 

11. CENTRAL PANORAMIC IMAGING MODEL 

. 

Central panoramic cameras are realizations of omnidi- 
rectional vision systems that combine a mirror and a lens 
and have a unique effective focal point. It was shown in 
[IO] that the image of a 3D point obtained by calibrated 
central panoramic cameras is given by the mapping 

-43 + Ellqll PI 42 
(4) := 

where 111 : R3 + R2 and E E [0, I] is a camera parameter. 
Notice that ( = 0 corresponds to perspective projection 
and = 1 corresponds to para-catadioptric projection 
(parabolic mirror with orthographic lens). 

It was shown in [15] that by lifting the image point 
p f R2 onto the surface of the virtual retina defined by 

one can compute the back-projection ray b = bT, fe(p)IT 
such that Ab = q, where X = -43 + Ellqll is the scale 
lost in the central panoramic projection (see Figure 2). 
Assume we know the type of camera on the robots, i.e. 
we know E ,  and define the mappings 7r2 : R2 + R2 and 
7r3: B3 +R2 as 

7r3(4) := -7r2 07r1 (q )  = - , 
-43 PI 42 

1 
7rz(p) := - 

(3) 
fe@)p, 

image plane - 
Fig. 2. Central panoramic projection model, 

respectively. Notice that 7r3 is simply (calibrated) perspec- 
tive projection, which we obtained by “unwarping” the 
central panoramic image. 

Suppose a central panoramic camera is attached to a 
mobile robot such that its optical axis is parallel to the t- 
axis (pointing up). Let the center of the camera be located 
at 93 = 0 and the ground plane, G = { q  E R3 : 43 = -<}, 
where < > 0. By restricting 113 to G N Wz, we get the 
(trivial) diffeomorphism 7r := n3IG, which can be written 

1 
(4) 11 : w2 -t R2, n(q) = - [“‘I c 92 

In other words, the fairly complicated central panoramic 
camera model (1) can be easily remapped so that when 
viewing the ground plane from above, the camera acts as 
a linear scaling of the coordinates. 

111. RELATIVE LEADER-FOLLOWER KINEMATICS 
In order to design vision-based follow-the-leader control 

laws, we need to know the equations governing the motion 
of the leader in the image plane of the moving follower. 
In this section, we derive the relative kinematics between 
the leader and follower in task space and combme them 
with the camera model described in the Section II. 

A. Relative Kinematics in SE(3) 

Let ( R f , T f )  E SE(3) and (Re,Te) E SE(3) be the 
pose of the follower and leader, respectively, with respect 
to a fixed reference frame. Also let qt E R3 be the 
coordinates of a point on the leader written in the leader 
frame, and q f  E R3 be the coordinates of the same point 
in thefollowerframe. Then we have 

45 = &e + T ,  (5)  

where (R, T )  E SE(3) is the pose of the leader relative 
to the follower in the follower frame given by 

R := RY&, T := R?(Q - T f ) .  (6) 
If we assume that the p i n t  q p  is fixed with respect to the 
leader frame, i.e. qe = 0, then differentiating the relative 
pose in ( 5 )  yields’ 

qf  = Rqe +T 
= R(G4e+ve-(G4f+vf), (7) 

‘6  E ~013) is the skew-symmerric matrix generating the cross 
praduct, i.e. Rq = R x p for all p E R3 1121. 
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where 

:= R?Rf, Vf := R?Tf, - (8) 
Re := R,TRp, & := RTTp, 

are the body velocities of the follower and leader, i.e. 
(Vf,Rf),  is the velocity of the follower in the follower 

frame, and (Vp,*p), is the velocjty of the leader in the 
leaderframe. Furthermore, since Rq = -$l, we have that 
the coordinates of the fixed point on the leader evolve in 
the coordinate frame of the follower according to: 

Now consider the case that the origin of the follower 
frame is not at its spinning point (i.e. the point about 
which the follower rotates). Suppose the coordinates of 
the spinning point are -q6 E W3 in the follower frame. If 
uf,wf E W3 are the linear and angular velocities at the 
spinning point (these are typically control inputs), then it 
is direct to show that the body velocities ai the origin of 
the follower frame are: 

