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Abstract 

This paper addresses the control of a team of autonomous 
agents pursuing a smart evader in a non-accurately mapped 
terrain. By describing the problem as a partial informa- 
tion Markov game, we are able to integrate maplearning 
and pursuit. We propose receding horizon control policies, 
in which the pursuers and the evader try to respectively 
maximize and minimize the probability of capture at the 
next time instant. Because this probability is conditioned 
to distinct observations for each team, the resulting game is 
nonzero-sum. When the evader has access to the pursuers’ 
information, we show that a Nash solution to the one-step 
nonzero-sum game always exists. Moreover, we propose a 
method to compute the Nash equilibrium policies by solving 
an equivalent zero-sum matrix game. A simulation example 
shows the feasibility of the proposed approach. 

1 Introduction . . -  

We deal with the problem of controlling a swarm of 
agents that attempt to catch a smart evader, i.e., an 
evader that is actively avoiding detection. The game 
takes place in a non-accurately mapped region, there- 
fore the players also have to build a map of the pursuit 
region. 
The classical approach to this problem consists in a 
two-stage process: first, a map of the region is built 
and then, the pursuit-evasion game takes place on the 
region that is now perfectly known. In fact, there is 
a large body of literature on any of these topics in 
isolation (see, e.g., [I], [2], [3], [4]). In practice, the 
two step solution mentioned above is, at least, cumber- 
some. The map building phase turns out to be time 
consuming and computationally hard, even in the case 
of simple two dimensional rectilinear environments [3]. 
Moreover, the solutions proposed in the literature to 
the pursuit-evasion phase typically assume that the es- 
timated map is accurate. This is hardly realistic, as 
argued in [4], where a maximum likelihood algorithm 
for map estimation based on noisy measurements and 
an a priori probabilistic map is introduced. 
In this paper, we describe the pursuit-evasion problem 
as a Markov game ([5]) where the system evolution is 
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governed by a transition probability function depend- 
ing on the players’ actions. This allows us to model the 
uncertainty affecting the players’ motion. The lack of 
information about the pursuit region and the sensors 
inaccuracy can also be embedded in this framework by 
considering a partial information Markov game. Here, 
the obstacles configuration is considered to be a com- 
ponent of the state, and the probability distribution of 
the initial state encodes the a priori probabilistic map 
of the pursuit region. Moreover, each player’s obser- 
vations of the obstacles and the other player’s position 
are described by means of an observation probability 
function. In this way, different configurations of the ob- 
stacles correspond to different states of the game, and 
the uncertainty in the actual obstacles configuration is 
translated into incomplete observation of the state, thus 
allowing the map-learning problem to be integrated into 
the pursuit problem. In general, partial information 
stochastic games are poorly understood and the litera- 
ture is relatively sparse. Notable exceptions are games 
with particular structures such as [6], [7], [8]. 
An alternative method to model incomplete knowledge 
of the obstacles configuration consists in describing the 
system as a full information Markov game with the 
transition probability function depending on the ob- 
stacles configuration, [9]. Combining exploration and 
pursuit in a single problem then translates into learn- 
ing this probability function while playing the game. 
We propose here that both the pursuers’ team and the 
evader use a “greedy” policy to achieve their goals. 
Specifically, at each time instant the pursuers try to 
maximize the probability of catching the evader in the 
immediate future, whereas the evader tries to minimize 
this probability. At each step, the players must there- 
fore solve a static game that is nonzero-sum because 
the probability in question is conditioned to the distinct 
observations that the corresponding team has available 
at that time. The Nash equilibrium solution ([l]) is 
adopted for the one-step nonzero-sum games. Existence 
of a Nash equilibrium solution is proven and the sim- 
plifications which make the solution computationally 
feasible using linear programming (LP) are explained. 
This paper extends the probabilistic approach to 
pursuit-evasion games found in [lo]. In this reference, 
the pursuers’ team still adopts a greedy policy that 
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maximizes the probability of finding the evader at the 
next time instant, but the evader is not actively avoid- 
ing to be captured. 
The paper is organized as follows. In Section 2, the 
pursuit-evasion game is described using the formalism 
of partial information Markov games, and the concept 
of stochastic policies is introduced. In Section 3 the 
one-step Nash solution to the pursuit-evasion game is 
motivated. Existence of a Nash equilibrium in stochas- 
tic policies is proven by reducing the problem to that of 
determining a saddle-point solution to a zero-sum ma- 
trix game. Hence, LP is suggested for computing the 
Nash equilibrium. A simulation example is shown in 
Section 4. Section 5 contains concluding remarks. 
All the proofs of the results are omitted due to space 
limitations. The interested reader is referred to [ll]. 
Notation: ( R , 3 )  denotes the relevant measurable 
space. We assume that the a-algebra 3 is rich enough 
so that all the probability measures considered are well 
defined. Bold face symbols are used for random vari- 
ables. Given a probability measure P : 3 + [0,1], a 
random variable t : R --t R", and some c E R", we 
write P(t  = e)  for P({w E R : t ( w )  = c } ) .  A similar 
notation is used for conditional probabilities. Moreover, 
a ( t )  denotes the a-algebra generated by e,  and E[tIA] 
the expected value o f t  conditioned to an event A E 3. 

