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Abstract. Affine hybrid systems are hybrid systems in which the dis-
crete domains are affine sets and the transition maps between discrete
domains are affine transformations. The simple structure of these sys-
tems results in interesting geometric properties; one of these is the notion
of spatial equivalence. In this paper, a formal framework for describing
affine hybrid systems is introduced. As an application, it is proven that
every compact hybrid system H is spatially equivalent to a hybrid sys-
tem Hid in which all the transition maps are the identity. An explicit
and computable construction for Hid is given.

1 Introduction

This paper introduces affine hybrid systems. Affine hybrid systems are hybrid
systems where the discrete domains are affine sets, and the transition maps be-
tween discrete domains are affine transformations. This definition differs from
other definitions of hybrid systems that have been proposed [9], but the under-
lying ideas involved in the definition of affine hybrid systems have been seen in
the literature [6,7]. We give a formal framework to these ideas.

Affine hybrid systems are simple, and it is this simplicity that allows us to say
some useful things about them. The structure of affine hybrid systems contains
a wealth of intrinsic information. Affine sets can be described in terms of matrix
inequalities, and affine transformations are characterized by elements of SE(n).
In this paper, we use the geometric information intrinsic in affine hybrid systems
to develop the idea of spatial equivalence between an affine hybrid system H and
an affine hybrid system G.

In the literature on hybrid systems, it typically is assumed that all of the
transition maps of a hybrid system are the identity; all switched systems are
essentially hybrid systems where the transition maps are the identity [4,10].
This assumption is very restrictive; some of the simplest hybrid systems do not
satisfy this assumption, e.g., the hybrid system T

2 constructed in Example 2.1 of
this paper. For this reason, it is desirable to find a way to bridge the gap between
hybrid systems where all the transition maps are the identity and hybrid systems
where this is not the case.

Given an affine hybrid system H, we would like to construct an affine hybrid
system Hid such that all of the transition maps are the identity. We also would
like this affine hybrid system Hid to be as similar to H as possible. In what way
should these two affine hybrid systems be considered similar? Spatial equivalence
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Affine Hybrid Systems 17

is introduced as a way to consider an affine hybrid system H as similar to an
affine hybrid system G. Spatial equivalence can be thought of in an intuitive
manner (see Figure 4 for a visual interpretation). Replace each edge of H by
a sequence of edges and domains with vector fields such that if we “start” at
the source of the edge, the target of the edge will be reached in some time. If
the affine hybrid system obtained by appending these edges, domains and vector
fields to H is G, then H is spatially equivalent to G. A formal definition of
spatial equivalence will be given in Section 5, but having this intuitive picture
in mind will be helpful.

An affine hybrid system H is compact if each of its domains is compact. The
main theorem of this paper is:

Main Theorem. Every compact affine hybrid system H is spatially equivalent
to an affine hybrid system Hid in which every transition map is the identity.
Moreover, Hid is computable.

This paper begins by introducing, in Section 2, the definition of an affine
hybrid system. Sections 3 and 4 present some results in affine geometry that are
necessary for the proof of the Main Theorem. In Section 3, given two (n − 1)-
dimensional affine sets X and Y = RX + p, for (R, p) ∈ SE(n), we determine
conditions on X, R and p such that there exists an n-dimensional affine set
with X and Y as faces. When these conditions are satisfied, we find a closed
form solution for a set S which has X and Y as faces. This closed form solution
allows us later to compute Hid. When there does not exist an affine set S with
X and Y as faces, an admissible sequence of faces, X = Z0, Z1, ..., Zk = Y , is
introduced; it is used to construct a sequence of affine sets, S1, S2, ..., Sk, where
X is a face of S1 and Y is a face of Sk. Admissible sequences of faces are used in
Section 4 to generalize the results of Section 3 by showing that if Y = RX + p,
for (R, p) ∈ SE(n), there is an admissible sequence of faces

Z0 = X, Z1, ..., Z 11
2 n(n−1)+1, Z 11

2 n(n−1)+2 = Y.

In Section 5, the results in affine geometry that were introduced in Sections 3
and 4 are used to prove the Main Theorem and give an explicit construction for
Hid. This is done by using the admissible sequence of faces found in Section 4
to define the domains of the hybrid system Hid.

