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Abstract— This paper introduces a method for approximat-
ing the dynamics of deterministic hybrid systems. Within this
setting, we shall consider jump conditions that are character-
ized by spacial guards. After defining proper penalty functions
along these deterministic guards, corresponding probabilistic
intensities are introduced and the deterministic dynamics are
approximated by the stochastic evolution of a continuous-time
Markov process. We will illustrate how the definition of the
stochastic barriers can avoid ill-posed events such as “grazing,
and show how the probabilistic guards can be helpful in
addressing the problem of event detection. Furthermore, this
method represents a very general technique for handling
Zeno phenomena; it provides a universal way to regularize
a hybrid system. Simulations will show that the stochastic
approximation of a hybrid system is accurate, while being able
to handle “pathological cases.” Finally, further generalizations
of this approach are motivated and discussed.

I. INTRODUCTION
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example, the fundamental concept of stability for HS has
produced only few results, the most notable of which can
be found in [3] and [12].

The presence of Zeno behavior in hybrid systems pro-
vides another important example of the unique challenges
confronted in the theory of deterministic HS. Qualitatively
speaking, Zenoness describes a condition where the hy-
brid trajectory switches between specific domains infinitely
many times over a finite time interval. It represents a mod-
eling error which sometimes can be avoided by introducing
finite delays in the switches, which in fact means changing
the model itself. In a more simplified setting, that of Affine
HS, some interesting results have been also obtained in [2].

These are just a few examples of the many aspects of
deterministic HS that pose a challenge to their analysis.
On the other hand, approximating a HS with a stochastic
counterpart can give a fresh new perspective to the problem.

Recently, a considerable amount of research has begn

directed towards the topic of Stochastic Hybrid Systems
(SHS for short), both in the viewpoint of extending th
theory of deterministic HS (cf. [4] and [11]), as well as
discovering new applications unique to the probabilistig
framework. This, in our view, is due to the increas:inglyp
clear limitations of the deterministic setting. The mai
challenge that the HS framework poses—unlike the cage
of classical dynamical systems or the relatively simple case
of switched systenms—is the necessity of handling spacial

guards and therefore discrete-time conditions. These ju
like

conditions often give rise to pathological behaviors,

“grazing” or Zeno; their presence prevents the possibilit
of globally understanding the dynamical properties of

HS, e.g., determining stability or reachability; moreover,
they heavily influence the continuity of a hybrid trajectory
with respect to its initial condition. The study of Optimal

€

i fact, along with being more general than its deterministic
counterpart, it could offer, as we shall hint at, some tools
to look at the global behavior of HS. In the case of Zeno
henomena for a HS, we shall show that our stochastic ap-
roximation is not Zeno; stochastic approximations provide
a method for universally regularizing a hybrid system, i.e.,

nthey are a de-abstraction of the hybrid model which could

e of interest to software developers.

The paper will unfold as follows: after introducing the
classical definition of a HS, we will describe how to
bstitute its guards with probabilistic barriers. A section
on discrete event handling follows. Then, we shall focus on
Yeno conditions. Simulations will validate our statements.
Lonclusions will close out the paper.

[l. THE SETTING
Throughout the paper we shall stick to the classical

Control for HS is yet another instance of how challengingramework for deterministic HS [12].

it is to determine the global behavior of such a system
based on its local dynamics. The current state of resear
in the “deterministic world” has produced results which ar
either applicable to very special cases, or which require °
particularly strong conditions on the system’s structure; for
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1In simple terms, we define switched systems a collection of dynamical
systems on the same vector space; the global dynamics jumps between
them with conditions in time, which can be either deterministic or

probabilistic.

Definition 1: Define ahybrid systemas a tuplesz =

,E,D,G,R, F) where

Q={1,..,m} C Zis a finite set ofdiscrete states

e F C @ x Q is a set ofedgeswhich define relations
between the domains. Fer= (i,j) € E denote the
source ofe by s(e) =4 and the target of by t(e) = j.

e D = {D;}icq is a set ofdomainswhere D; is a

compact subset dR™.

o G ={G.}ecr is a set ofguards whereG. C Dy,
we assume that there exists a collection of smooth



functions{g. }ecr such thatG., = {z : g.(x) = 0}; a specific point in the domain, with respect to one of its

we also assume that(z) > 0 for all z € D). guards. Intuitively, they will be roughly equal to zero inside
e R = {R.}ecr is a set ofreset mapsthese are a domain, while growing (to infinity) in a neighborhood of

continuous maps fronG. C Dg.) to R.(G.) C the guard for which they are defined.