2 Markov Pursuit-Evasion Games 

We consider a two-player game between a team of np 
pursuers, called player U, and a single evader, called 
player D. The game is quantized both in space and time, 
in that the pursuit region consists of a finite collection of 
cells X := {1,2,. . . , nc},  and all events take place on a 
set of equally spaced event times 7 := { 1,2, . . . }. Some 
cells may contain obstacles and none of the players can 
move to these cells, but the obstacles configuration is 
not perfectly known by any of the players. 
We denote by xp( t )  = (xk(t), . . . ,xp"'(t)) E X". and 
xe( t )  E X the positions at time t E I of play- 
ers U and D, respectively. The obstacles config- 
uration is described by the binary vector xo(t)  = 
(xA(t), . . . , xEc(t)) E (0 ,  l}"c, where xb(t) = 1 if cell 
i contains an obstacle at time t and xL(t) = 0 other- 
wise. We shall consider a fixed-although unknown- 
obstacle configuration, i.e., xo(t + 1) = xo( t ) ,  'dt E 7. 
The state of the system describing the game at time 
t E 7 is then given by s(t) := (Xe(t), xp( t ) ,  xo( t ) ) ,  tak- 
ing value in S := X x Xnp x (0,  l}nc. Different obsta- 
cles configurations correspond to different states of the 
game, and uncertainty in the actual obstacles configu- 
ration corresponds to incomplete knowledge of s(0). 

Transition probabilities. The evolution of the game 
is governed by the probability of transition from a given 
state s E S at time t to another state s' E S at time 
t + 1. The initial state s(0) is assumed to be indepen- 

dent of all the other random variables at time t = 0. 
At every time instant, each player is allowed to choose 
a control action. We denote by U and V the sets 
of actions available to player U and D, respectively. 
According to the Markov game formalism, the prob- 
ability of transition is only a function of the actions 
U E U and d E V taken by the two players at time 
t. Here we assume a stationary transition probability, 
i.e., P (s(t + 1) = s' I s(t) = s, u(t)  = U ,  d ( t )  = d )  = 
p(s , s ' , u ,d ) ,  s,s' E S,u E U , d  E D,t  E 7, where 
p : S x S x U x 2) + [0,1] is the transition probability 
finetion. Moreover, we assume that given the current 
state s(t) of the game, the positions at the next time in- 
stant of players U and D are independently determined 
by u(t)  and d(t) ,  respectively. Hence, p(s, SI,  U ,  d )  from 
s = (xe,  xp, 2,) E S to SI = (x;, x;, xb) E S is given by 
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d with p ( s  --f x',) = P (xe(t  + 1) = x;ls(t) = s, d(t)  = d )  
and p ( s  % x;) = P (xp(t  + 1) = zL(s(t) = s, u(t) = U ) .  