0, =U,> Vf = 6 Wf + U f .  (10) 

Therefore, the coordinates of the point on the leader in 
the follower’s frame evolve as: 

This equation will be useful for controlling nonholonomic 
mobile robots where uf is restricted to some subspace of 

B. Relative Kinematics for Unicycles in SE(2) 
Consider the mobile robots are “unicycles” moving in 

the ground plane. For simplicity, assume the point being 
tracked on the leader is the origin of the leader frame, i.e. 
q p  = 0. The leader’s body velocity is given by: 

w3. 

where up,wp E W are the leader’s control inputs. 
Consider that the origin of the follower frame is not 

at its spinning point. By choosing the spinning point to 
be at q6 = (-6,0,0)T in the follower frame, it follows 
from (10) that the follower’s body velocities are given by: 

*,= 0 Wf v,= 0 6 [:I [: I] !:;I ’ (13) 

where uf,  wf E W are the follower’s control inputs. 
In an abuse of notation, drop the z-axis entry to consider 

the leader in the coordinate frame of the follower, we have 
qf,qe E R2. Further, if 0 := St - tlf is the orientation of 

] E SO(2). (14) 
R=[COSe -sin0 

sin0 COSS 

Thus, the coordinates of the point on the leader in the 
coordinate frame of the follower with control actions 
(uf,wf) E R2 evolve according to: 

C. Relative Kinematics in the Image Plane 
The following image-based coordinate system for rela- 

tive displacements in SE(2) is a simplification of the more 
general image-based coordinate system for SE(3) given by 
Cowan and Chang [Z]. For the present case, we assume 
that the follower can measure the projection of a pair of 
features the leader. The hrst point, measured qf in the 
follower frame, is at the spinning point of the leader, i.e. 
the same point is expressed in leader’s frame qe = 0, as 
described above. For simplicity, the second feature point is 
aligned along the leader’s z-axis, and the orientation of the 
pair of features on the image plane is given by 6. Hence 
we have the camera mapping, c : SE(2) -+ SE(2), relating 
Cartesian variables (qf,O) E SE(2) to image variables 
( p ,  4) E SE(2) via the diffeomorphism 

(PA = := (r(qf),e) = -qf,+ , (16) ( t  ) 
where T is given by (4). The Jacobian matrix of c is given 
trivially by 

J =  [?‘tX2 I 3.  
Recalling that qe = 0, the leader-follower kinematics (15) 
may now he mapped to the image plane as 

6 =we - W f .  

In the following section, we design two controllers for 
system (18). To simplify notation, assume without loss 
of generality that C = 1, and let xT = [z1,x2,23] = 
[qf1,qfz,$] E SE(2) so that (15) becomes 

= [i <?]U+ [:“a:: 3 d ,  (19) 

where U = ( u I , u ~ ) ~  = ( ~ f , w f ) ~  is the follower’s 
linear and angular velocity inputs, and d = ( d l , d z ) T  = 
(up, we)T is the disturbance due to the leader’s velocity. 

IV. CONTROLLER DESIGN 
We present two approaches to controlling (19). The first 

approach is based on a simple coordinate transformation 
of the image variables, similar to the task-space “sepa- 
ration and bearing” coordinate system found in [5].  In 
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the new coordinate system, the problem of keeping the 
leader within the follower’s field-of-view and preventing 
leader-follower collisions may be naturally encoded. Our 
potential-function based controller asymptotically tracks 
a moving leader while maintaining visibility and avoiding 
mutual collision. For the second approach, we take a local 
point of view and linearize the system around a nominal 
leader trajectory, and show that the resulting system is 
stabilizahle and observable. We show that both solutions 
require a moving leader, and are leader-to-formation stable 
in the sense defined in [201. 

A. Inputloutput Feedback Linearization 
Image-based separation and bearing: To model those 

relative configurations for which the leader and follower 
are not coincident, let X = {z = [ZI, zz, z3IT E 
SE(2) : z: + zz > 0). Let Y = R+ x S’ x SI and 
consider the transformation h : X + Y given by 

h(z) := [m 23 + XctanZ(zz,zl) ~ 3 ]  I 

where arctan2, implemented for example in MATLAB 
and C, is the natural extension of the arctangent function 
to all four quadrants. The inverse 

T 

Y1 COS(Y2 - Y3) 
h-’(y) = YI W y z  - ~ 3 )  [ y3 1 

may be found by direct computation, and is well defined 
for all y = [yl, y ~ ,  y3IT E Y ,  and thus h is a homeomor- 
phism from X to Y .  