Dy(e)\G(e)- The intensity functions are defined so that they account

o« F = {fi}icq is a set ofvector fieldssuch thatf; for both the distance to the guard, and the relative direction
is Lipschitz onR™. The solution to the ODE; with  of the trajectory in the domain with the guard. Assume the
initial condition zy € D, is denoted byz;(t) where domainD; is characterized by two elements: the vector field

x;(tg) = xo. fi(z) and the guard functiop;; (x):

A executiod of the hybrid systems is a tuple y = z = fi(x);

(7_75777) where ) ) Gij (l‘) 2 0.
oT:{Ti}jeNthTO:OSTlS"'STJ’S"'|Sa

hybrid time sequencer a sequence afwitching times It is possible to transform the general, possibly nonlinear
o &={&}ien With & € U, D is asequence of initial guardg;;(x) into a linear one by introducing a new variable

conditions. z = g;;(x)% and defining the new extended system (cf.
o 1 ={n;}ien With n; € E is ahybrid edge sequence [14]):
Additionally, we require thai = (7, £, n) must satisfy the i = f;(z),
condition that fori € N, . dgi;(x)
i = Tom(m) 2= Lngulw) = oz fil@);
Tipr = min{t > 7 : x40, (t) € Gy, } 220
s(ip1) = t(m) The term in the second equation is the Lie derivative of

¢ — R,(z (Tis1)) the functiong;; along the vector fieldf;. It describes any
o 7\ s () VT trajectory of the vector field from the perspective of a guard.
We also require thatpjﬂ”;_)(gi) € Dy, for all t € The last inequality describes the equivalent guard in the
[7:,Tir1]; this is quite a natural assumption. With thisextended domain. We define themp intensity\;; (=) as:
notation, define a functiog : 7 — @ by settingq(t) = 1
s(n;) if ¢ € [m,741); we call this function thediscrete Aij(x)
evolutionof the executiony.

_712 1 Lfigij(x)
“ T @l @l

A key point is the understanding that many of theThe first term is inversely proportpnal to the distance _from
; . . . . the guard. The second term takes into account the derivative
subtleties mentioned in the introduction are due to the . T
. ) . of the guard along the vector field and, by normalization, is

presence of the spacial guards; for example, particular con- . .
g . . a number between zero and one; in the case of linear guards,
figurations of these guards can result in Zeno phenomeng : .
. o . I.8., guards that are hyperplanes, it can be interpreted as
their combination with the reset maps can be accounted f8r

) L . : . . . being proportional to the angle between the vector field
the discontinuity of the hybrid trajectories. The first fact IS_nd the guard: it is zero when the vector field is tangent to

the main impetus for considering these spacial guards H:'ne hyperplane, while it is one in the orthogonal case. The

more detail and for defining intensity functions based on ~,. 7" .
them 9 y motivation to include the second term comes from the need

to avoid grazing conditiond5], i.e. flows that osculate the
A. Defining Transition Intensities guard, without actually crossing it (see Fig. 1). The reader
Let us consider a set of state-dependent functions, osBould ponder over the observation that other possible jump

for each guard of every single domain of the deterministifunctions could be defined. For instance, the information
HS. They are defined on the entirety of the domains;: ~ coming from higher order Lie derivatives could be exploited
in the definition; alternatively, the functions could embed

NExX — Ry, the information of whether the vector field points into or
(e=(i,)),z) — Nij(x) out of the domain. It will nevertheless become clear in the
) , . following how this will be helpful only from a simulation
fori = 1,...,m andj = 1,...,m;, wherem; is the