At each time t E 7,  u( t )  E U := Xnp consists of the de- 
sired positions for the pursuers at the next time instant. 
Similarly, d ( t )  E D := X contains the next desired po- 
sition for the evader. We assume here that the one-step 
motion for both players may be constrained, and de- 
note by d ( x )  C X \ { x }  the set of cells reachable in one 
time step by an agent located at x E X .  We say that 
the cells in d ( x )  are adjacent to x. For the pursuer 
team, we vectorize the notion of reachability by defin- 
ing d"p(x) := A(.') x . . . x d(x"p) C Xnp as the set of 
ordered np-tuple 'of cells reachable in one time step by 
the pursuers' team located at x := ( X I , .  . . , xnp) E X".. 
We assume that the pursuers and the evader effectively 
reach the chosen adjacent cells with probabilities pp and 
pe, respectively. This translates into: 

P ( ( X e ,  5, X O )  5 x;) 

p p ,  X ;  = U E d"p(xp) A xE1 = 0, V i  
x; = xp A U E A". (xp)  A xEi = 0 ,  V i  
X ;  = xP A (U 

otherwise 
dnp(xp) V 3i s.t. x E ?  = 1) 

= { t."' 
where (xe,xp,xo) E S and x; E Xnp, and A and V 
respectively denote the logical operators and and or. 
Similarly for p((xe, xp ,  2,) -+ x;). 
Observations. In order to choose their actions, a set 
of measurements is available to each player at every 
time instant. We denote by y and 2 the measurement 
space for player U and D, respectively. We assume that 
the sets Y and 2 are finite. At each time t E 7, the 
observations of the players are the realizations of ran- 
dom variables y ( t )  and z(t) .  y ( t )  is assumed to be con- 
ditionally independent, given s( t ) ,  of u(t) ,  d(t) ,  and 
all the other random variables at times smaller than 
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t. Similarly for z( t ) .  Moreover, the conditional distri- 
butions of y(t) and z ( t )  are assumed to be stationary, 
i.e., P(y(t) = y I s ( t )  = s )  = p y ( y , s )  and P(z(t) = 

where py : Y x S + [0,1] and p ,  : 2 x S -+ [0,1] are 
the observation probability jknctions. 
To decide which action to choose at time t E 7, the in- 
formation available to player U and D is represented by 
the sequence of measurements Yt := {yo, y1,. . . , yt} 
and Zt := {z0,z1,.. .,zt}, respectively. These se- 
quences are said to be of length t since they contain 
all the measurements available at time t. The set of all 
possible outcomes for Yt and Z t ,  t E 7, are denoted 
by y* and 2*, respectively. Given a sequence Q in any 
of these sets, we denote its length by L(Q). We define 
Yt ,  Zt to be the empty sequence 8, for any t < 0. 
Under a worst-case scenario for the pursuers, we as- 
sume that, at every time instant t ,  player D has ac- 
cess to all the information available to player U, i.e., 
u(Yt) E o ( Z t ) ,  t E 7. In particular, we assume that 
o ( y ( t ) )  C o ( z ( t ) ) ,  t E 7, and that y ( t )  is conditionally 
independent of all the other random variables at times 
smaller or equal to t given s ( t )  and ~ ( t ) ,  with 