Finally, note that 

and therefore lDhl = (zt + z%)-t, which is nonzero 
and well defined for z E X, and thus at each point 
x E X, h is a local diffeomorphism. Since h is a local 
diffeomorphism at every point in the domain and a global 
homeomorphism, h is a global diffeomorphism. The first 
two components (yl, yz) are called the separation and 
bearing, respectively, similar to that defined in [4], [ 5 ] ,  
[W. 

Transfomed dynamics: Consider the system (19) writ- 
ten as 

x = f(z)u + g(z)d 

with z E SE(2). Let y = h(z) and note that 

Y = D,h(z)f(z)u + &h(z)g(z)d (20) 

where direct computation yields 

where e2 = [0, 1IT and 
-3 d 

Y l  

Suppose that the leader’s velocity, d, is available to the 
follower for control, either by using optical flow [21], 
communication or an extended Kalman filter [4]. Note 
that det(F) = -6fyl is well defined and non-zero on 
X as long as the follower camera is not at the spinning 
point (6 # O), and thus one may consider the input 
transformation U = F ’ ( 8  - Gd). This yields, by direct 
substitution 

Consider the two-dimensional system output given by 
the separation and bearing, namely z = [ 21, zzIT 
[yl ,  y2IT E S’ x W+, which has a well-defined relative 
degree of one. In local coordinates on SI x IR+ the 
“feedback linearized” output dynamics are given by 

(22) 
- 

i = U .  

Collision avoidance and visibility: Following [3], we 
apply the machinery of navigation functions (NF) [ 141 to 
the vision-based control problem. In this case, we restrict 
the navigation function to the simple 2D output dynamics 
in (22). To model all of those image-plane configura- 
tions for which the leader and follower maintain a safe 
separation (to avoid collisions) and remain close enough 
to maintain good visibility [3], consider the compact 
manifold with boundiuy 2, = {z E X : &, 5 z: + x$ I 
&} c X, where 0 < ?-min < r-. Consider the image 
of 2) given by 1 = h(D) = {y E Y : r,. 5 y1 5 T ~ ~ } .  

Note that y E Z if and only if the output stays in the 
compact set t E 2 = [ ~ m i ~ , r , , , ~ ]  x SI. 

Roughly speaking (for a formal definition, see [14J) 
an NF is a twice differentiable, nondegenerate artificial 
potential function that has a unique global minimum of 
0 on some goal set, and reaches its maximum value of 1 
on some obstacle set. Let ’p E C 2 [ 2 ,  [0,1]] be a such a 
function on 2. For example, let o(x) = x / ( l +  x) and 
one easily checks that 

is an NF ([3], Appendix I), where z* is the “desired 
image-based separation and bearing. Finally, we let 

E =  -Vip (23) 

which guarantees that z will converge to the minima of 
’p (for all initial conditions except a set of measure zero). 
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Of course since ‘p is nondegenerate, the z dynamics are 
exponentially stable at the goal point. 

String stability: By a small perturbation analysis, one 
can show that the internal dynamics of y3 from (21) 
are stable as well [8]. In this case, consider a sfring of 
vision-based robots, each following the robot ahead of it. 
Since the robots are kinematic unicycles, and each pair 
in the string is exponentially stable, one can see that the 
interconnected system is exponentially string stable [181. 
Of course, as a consequence of the topology of X, global 
exponential convergence for a smooth feedback law on 
this system is impossible. 

Input-to-formation stability: However, the above men- 
tioned approaches to estimating the feedfonvard term due 
to the leader speed are sensitive to noisy vision-based 
measurements. Thus, we will design a controller assuming 
zero leader velocity, and then show that the resulting 
system is Leader-to-Formation stable [201. 