L ; . standpoint, while in theory similar function may be indeed
cardinality of the guard set in the domaib;. These equivglent y Y

functions are intended to represent jumping intensities at This approach is not new in the literature: the idea of

2Here we are considering onlipfinite executions since these are the ©MPlOying space-dependent rates has been recently used in

executions that display Zeno behavior; introducing the definition of a finite

execution would require unnecessary complication. For the more general*if each domain has a different number of guards, it is necessary to

definition see [12] or [15]. introduce in all of them a number of variables equal to the maximum
3The reader should notice that we include the guards in the initial poinsardinality of the set of guards among the domains; possibly some of the

set: this is in practice not detrimental for our results. new variables will describe equilibrium surfaces for the extended domain.



o to) matrix of jumping rates, it will be necessary to introduce a

- dummy copy of each such domain with same vector fields
and guards. We leave to the reader the task of sorting out
this simple subtlety.

Assumer, is the time of thert* jump happening in a
domain, say, the domai,;. Resorting to the theory of
continuous-time Markov chains, we know that the proba-
bility that the first jump happening in domain; after time
t, starting at timeg, is

Fig. 1. A grazing condition. P, (Tr S t) _ eftto _ui(s)ds. ©)

In other words, theP; distribution of 7. is exponential
[10]. In this particular instance the author provides a specifigith parameterv;(¢). The reader should note the non-
intensity function for the “bouncing ball” hybrid system homogeneity of the process. Considering a differential in

given by: time dt, the probability to jump from domai®; to domain
< (z) = ee™/e, D;in t,t+dt) is

where ¢ is a constant parameter that tunes the accuracy P(q(t +dt) = jlq(t) = i;q(s), s <t) =

of the approximation; the indices describe the presence of Xij(t)dt +o(dt), j # i,

just one domain and its relative guard. This work did not here we have exploited a markovian property for th
provide any hint on how to give these intensity functions ifvhere we have exploited a markovian property for the

generality. Such a shape could be exploited and embedd Peesse- Similarly, the probability that in the interval
with our transitions rates i,t + dt) the domainD; would not change is

" . ) P(q(t + dt) = i|q(t) = i; s < t) =
B. Jump Intensities as a function of time (gt +dt) = ilq(t) =i (s), s <1)

Thus far, we have regarded the jump intensities as func- L= 2 dig ()t + o(dh) = 1 = vi(t)dt + o{dt).
tions of the state space in each domain. A related idea, thHfis can actually be inferred directly from (3) by approxi-
of defining time-dependent jump conditions, has been usé@ation. At this point the connection between this approach
in the literature for Markov-jump systems [13], as well asand the literature on (piecewise) continuous-time Markov
albeit from another perspective, for continuous-time Markoprocesses and non-homogeneous Poisson processes should
Chains [9]. In [6], space-dependent jump intensities are€ recognizable.

defined for piecewise-deterministic Markov processes. To Remark 1: The reader should note how this approach

begin with, we regard the execution of a hybrid system &$;ndles one of the fundamental intricacies of HS, that is
a stochastic process (jump process) on a probability Spagg, rejative position and possible intersection between the
(2,9,F). Focusing on a domaid); and considering the 4145 in each domain. As a matter of fact, if there is
guard associated to the edge= (i, j), we can think of ore than one guard per single domain, the jump intensity

these rates as time-dependent functions when we fiX 3} ctions will be endowed with the property of being
initial conditionzy and consider the evolution in time of the composable.

flow of the related vector field from that pointt > t,, we

can consider\;;(z;(t)). Here the functionz;(¢) describes [1l. STOCHASTIC APPROXIMATIONS FOREVENT
the solution of the ordinary differential equatian= f;(x) DETECTION
with initial condition z;(to) = xo. Numerical simulation is an important tool for the analysis