z I s ( t )  = s) = p z ( z , s ) ,  s E s , y  E Y , z  E 2,t  E T, 

1, Y = Y z  
0, otherwise, P(y(t) = ylz(t) = z , s ( t )  = s) = 

s E S ,  y E Y ,  z E 2 , t  E 7, where yz  E Y satisfies 
y ( t , w )  = y z ,  for every w E R such that z ( t , w )  = z. 
Games where this occurs are said to have a nested in- 
formation structure [l]. We say that a pair of measure- 
ments Y E Y* and 2 E 2* are compatible if they could 
be simultaneously realized by Yt and Zt for some t E ‘T. 
Nested information implies that each measurement for 
player U is compatible with a unique measurement for 
player D. This is because we must have Y t ( w )  = Yz 
for every w E C2 such that Zt (w)  = 2. However, the 
converse may not be true. 
The game is over when the evader is captured, i.e., when 
a pursuer occupies the same cell as the evader. There- 
fore, So,, := { (xe, xp, xo) E S : ze = x~ for some i E 
(1,. . . , n,}} is the game-over set. We assume that 
both players can detect when the game enters Saver. 
In particular, there exist yover E Y ,  Zover E 2 such that 
PY(yover, S )  = pz(zover, s) = 1, i f s  E sovery 0,  otherwise. 
Stochastic Policies. Informally, a “policy” for a 
player is the rule the player uses to select which action 
to take, based on its p k t  observations. We consider 
here policies that are stochastic in that, at every time 
step, each player selects an action according to some 
probability distribution. Specifically, a stochastic policy 
p of the pursuers’ team is a function p : Y* 4 [0, 1Iu, 
where [0, 1Iu denotes the set (simplex) of distributions 
over U. We denote by n u  the set of all such policies. 
Given Y E Y * ,  we call p(Y)  a stochastic action. Sim- 
ilarly, a stochastic policy 6 of the evader is a function 
6 : 2* 4 [0, 1ID, lTD is the set of all such policies, and 
S(Z), 2 E 2*, is a stochastic action. 
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In general, we have a different probability measure for 
each pair p and 6. The subscript ,a in P then denotes 
the one associated with p and 6. When an assertion 
holds true with respect to P,a independently of p E Ilu, 
or 6 E I I D ,  or both p E and 6 E I I D ,  we write Pa, 
P,, or P, respectively. When Ppg depends on p E IIu 
only through its values for sequences Y with L(Y) 5 t ,  
we write PPLt6. P,at is defined analogously. Similarly 
for the expectation E. The transition and observation 
probabilities are in fact independent of p and 6. 
We can now give the precise semantics for a pcrlicy 
p E n u  f o r  player U :  P,(ut = U 1 Yt  = Y )  = pu(Y) ,  
t := L(Y),u E U ,  Y E Y*,  where each pu(Y) denotes 
the scalar in the distribution p ( Y )  over U that cor- 
responds to the action- U, thus meaning that the con- 
ditional probability of the pursuers’ team taking the 
action ut = U E U at time t given Yt = Y E Y* 
is independent of the policy 6. Moreover, ut is con- 
ditionally independent of all other random variables at 
times smaller or equal to t ,  given Yt. Similarly, a policy 
6 E IID f o r  player D must be understood as Pa(dt = 
d I Zt = 2) = 6 d ( z ) ,  t := L(Z) ,  d E D, 2 E 2*, with d t  
conditionally independent of all other random variables 
at times smaller or equal to t ,  given Zt.  
Problem Formulation. We consider a two-players 
game in which, at each time instant, the pursuers’ team 
and the evader choose their stochastic actions so as to 
respectively maximize and minimize the probability of 
finishing the game at the next time instant. This until 
the Markov game-enters the game-over set. 
Specifically, consider a generic time instant t E 7 when 
the game is not over, i.e., y ( t )  # yover and z ( t )  # %over. 
Suppose that the values realized by Yt and Zt are re- 
spectively Y E y* and 2 E Z*. Then, player U selects 
a stochastic action p(Y)  E [0, 1Iu so as to maximize 
Vu(Y,t) := P,g(ToVer = t + llYt = Y ) ,  whereas player 
D selects a stochastic action 6 ( 2 )  E [0,1]” so as to 
minimize VD (2, t )  := P,s (To,, = t + 1 I Zt = 2). Since 
each player has a different set of information, the re- 
sulting dynamic game evolves through a succession of 
nonzero-sum static games. 
The following proposition shows that the problem is 
well-posed since at every time t the cost functions de- 
pend only on the current actions of the players. 