2 Affine Hybrid Systems

This section introduces the notion of an affine hybrid system. An affine hybrid
system consists of the following data: a set of discrete states, domains, edges
and vector fields. The discrete states provide a way to index the domains. The
domains are affine sets, i.e., sets that are affinely constrained. The edges provide
a relationship between two faces of two domains; each edge has a source which
is the face of a domain and a target which is also the face of a domain. It is
required that there exists an affine transformation between the source and the
target of each edge; thus each edge gives rise to a transition map, which is an
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affine transformation from the source of the edge to the target of the edge. The
set of vector fields is a collection of vector fields that are Lipschitz on each
domain.

Before we formally introduce the definition of an affine hybrid system, we
will describe each of the components of its definition. This section is concluded
by solidifying the concepts introduced through an example: the torus T

2. This
example also will be important later in the paper.

2.1 (Discrete states). Let Q ⊂ Z denote the set of discrete states. This set is
finite, and the number of discrete states is given by |Q|. For simplicity, typically
we let Q = {1, ..., m}.

2.2 (Domains). The set of domains is the set D = {Di}i∈Q, where each Di ⊂ R
n

is an n-dimensional affine set, i.e., a set that is affinely constrained. For each set
Di, there exists a matrix Ai ∈ R

ki×n and a vector ai ∈ R
ki such that

x ∈ Di ⇔ Aix + ai ≥ 0.

We say that Di is determined by the affine constraints Aix + ai.
The boundary of Di can be written as the union of ki affine sets of dimension

n − 1 called the faces of Di. The faces of Di can be indexed by introducing the
indexing set,

Fi = {1, ..., ki}, i ∈ Q.

The jth face of Di is denoted by Facej(Di), where j ∈ Fi. We can pick an
indexing of the faces of Di by letting Facej(Di) be the affine set determined by
the jth row of Ai. More precisely, if (Ai)j∗ is the jth row of Ai and (ai)j is the
jth entry of ai, then

x ∈ Facej(Di) ⇔
(

Ai

−(Ai)j∗

)
x +

(
ai

−(ai)j

)
≥ 0. (1)

We can define

Aij =
(

Ai

−(Ai)j∗

)
, aij =

(
ai

−(ai)j

)
,

so x ∈ Facej(Di) if and only if Aijx+aij ≥ 0. Therefore, Facej(Di) is determined
by the affine constraints Aijx + aij .

2.3. For a set U with U =
∏n

i=1 Ui, denote the projections on each of the factors
of U by πi : U → Ui.

2.4 (Edges). Define the set of edges as a set

E ⊆ {((i, j), (k, l))}(i,j)∈Q×Q, (k,l)∈Fi×Fj
,

satisfying the condition that for each e ∈ E, there exists a map Te(x) = Rex+pe,
with (Re, pe) ∈ SE(n), such that

Te(Faceπ3(e)(Dπ1(e))) = Faceπ4(e)(Dπ2(e)). (2)
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In other words, an edge defines a relationship between two faces of two affine
sets and an affine transformation between these faces.

More concretely, an element e ∈ E then has the form

e = ((i, j), (k, l)), (i, j) ∈ Q × Q, (k, l) ∈ Fi × Fj ,

so π1(e) = i, π2(e) = j, π3(e) = k and π4(e) = l. Condition (2) allows us to
write

Te(Facek(Di)) = ReFacek(Di) + pe = Facel(Dj).

2.5. Given an edge e ∈ E, the affine transformation Te(x) = Rex + pe from
Faceπ3(e)(Dπ1(e)) to Faceπ4(e)(Dπ2(e)) is called the transition map. The set of
transition maps is the set T = {Te}e∈E .

2.6 (Vector field). A set of vector fields is a set V = {Vi}i∈Q where Vi is a
Lipschitz vector field when restricted to the domain Di. The flow of Vi on Di is
denoted by φi(t, x) for x ∈ Di.

Definition 2.1. An affine hybrid system is a tuple H = (Q, D, E, V ).

Note 2.1. From this point on, for the sake of brevity, we will refer to “affine
hybrid systems” as “hybrid systems”.

2.7. If for some e ∈ E, Te(x) = x, then we say that the transition map associated
to the edge e is the identity map. This implies that

Faceπ3(e)(Dπ1(e)) = Faceπ4(e)(Dπ2(e)).

A very special class of hybrid systems are hybrid systems in which every transi-
tion map is the identity, and we denote such hybrid systems as Hid.