More generally, consider the collection of domainsof HS; nevertheless, it is well known that it is rather brittle
{D1,Ds,...,Dn}; we can associate to each guard in eaclvith respect to initial conditions. Small changes in the initial
domain D; which transitions the hybrid system to thecondition of a hybrid trajectory do not necessarily result in
domain D; for j # i, or equivalently to each edge = small changes in its final position. Moreover, the possible
(i,7), a rate \;;(x;(t)), Vt > to. From this, define an failure to detect an event that happens for the actual solution
additional rate which will be related to the length of theby considering the evolution of the numerical trajectory
dwelling time within the domairD;: may result in dynamics that are qualitatively different from

those of the actual trajectory. Some notorious examples of

vi(t) = Z)‘ii(xi(t))’ Vi=1,...,m; ¥t =0. (2)  mishandled events arej sum?narized in Fig. 2. P

7 The simulation process heavily relies on approximation
Here it is important to mention the possible extensions dechniques for integrating the vector fields on each domain
the former quantities to guards that are associated witlef. [7]). In this work we claim that, given a numerical
reset maps that may force the solution back into the santechnique to integrate the ODE's in each domain, the
domain. In order to maintain the classical properties of thstochastic approximation of the guard functions can be an



Fig. 2. In some cases the event is either not detected or even wrongly
spotted. The shaded regions are not parts of the domain and their marked
margin represents the guard.

effective framework for handling discrete events. This claingig 3. Event detection; the continuous straight line represents the guard:

is supported by the observation that the stochastic guatteé other continuous curve depicts the deterministic trajectory, to which

functions represent a special kind of “barrier functions” tha® classical event detection method is applied. The crosses tell where the
. . integration points fall in the stochastic framework.

can be related to the flow of the system. As described in the

first section of the paper, we can make the jump condition

depend on the actual magnitude of the function given ifore precisely, if we make it a nonlinear function of the

Eqn. (1), rather than on the simple examination of the valugie and the barrier function as follows

of the guardg(z(t)); it should be clear how the former

condition is stronger and more discriminative than the latter. h(k) = ﬁ, a >0, (5)
Moreover, as already pointed out, the barrier functions are (LyA(@))A(z)

endowed with a term that prevent discrete switching in cagben we get

when the trajectory is parallel to the guard—this prevents (k) o

grazing. - W; A(0) = Xo.

Additionally, in order to avoid the necessity of setting
the integration step-size a priori, we propose a dynamithe solution of this differential equation tells us that if
refinement of it, depending on the value of the stochastitie of the vector field approaches the guard, the boundary
boundary. Similar in concept as what was suggested fanction A(z) diverges; moreover, in this instance the step
[8], this idea can be implemented on a variable-step-si&ize is dynamically decreased to zero. In other words, the
integration method. closer we get to the guard, the more precise the integration

Consider the solution(t) to the differential equation =  step will be and we will “force” the integration of the
f(x) with z(ty) = zo. Assume it is approximated at the differential equation to detect the event before crossing the
discrete time sequencfy},_,, for t, > t,_1, as@, = guard.

#(ty). The value of the vector field at that time is then We present the results of two simulations. The first one
fr = f(&,) Yk = 1,...,m. The time step used in the (see Fig. 3), shows how the stochastic approximation pre-
numerical integration is defined as = ¢, —t,_,. Asimple cisely detects the crossing, as compared to the deterministic
integration scheme that employspast values of the vector numerical method. In this instance the vector field is a
fields can be described by the following difference equatiogpircular one, rotating clockwise. The guard is represented
m by the line, slanted at/4 degrees.
Tl = Th +hk+1Zﬁjfk7j+17 The second simulation, which can be seen in Fig. 4,
=1 shows how, given a numerical solution that actually grazes
the guard, the stochastic approximation finely avoids to
q)etect the event. Again, in this example the vector field
rotates clockwise, while the guard is slanted -at/4
degrees.

where the coefficientg; are functions of then previous
steps and can be determined through evaluation, as can
verified in [7]. As in [8], assume that the step number
lies in the continuumf € R, and time to be a function
ofit, t = t(k) The stochastic guard function relating to the IV. HANDLING DETERMINISTIC ZENO DYNAMICS
function g(x) can then be described along a trajectory by

Ag(z(t))] = Mglx(¢(k))]}. The step size of the integration Hyt.md SVS‘E”.‘S pose a prqblem which is unknown in
dt . .~ the simpler setting of dynamical systems, that of Zeno

method can be regarded agk) = <=; we should keep in . X ) .
) . dk dynamics. In simple terms, Zeno dynamics describe the
mind that we can control it. Then, we can look at how the