Proposition 1 ([ll]) Pick some t E 7 and assume 
that o(y(7)) C o(z(~) ) ,  T 5 t. Then, for any (p ,S)  E 
Ilu x I I D  and any Y E Y * ,  2 E 2*, 

Vu(Y,t) = P U ( Y ) 6 d ( Z )  p(s,s’ ,u,d) 

P,t-16t-1 (s(t)  = s, zt = ZIYt = Y ) ,  

P,t-16t-1 (s( t )  = 4% = Z), 

u , d , 2  s’ ESover ,s 

vD(z, t )  =E p u ( y Z ) d d ( z )  p ( s ,  5’7 U ,  d )  
u,d S’ES0v.r 9s 

where Yz denotes the unique element of Y* that is com- 



patible with 2. Moreover, 

VU(Y, t )  = VD’(2, t )  P p t - 1 6 t - 1  ( Z t  = ZlYt  = Y ) .  (2) 
2 

3 One-step Nash equilibrium solution 

Suppose that at time t E 7 the game is not over, Yt = 
Y and Z t  = 2. Let 2*[Y] denote the set of all 2 E 2” 
compatible with Yt = Y and such that Ppt-16t-l (2 ,  = 
ZJYt = Y )  > 0. Suppose that 2 E 2*[Y]  and define 

J U ( P , q )  := Puqd(2)  P(s,s’iU,d) 
u,d,ZEZ*[Y] s’ ESover ,s 

P p t - l G t - l  ( s ( t )  = 3, zt = ZIYt = Y ) ,  (3) 

JD@,  4, 2) := X P u  q d ( z )  P(S,  U ,  d )  
S’ESover,5 

P p t - l G t - l  (s( t )  = s lZt  = Z), (4) 

where p := {pu : U E U }  E [0, 1Iu and q := { q ( Z )  : 
E 2 * [ Y ] }  with q(z) := { q d ( Z )  : d E D} E [o , l ]D .  

Here, pu denotes the scalar in the distribution p over U 
that corresponds to the action U and q d ( 2 )  denotes the 
scalar in the distribution q ( 2 )  over 2) that corresponds 
to the action d. The sets of all possible p and q as above 
are denoted by P and &, respectively. 
Because of Proposition 1, J v ( p ,  q)  and JD(P,  q, 2) rep- 
resent the cost functions optimized at time t by player 
U and D, respectively, with p corresponding to p(Y)  
and q ( 2 )  to 6(Z). According to definitions (3) and 
(4), equation (2) can then be rewritten as follows: 
Ju@, Q )  = E p t - 1 6 t - l  [JD(P,  4 , Z t ) l Y t  = Y ] .  Thus, the 
pursuers’ team tries to maximize the estimate of the 
evader’s cost computed based on its observations. 
In the context of games, it is not always clear what “op- 
timize a cost” means, since each player’s incurred cost 
depends on the other player’s choice. A well-known so- 
lution to a game is that of Nash equilibrium [l]. A Nash 
equilibrium occurs when the players select stochastic 
actions for which any unilateral deviation from the equi- 
librium causes a degradation of performance for the de- 
viating player. Therefore, there is a natural tendency 
for the game to be played at a Nash equilibrium. In the 
nonzero-sum single-act game of interest, this translates 
into the players setting their stochastic actions p(Y) ,  
Y E Y*,  and S(Z), 2 E 2 * [ Y ] ,  equal t o p *  E P and 
q*(Z) E [0, 1ID satisfying 

J U ( P * ,  q*) 2 J u b ,  q*) ,  P E P ,  (5) 
JD(p*,q* ,Z)  L J o ( p * , q , z ) ,  q E Q, 2 E 2*[Y] .  ( 6 )  

The pair (p*, q*)  E P x Q is then called a one-step Nash 
equilibrium. It is worth noticing that, in general, for 
nonzero-sum games there are multiple Nash equilibria 
corresponding to different values of the costs. More- 
over, the policies may not be interchangeable, in the 
sense that if the players choose actions corresponding 
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to different Nash equilibria, a non-equilibrium outcome 
may be realized. Therefore, there is no guarantee of 
a certain performance level. However, we shall show 
that-in this problem the determination of a Nash equi- 
librium for the nonzero-sum static game with costs (3) 
and (4) can be reduced to the determination of a Nash 
equilibrium for a fictitious zero-sum static game with 
cost (3). 