Example 2.1 (The torus: T
2). We will construct a hybrid system called the torus,

which we will denote by T
2 (see Figure 1). The torus is given by one discrete

state QT
2

= {1}. The domain DT
2

1 = {(x, y) : x ∈ [0, 1], y ∈ [0, 1]} is given by
the affine constraints

AT
2

1

(
x
y

)
+ aT

2

1 =




1 0
−1 0
0 −1
0 1




(
x
y

)
+




0
1
1
0


 .
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Fig. 1. The torus: T
2.

Applying (1), the affine constraints for Face1(DT
2

1 ), Face2(DT
2

1 ), Face3(DT
2

1 ) and
Face4(DT

2

1 ) are given, respectively, by

AT
2

11

(
x
y

)
+ aT

2

11 =
(

AT
2

1
−1 0

) (
x
y

)
+

(
aT

2

1
0

)
, (3)

AT
2

12

(
x
y

)
+ aT

2

12 =
(

AT
2

1
1 0

) (
x
y

)
+

(
aT

2

1
−1

)
,

AT
2

13

(
x
y

)
+ aT

2

13 =
(

AT
2

1
0 1

) (
x
y

)
+

(
aT

2

1
−1

)
,

AT
2

14

(
x
y

)
+ aT

2

14 =
(

AT
2

1
0 −1

) (
x
y

)
+

(
aT

2

1
0

)
. (4)

ET
2

consists of two edges: e1 = ((1, 1), (2, 1)) and e2 = ((1, 1), (3, 4). In other
words, e1 is a relation between the top and bottom of the square and e2 is a
relation between the right and left side of the square. The associated transition
maps are

Te1(x, y) =
(

x
y

)
+

(−1
0

)
, Te2(x, y) =

(
x
y

)
+

(
0

−1

)
.

Finally, V T
2

1 is any vector field, Lipshitz on DT
2

1 .
The advantage of defining the edges as a relationship between the faces rather

than a relationship between the domains can be seen in this example. Although
the expression for the edges is more complicated, the end result is a simpler
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definition of the hybrid system; in other references, the torus is defined with two
discrete states [9].

3 Affine Sets

Given two (n−1)-dimensional affine sets X and Y = RX+p, for (R, p) ∈ SE(n),
is it possible to find an affine set S with X and Y as faces? Clearly the answer
to this question is no for an arbitrary element of SE(n), but it is yes if X is in
the “proper position” and R and p satisfy certain assumptions. The purpose of
this section is to find a closed form solution for the affine constraints defining a
set S with X and Y as faces, when the assumptions on X, R and p are satisfied.
This result is important because it makes the later propositions and theorem of
this paper computable by way of this closed form solution. We also will use this
formula repeatedly in order to compute examples, beginning with an example
at the end of this section. For more detailed proofs of the results presented in
this section, see [1,2].

3.1. First, recall some important facts and terminology regarding affinely con-
strained sets. We define a face of an n-dimensional affine set X, denoted by
Facei(X) for i = 1, ..., k (where k is the number of faces), as a subset ∂X such
that there exists a hyperplane Hi where Hi ∩ ∂X = Facei(X). This hyperplane
is called the hyperplane defining Facei(X). If X is determined by the affine con-
straints Ax+a, and if we define the Facei(X) as the set determined by the affine
constraints

Aix + ai =
(

A
−Ai∗

)
x +

(
a

−ai

)
,

then the defining hyperplane, Hi, is given by Hi = {∑n
j=1 aijxj +ai = 0}. If the

smallest number of affine constraints that determine X is k, then X has k faces.
Note that in this case it is always possible to define X in terms of more that k
affine constraints, but never less.

Proposition 3.1. Let X be an affine set of dimension n−1 in R
n, and assume

that X ⊆ {xi = 0}. If Y = X + p, with pi �= 0, then there exists an affine set S
such that X and Y are both faces of S. Moreover, there is a closed form solution
for the affine constraints that determine S.

Proof. If X ⊆ {xi = 0} is an (n − 1)-dimensional affine set with k faces, then
the affine constraints defining X can be put in the form




a11 · · · a1,i−1 0 a1,i+1 · · · a1n

...
. . .

...
...

...
. . .

...
ak1 · · · ak,i−1 0 ak,i+1 · · · akn

0 · · · 0 1 0 · · · 0
0 · · · 0 −1 0 · · · 0







x1

...
xn


 +




a1

...
ak

0
0


.
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Since pi �= 0, if we define

ck = − 1
pi

n∑
j = 1
j �= i

pjakj ,

the affine constraints for the set S are given by




a11 · · · a1,i−1 c1 a1,i+1 · · · a1n

...
. . .

...
...