X . . . . condition when, in a finite time interval, the hybrid trajec-
barrier function varies with respect to the (continuous) Ste%ry jumps between specific domains infinitely many times

nudn;\ber:a)\ 50 9 Ot 9N More precisely, consider the following definition.
g Ox
ae dg 0z Ot Ok = ag r9(@)h(k) = LyA(x)h(k). Definition 2: A hybrid system.># is Zenoif for some

(4) executiony of 27 there exists a finite constant, (called
Now, if we regard the termh(k) as a control input, we can the Zeno tim¢ such thatlim; oo 7; = Y oo (Ti41 — 7i) =
choose its shape, in order to obtain the desired dynamics,. the executiony is called a Zeno execution.



-o6f ] Zeno. Then, with probability one, there would exist a finite
constant7,, < oo such thatlim; .. 7 = > .= (Fi41 —

7;) = To. Assume for the moment thati € Q,v;(t) =

] v(t),Vt > to. Considering a single time intervif;, 7;.1)

o9 ] and a random variablé that is the time at which a discrete
event occurs. The probability that the jump happens inside
this interval is

—0.7h

-1t

P(J € [ 7)) = 1 — o Jo 7 V0

-1.21

el ] Exploiting the assumption of local integrability and ob-
| serving that the interval is always finite, the probability of
=8 07 05 05 -4 w03 02 01 0 the previous event is always less than one. Therefore, by

Fig. 4. In the case of grazing, the stochastic approximation perfectlgonStrucuon the SH3” cannot be Zeno in probability.

matches the numerical solution (Curved lines) and does not detect the event-€t US Show now that the probability of this event to hap-
determined by the presence of the guard (straight line). pen is actually zero. Given a stochastic Zeno time sequence

7 = {7 }ien, identify with it the infinite subsequence that
contains jumps at each subinterval: = {7 };eacn. Call
The definition of a Zeno execution results in two quali-7 = {7*¢},.\\ » the complement of* in 7. It is again
tatively different types of Zeno behavior. They are define@ subsequence, possibly infinite, and contains no jumps in

-L4f

as follows: for an executiony that is Zeno,y is all of its subintervals. The probability that exists is then
Chattering Zeno: If there exists a finiteC' such P(7 exists
that7i+1 —7m,=0foralli>C. axc -
Genuinely Zeno: If 7,41 —7; > 0 for all i € N. - 11 < Jirdt v(s)ds TI0-e ;5“ V(S)ds)
The difference between these is especially prevalent in their PEN\A i€A
detection and elimination. Genuinely Zeno executions are e 7
much more complicated in their ber)(avior. This paper will _ o Teena Jrie vle)ds H(l _e T ”(S)ds).
focus on genuine Zeno. There have been many attempts icA

to handle the Zeno behavior in a deterministic setting bRecall the assumption that the functiots) is measurable.
either changing the original model [15] with the addition ofThe first term is always less than one (being equal to one
some delays, or looking at it within a simpler setting [2].only in case of an infinite sequence with infinite cumulative
Hespanha, [10], first suggested that, in a very special casength, which we exclude by assumption). The second term
a stochastic sequence of approximated HS could effectivlyill instead always be equal to zero. In case of Chattering
handle Zeno behavior. Zeno, the reason for this is trivial. In case of Genuine Zeno,

The definition of our probabilistic barriers have thisthis will also be the case, as the probability is a product
property in a general case, given some additional structurgf terms less than one decreasing to zero. All in all, the
assumptions. Frist, the reader should note that: stochastic hybrid time sequence is Zeno on a measure zero
set.

If, in general,v;(t) # v;(t), for somei,j € Q, then
take v(t) = sup;cqvi(t) < oo,Vt > to. Then, the two
Moreover, we shall assume the following: probabilities above expressed in the general case will be
respectively upper bounded by those defined through.
Thus, also in the general case, Zeno has probability zero to
occur for the SHSY. [ ]

Building upon the above theorem, we introduce the
SI"ollowing fact:

Remark 2: The definition of the rates;;(x), Vi, j, im-
plies their measurabilityx € D;.