Proposition 2 ([ll]) Suppose that o(y(7))  C 
U(.(.)), 7 5 t ,  and Yt = Y E Y*. Then, ( p * , q * )  is  a 
one-step Nash equilibrium for  the nonzero-sum game 
(5) and ( 6 )  if and only if 

Ju(P,q*) L Ju(p* ,q*)  L JU(P*”), 4) E e, P E p .  (7 )  

We call (p*,  q* )  E P x Q satisfying (7) a one-step Nash 
equilibrium for  the zero-sum game with cost J u ( p ,  q).  
From (7) it follows that all the Nash pairs (p*,q*) are 
interchangeable and correspond to the same value for 
Ju(p* , q* ) ,  which is called the value of the game. 

Proposition 3 ([I]) Assume that ( P I ,  q l )  and 
(p2 ,q2)  E P x Q are one-step Nash equilibria 
f o r  the zero-sum game with cost J u ( p , q ) .  Then, 

are also one-step Nash equilibria with the same value. 

Proposition 2 shows that by choosing a one-step Nash 
equilibrium policy for the zero-sum game with cost 
Ju (p* , q*), the pursuers’ team “forces” a rational 
evader to select a stochastic action corresponding to a 
Nash equilibrium for the original nonzero-sum game. 
This is because, once the pursuers’ team chooses a 
certain p* ,  the stochastic action q*(Z) given by the 
one-step Nash stochastic policy q* minimizes the cost 
J o ( p * ,  q, 2). Moreover, from Proposition 3 it follows 
that the pursuers’ team achieves a performance level 
for the original nonzero-sum static game that is inde- 
pendent of the chosen Nash equilibrium for the zero- 
sum game. Note that the cost J ~ ( p , q , z )  for player 
D instead depends, in general, of the Nash equilibrium 
selected. Paradoxically, the pursuers’ team-which is 
the one with less information-can influence the best 
achievable value for J o ( p * ,  q, 2). However, it does not 
know which is its actual value, since it does not know 
the value realized by Z t .  
We now show that determining a Nash equilibrium for 
the one-step zero-sum game with cost Ju(p, q )  is equiv- 
alent to determining- a saddle-point equilibrium for a 
two-player zero-sum matrix game. The existence of a 
Nash equilibrium then follows from the Minimax Theo- 
rem [l]. Moreover, the computation of the correspond- 
ing stochastic policies is reduced to a LP problem, for 
which powerful resolution algorithms are available. 
Pick some t E 7 and let Y E Y* be the value realized 
by Yt. We say that p E Q is a one-step pure policy f o r  
player U if its entries are in the set {0,1}.  Similarly, 
for q E Q. The finite sets of all one-step pure policy 

JU(Pl,  Q’)  = Jv(P2,  2). Moreover, ( P l ,  2) and ( P 2 ,  q l >  



for players U and D are denoted by Ppure and Qpure, 

respectively. 
Suppose now that players U and D choose randomly, 
according the probability distributions y := (703) : p E 
Pp,re} and c := {u(q) : q E Qpure}, one of their pure 
policies. Moreover, assume that the players choose their 
policies independently. The expected cost is then equal 

distributions y and c are called mized policies for play- 
ers U and D, respectively. The sets of all y's and a's are 
denoted by r and C ,  respectively. The following result 
relates mixed policies to stochastic policies. 

Lemma 1 ( [ l l ] )  There exist surjective functions Lu : 
r + P and LD : C Q such that, f o r  every (y,~) E 
I? x C ,  &(y, C) = J u b ,  q), with p := Lu(y )  and q := 

The cost Ju(y, C) can be also be expressed in matrix 
form as Ju(7,a) = ~ ' A u c ,  where Au is the IPpureI x 
1 Q p u r e I  matrix defined by 

to Ju(Y, a> := Cp~Pp,re,q~Qp"re Y ( P ) d q ) J u ( P ,  4. The 

L D ( C ) .  