...
. . .

...
ak1 · · · ak,i−1 ck ak,i+1 · · · akn

0 · · · 0 sign(pi) 0 · · · 0
0 · · · 0 −sign(pi) 0 · · · 0







x1

...
xn


 +




a1

...
ak

0
sign(pi)pi


. (5)

It can be verified easily that X is the face of S given by intersecting S with the
hyperplane {xi = 0}. Similarly, Y is the face of S given by intersecting S with
the hyperplane {xi − pi = 0}. 	


3.2. Throughout this paper, we will use angle to refer to a scaler with values in
[−π, π). For n ≥ 2, Givens rotations (see [5,8]) are n × n matrices of the form

Pij(θ) =

column i
↓

column j
↓



1
. . .

cos θ − sin θ
1

. . .
sin θ cos θ

. . .
1




← row i

← row j

Givens rotations are important because, for every R ∈ SO(n) with n ≥ 2,
there exists n(n−1)/2 angles θij ∈ [−π, π) such that R =

∏n−1
i=1

∏n
j=i+1 Pij(θij)

(cf. [3]). Moreover, there is a closed form solution for θij . Therefore, understand-
ing the effect of applying an element of SO(n) to an affine set is equivalent to
understanding the effect of applying a Givens rotation.

Proposition 3.2. Let X be an affine set of dimension n−1 in R
n, and assume

that X ⊆ {xi = 0} ∩ {xj ≥ 0}. If Y = Pij(θ)X, with θ ∈ (0, π), then there
exists an affine set S such that X and Y are both faces of S. Moreover, there is
a closed form solution for the affine constraints that determine S.
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-1

x

1

y

-1

x

1

y

S

Y

X

Fig. 2. Left: The sets X and Y in Example 3.1. Right: The set S with X and Y as
faces.

Proof. If X ⊆ {xi = 0} ∩ {xj ≥ 0} is an (n − 1)-dimensional affine set with k
faces, the affine constraints defining X can be written as

column i
↓

column j
↓



a11 · · · a1,i−1 0 a1,i+1 · · · a1,j−1 a1j a1,j+1 · · · a1n

...
. . .

...
...

...
. . .

...
...

...
. . .

...
ak1 · · · ak,i−1 0 ak,i+1 · · · ak,j−1 akj ak,j+1 · · · akn

0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 · · · 0 −1 0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0 1 0 · · · 0







x1

...
xn


 +




a1

...
ak

0
0
0




. (6)

The affine constraints for the set S with X and Y as faces are given by

column i
↓

column j
↓



a11 · · · a1,i−1 a1j(cot θ − csc θ) a1,i+1 · · · a1j · · · a1n

...
. . .

...
...

...
. . .

...
. . .

...
ak1 · · · ak,i−1 akj(cot θ − csc θ) ak,i+1 · · · akj · · · akn

0 · · · 0 cos θ 0 · · · sin θ · · · 0
0 · · · 0 −1 0 · · · 0 · · · 0







x1

...
xn


 +




a1

...
ak

0
0




. (7)

It can be verified easily that X is the face of S given by intersecting S with the
hyperplane {xi = 0}. Similarly, Y is the face of S given by intersecting S with
the hyperplane {cos θxi + sin θxj = 0}. 	


Example 3.1. Consider the set X = {(x, y) : x = 0, y ∈ [0, 1]} and Y = P12(π
4 )X.

Since X ⊂ {x = 0} ∩ {y ≥ 0}, we can apply Proposition 3.2 to determine an
affine set S with X and Y as faces. The affine constraints for X are given by



0 1
0 −1
1 0

−1 0
0 1




(
x
y

)
+




0
1
0
0
0


 ,
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where these affine constraints are in the same form as (6). Applying (7) gives
the affine constraints for S as




(1 − √
2) 1

−(1 − √
2) −1

1√
2

1√
2

−1 0




(
x
y

)
+




0
1
0
0


 .

Or this set is given by the constraints that y ≤ −(1 − √
2)x + 1, y ≥ −x and

x ≤ 0. The remaining constraint, that y ≥ −(1 − √
2)x, is satisfied when the

other three constraints are satisfied. The set S is exactly the set that we would
have hoped for (see Figure 2).