Assumption 1: The jumping rates\;; are locally inte-
grable,Vi, j. A sufficient condition would be, for example,
their boundedness.

Remark 3: The local integrability condition, while it
may appear restrictive from a theoretical point of view, i
always valid when a real simulation of the HS is preformed. Corollary 1: Let s# be a hybrid system and” be its
stochastic approximation. For any initial point in timg >
0 and initial conditionzy € D;,i € 1,2, ..., m, the hybrid

Theorem 1: Let # be a hybrid system and” be its trajectory of the SHSY is globally definedvt > t.
stochastic approximation. The set of trajectoriess6fthat
are Zeno has measure zero. In other terrfsjs Zeno with
probability zero.

The following holds:

Proof: We assume that the condition of existence
and uniqueness for the hybrid trajectories are satisfied by
the definition of the HS#; we implicitly rule out the

Proof: Consider a hybrid time stochastic sequefice  possibility ofblocking conditionsthat is the stopping of the
{7i}ien. Reason by contradiction: assume the SHSis trajectory because some terms required for its realization are



HS. Furthermore, some properties for the original HS may
be checked “in probability,” rather than in a “worst-case”
fashion. Currently, this research is directed towards under-
standing how the stochastic framework for hybrid systems
can be exploited to understand the behavior of the original
HS, e.g., stability (cf. [1]) and optimal control.

Second tank

VI. CONCLUSIONS

In this work we have proposed a new way to approximate
deterministic hybrid systems by substituting their spacial
guards, which define the discrete switching conditions, with
probabilistic barrier functions. This way, we consider the
original HS as a non-homogeneous Markov jump system.
The barrier functions are viewed as switching rates in space,
but can also be regarded as jump intensities in time along
trajectories of the system. We showed how these barriers
can be assist in understanding discrete events, with no
Fig. 6. Top view of the two water tanks hybrid system. We havedrawbacks compared the known deterministic methods; the
first simulated this system yvith_ the; classical dete_rminist_ic event_detectiq?]tegration step in a simulation can be dynamically changed
software. After approximating it via the stochastic barrier functions, we . 4 L
have run the simulations with increasing precision. and adapted, depending on the relative position to the

guard, in order to precisely detect the event. Furthermore,
we showed how to approximately handle Zeno conditions
missing. Moreover, excluding a priori any Zeno behavior, athrough this stochastic framework. We provided motiva-
from the above Theorem, we get to the desired statemetibnal and applicative simulations showing the features of

1 11 12 13 14 15 16
Time
First tank

Three dimensional view of the two water tanks hybrid system.

B the

At this point an example is in order; we worked out
a simulation for the well knowrtwo water tanks hybrid
system(cf. [15]). In this instance, two tanks which present
some outflow are filled up with a single hose, which is
forced to switch into any one tank which level goes below
a certain fixed one. The classical deterministic mathematicaf!
model of this HS does not account for delays in the physicals)
switch from one tank to the other tank. This fact accounts
for the existance of Zeno behavior. More specifically, this!*
happen in the case when the inflow is less than or equal to
the sum of the two outflows. In this case, it is possible to[5]
calculate explicitly the exact value of time when this occurs
(Zeno time). In Fig. 5, we plotted first a 3D simulation [g]
of this system—under conditions that force the system to
be Zeno—uwith the classic deterministic event detection. Ad’!
expected, the trajectory gets stuck near the Zeno time. (g

In the series of plots in Fig. 6, we instead show how
the stochastic approximation is able to detect the discret
event with as much accuracy than the deterministic case.
However, unlike this case, the trajectories are defined f¢t0]
any time; in other words, there is no Zeno time, and th%ll
simulation does not stop. In this figure, we have increase
the accuracy via a multiplicative parameter in the definitiofil2]
of the barrier function.

(1]

V. FUTURE DIRECTIONS (13]

The idea of approximating the structure (and thus thB4]
dynamics) of a deterministic HS with some stochastic

methodology, and reflected on the generality of the

possible extensions.
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