[Aul(P,q)€Pp",, x &pure := J d P ,  a). (8) 

It is well know that at least one Nash equilibrium always 
exists in mixed policies (cf. [l, p. 851). In particular, 
there always exists (y*, a*) E I? x C for which 

y'Aua* 5 y*'Au~* 5 ~ * ' A U ( T ,  ( 7 , ~ )  E x C .  (9) 

Theorem 1 - ( [ l l ] )  Let (y*,o*) E I? x C be a Nash 
equilibrium for  the zero-sum matrix game with ma- 
trix Au, i.e., a pair of mixed policies f o r  which (9) 
holds. Then (p*,q*) E P x 8, where p* := Lu(y*) ,  
q* := LD(a*) ,  is a one-step Nash equilibrium for  the 
zero-sum game with cost Ju(p,  q). 

4 Example 

We consider a pursuit-evasion game taking place in a 
rectangular two-dimensional grid with n, square cells 
numbered from 1 to n,. The transition probability 
function is defined by (l) ,  where d(z) contains all the 
cells y # IC which share a side or a corner with 2. As for 
the observation probability functions, we describe next 
the nature of the sensing devices. 
The pursuers' team is capable of determining perfectly 
its current position z E X n p  and sensing accurately the 
adjacent cells d"P(z) for obstacles. They also sense 
the adjacent cells for the evader. The information the 
pursuers report regarding the presence of the evader in 
the cell they are occupying is accurate, whereas there is 
a nonzero probability that a pursuer reports the pres- 
ence of an evader in an adjacent cell when there is no 
evader in that cell and vice-versa. Specifically, the sen- 
sor model is a function of two parameters: the proba- 
bility of false positive f, E (0,1], i.e., the probability of 

the pursuers' team detecting an evader in a cell without 
pursuers and obstacles adjacent to the current position 
of a pursuer, given that none is there, and the probabil- 
i ty  of false negative fn E [0,1], i.e., the probability of 
not detecting an evader, given that the evader is there. 
Hence, each observation y( t ) ,  t E 7, consists of a triple 
(py(t), oy(t),  ey ( t ) )  where pY(t) E X". denotes the 
measured position of the pursuers, and oy(t ) ,  ey(t )  C X 
denote the sets of cells adjacent to the pursuers' team 
where obstacles and evader are respectively detected at 
time t. We then have y = X " p  x 2x x 2x, where 2x 
denotes the set of all subsets of X .  py(t),oy(t), and 
ey ( t )  are conditionally independent, given s( t )  . 
As for the evader's observations, it is capable of deter- 
mining perfectly its current position and sensing accu- 
rately the adjacent cells for obstacles; and it also,knows 
perfectly the pursuers' observations. Thus, each obser- 
vation ~ ( t ) ,  t E 7, consistsof a triple (ez@),  oZ(t) ,  f ( t ) ) ,  
where ez( t )  E X denotes the measured position of the 
evader, o,(t)  c X denotes the set of cells adjacent to 
the evader where the obstacles are detected at time t ,  
and y ( t )  E y denotes the observation of the pursuers' 
measurements y( t ) .  We then have 2 = X x 2x x Y .  
ez( t ) ,  o,(t) ,  9(t) ,  are conditionally independent given 
the current state s( t ) .  
Note that both the players can detect when the game is 
over. This because the pursuers' team reports to see the 
evader in a single cell occupied by a pursuer if and only 
if the game is actually over, and the evader perfectly 
knows the pursuers' team observations. 
To simulate the game, at every time t E 7, we have to: 
1. build the matrix AV in (8) with J u ( p , q )  given 
by (3), where the information state for player U 
Ppt-16t-1(s( t )  = s , Z t  = Z l Y t  = Y )  can be computed 
recursively based on the observations and motion mod- 
els (see [l l]) ,  
2. determine mixed policies satisfying (9) by the L P  
method in [ l ,  pag.311, and map them into p* and q * ( 2 )  
by using L' and LD in Lemma 1, I 
where Y and 2 are the values realized by Yt and Z t .  
Note that, in order to compute the information state, 
player U should know which were the stochastic actions 
selected by player D. Also, in general, there are multi- 
ple Nash equilibria for the static games, which, though 
equivalent as for the one-step game, originate different 
information states. We assume that the evader chooses 
the solution that maximizes the minimum determinis- 
tic distance from all the pursuers. 
In this example, the dimension of matrix Au can be 
reduced by noticing that only the last measurements 
of the evader need to be considered in computing the 
cost. Similar considerations apply to expression (3), 
which can be simplified since the information state is 
given by Ppt-16t-l(~e(t) = Z e , o , ( t )  = 0zlYt  = y>. 
Figure 1 shows a simulation for this pursuit-evasion 
game with nc = 400 cells, n, = 3 fast pursuers 
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Figure 1: Pursuit using the onestep Nash approach. 