Consider the following controller without the feed- 
forward disturbance cancellation term, i.e. U = F-IZ. 
Letting Z = -V‘p as before, we have the following closed 
loop dynamics: 

i = -V’p + Gd (24) 

Observe (20) and note that the disturbance term is 
bounded, i.e. IlGdll 5 I I ( v c , w ~ ) ~ I I ,  and the disturhance- 
free system is locally exponentially stable. Thus, it follows 
that the controller renders the system bader-to-Formation 
stable [20]. 

E. Observer-based Linear Controller 
Let us augment the state of the system 2: with the leader 

velocities (z4,z5) = (u t ,  WO. Assuming, for simplicity, 
that the follower’s camera is on its spinning point, i.e. 
6 = 0,  then (19) becomes 

-1 -2.2 ~ 0 ~ x 3  0 E:] = [; TI] U +  [si? !] E:] . (25) 

We treat the leader’s translational and angular velocities 
(z4,z5) as states with linear dynamics perturbed by un- 
known and arbitrary, but bounded, disturbances. In other 
words we model the leader velocities as 

where s is the “nominal” forward speed of the leader, and 
[a,, azIT €_Ez represents an unknown leader acceleration. 
Let y = h(s) = [ z ~ , z z ] ~  be the system output, and 
combine (25) and (26), to yield 

j: = f ( X , U )  + a  (27) 
y = K(x) (28) 

where a = [O, O,O,  a,, azIT is considered as an unknown 
but hounded disturbance. 

Consider the desired formation described by the equi- 
librium to (27) given by z* = [z;, z;,O, s, OlT and U* = 
[s, OlT, where (z;,~;) is the desired location of the leader 
in the follower frame. The linearized dynamics are given 
by 

(29) 

where 3 = (z - x’) and G = (U - U*), with system 
matrices A = Dzf(z* ,  U*),  B = DUf(z’, U*) and C = 
D , L ( S * )  are of the form 

& = A Z + + Z  
?= C3, 

C = [ I z x z  02x31. 

According to Brockett, nonholonomic systems, such as 
the model in this paper, are not stabilizable to a stationary 
point via continuous feedback [l]. However, a stabilizing 
feedback may exist for tracking a given trajectory [17]. 
For example, if s # 0, (A,  C) is completely observable, 
and (A ,  B )  is stabilizable. In other words the leader has to 
be moving for the follower to achieve asymptotic tracking. 

The system (29-30) is in Kalman controllable form and 
the uncontrollable states associated with A? correspond 
to the leader dynamics. Thus, given (A,  B, C), one may 
design a controller and observer pair using any of the 
well-known linear control systems design techniques. In 
Section V, we evaluate via simulation a controller design 
that uses a full-state Luenberger observer. 

Estimating Leader Velocity: To get the leader speed, 
there are several alternatives. One possibility would be to 
use optical flow to estimate the leaders velocity, as done 
in [21]. However, such approaches will be sensitive to 
noisy measurements. Alternatively, one could use com- 
munication between the leader and followers, requiring 
communication equipment. 

Rather than taking the centralized or optical flow a p  
proaches, our formulation allows us to design an observer 
and controller based only the follower’s measurement 
of the leader, namely y = ( X ~ , X ~ ) ~ .  From those two 
numbers, an observer can be used to estimate the relative 
leader-follower angle angle, 23, and leader’s linear and 
angular velocities (xq,z5). The estimator combined with 
state feedback form a linear regulator. 

Leader-to-Formation Stability (LFS): Assume we have 
designed a stabilizing state feedback for (301, that feeds 
back the output of a stable observer. In order to tackle 
the LFS problem, we place a mild assumption on the 
leader dynamics, namely that the leader accelerarion, a ,  
be bounded. This means that the leader must follow con- 
tinuous velocity trajectories. Given this restriction, local 
LFS becomes a trivial problem - it is inherited directly 
from the bounded-input-bounded-output (BIBO) stability 
of the stable linear system. 
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Rg. 3. 
versus the nonlinear conmller. 

Performance comparison for the linear observer-controller pair 

formation in the image plane and uses omnidirectional 
visual servoing for tracking. We proposed two control 
strategies and showed that they are either string, leader- 
to-formation, or locally stable depending on the sensing 
capabilities of the followers. We presented simulations 
evaluating our vision-based follow-the-leader controllers. 
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