( p p  = 1) represented by light stars in pursuit of a 
slow evader (pe = 50%) represented by a dark cir- 
cle, with fp = f n  = 1%. We assume that there are 
no obstacles so that the information state reduced to 
Ppt-16t -1  ( X e ( t )  = X e l Y t  = Y ) ,  which we can then en- 
code by the background color of each cell: a light color 
for low probability and a dark color for high probability. 
As the game evolves, the color map changes. Frames 
are taken every 4 time steps. 
As for the computational load involved in the simula- 
tion, according to definition ( 8 ) ,  Au has as many rows 
as the number mp of policies p E Fppure, and as many 
columns as the number mq of policies q E Qpure. In 
particular, m, is equal to the number of all possible 
combinations of the evader’s actions from all its admis- 
sible positions x E X ,  x # x;, i = 1,. . . ,np,  where 
xp E Xnp is the pursuers’ team position. It is then 
easily seen that mp 5 9np,  m, 5 gnC-‘+, and therefore 
mp is independent of the map dimension nc, whereas 
this is not the case for mq. On the other hand, mq can 
be highly reduced by considering the dominant saddle- 
point solutions to the matrix game, [l]. These are the 
saddle-point solutions to the reduced matrix game ob- 
tained by eliminating from AU the dominated columns, 
i.e., those columns whose entries are all greater or equal 
to the corresponding entries of another column. To un- 
derstand why dominated columns appear, suppose that 
an evader at  an admissible position x E X can choose 
an action that takes it from x to a cell not reachable 
by the pursuers. We call this action a cool move. Then 
a column c corresponding to a pure policy q that does 
not choose the cool move is dominated by the column 
corresponding to the policy that differs from q only be- 
cause the cool move is chosen, and hence c can be elim- 
inated. As a result, the reduced matrix has as many 
column as the number mi of all possible combinations 
of the evader’s actions from only those admissible po- 
sitions where no cool action is available. mh obviously 
depends on the position xp  of the pursuers. For np = 3 
the worst case situation is m: = g4, where 9 is the num- 

ber of evader’s actions, and 4 is the greatest number of 
positions from which no cool move is possible. This is, 
in general, much smaller than the upper bound 9nc-np 
given before. 

5 Conclusion 

In this paper, we consider a game where a team of 
agents is in pursuit of a smart evader. The framework of 
partial information Markov games is suggested to take 
into account uncertainty in sensor measurements and 
inaccurate knowledge of the pursuit region. A receding 
horizon policy, where both the players use stochastic 
greedy policies, is proposed. We prove the existence 
and characterize the Nash equilibria for the nonzero- 
sum games that arise. An example of pursuit-evasion 
game implementing the proposed approach is included. 
In this example, among all Nash equilibria, the evader 
chooses the one which maximizes its deterministic dis- 
tance to the pursuers’ team. We are currently con- 
sidering different alternative for the evader’s behavior. 
Another open issue is the optimality analysis of the 
proposed greedy approach in terms of long-run aver- 
age cost, e.g., the characterization of the performance 
achieved in terms of the expected time to capture, as a 
function of the evader’s speed. 
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