4 Admissible Sequences

For two (n − 1)-dimensional affine sets X and Y = RX + p, in general it is
not true that there exists an n-dimensional affine set with X and Y as faces.
When there is not an affine set with X and Y as faces, the question is: does
there exist a sequence of affine sets where the first affine set has X as a face, the
last affine set has Y as a face, and any two adjacent affine sets in the sequence
share a common face? In this section, it will be shown that for any set X and
Y = RX + p, there exists a sequence of affine sets of this form; these sequences
will be essential to the proof of the Main Theorem. The results of the previous
section allow each of the affine sets in the sequence to be computed. Detailed
proofs of the results of this section can be found in [1,2].

Definition 4.1. Two (n − 1)-dimensional affine sets, X and Y , are admissible
faces if there exists an n-dimensional affine set Ξ(X, Y ) with X and Y as faces.

4.1. If Ξ(X, Y ) is an affine set, for (R, p) ∈ SE(n), there are the following
properties

Ξ(X, Y ) = Ξ(Y, X),
RΞ(X, Y ) + p = Ξ(RX + p, RY + p),

where Ξ(RX + p, RY + p) is an affine set with RX + p and RY + p as faces.

4.2. We have shown in Proposition 3.1 that if X ⊂ {xi = 0} and Y = X + p
with pi �= 0, then X and Y are admissible faces; we can take Ξ(X, Y ) to be the
affine set given by the affine constraints in (5). Similarly, by Proposition 3.2, if
X ⊂ {xi = 0} ∩ {xj ≥ 0} and Y = Pij(θ)X, for θ ∈ (0, π), then X and Y are
admissible faces; we can take Ξ(X, Y ) to be the affine set given by the affine
constraints in (7).
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Fig. 3. Left: the sets X, Z1 and Y in Example 4.1. Right: the affine sets S1 = Ξ(X, Z1)
and S2 = Ξ(Z1, Y ).

Definition 4.2. A sequence Z0, Z1, ..., Zk of (n − 1)-dimensional affine sets is
an admissible sequence of faces if there exists affine sets,

Ξ(Z0, Z1), Ξ(Z1, Z2), ..., Ξ(Zk−1, Zk).

Proposition 4.1. Let X be an (n − 1)-dimensional affine set and Y = X + p.
Then there exists an admissible sequence of faces Z0 = X, Z1, Z2 = Y .

Proposition 4.2. Let X be a compact (n−1)-dimensional affine set with n ≥ 3,
and Y = Pij(θ)X. Then there exists an admissible sequence of faces

Z0 = X, Z1, ..., Z9, Z11 = Y.

Remark 4.1. In the case where n = 2, an obvious modification of Proposition 4.2
gives an admissible sequence of faces Z0 = X, Z1, ..., Z4, Z5 = Y . Throughout
the rest of the paper, we will assume that n ≥ 3. All of the results are applicable
to the case where n = 2, with the obvious modifications.

Theorem 4.1. Let X be a compact (n − 1)-dimensional affine set, and Y =
RX + p, with (R, p) ∈ SE(n). Then there exists an admissible sequence of faces

Z0 = X, Z1, ..., Z 11
2 n(n−1)+1, Z 11

2 n(n−1)+2 = Y.

Example 4.1. Let X = {(x, y) : x ∈ [0, 1], y = 0}, p = (2, 0), and Y = X + p,
i.e., Y = {(x, y) : x ∈ [2, 3], y = 0}. Therefore, X and Y are given by the affine
constraints:


1 0

−1 0
0 1
0 −1




(
x
y

)
+




0
1
0
0


 ,




1 0
−1 0
0 1
0 −1




(
x
y

)
+




−2
3
0
0


 ,

respectively. It is clear that there is not a single n-dimensional affine set with X
and Y as faces. This is evident in the fact that the assumptions of Proposition
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3.1 are not satisfied; X ⊂ {y = 0}, but p2 = 0. By Proposition 4.1, we can find
a sequence of admissible faces Z0 = X, Z1, Z2 = Y , and the corresponding affine
sets S1 = Ξ(X, Z1) and S2 = Ξ(Z1, Y ).

Define a = (2, 1) and b = (0, −1), then a + b = p and Z1 = X + a = {(x, y) :
x ∈ [2, 3], y = 1}. We can let S1 = Ξ(X, Z1), which is given by the affine
constraints in (5). Since Z1 = Y −b, S2 = Ξ(Z1, Y ) = Ξ(Y −b, Y ) = Ξ(Y, Y −b).
Because Y ⊂ {y = 0} and b2 �= 0, applying Proposition 3.1 gives the affine
constraints for S2. Therefore, applying (5) to the affine constraints defining X
and Y gives the affine constraints defining S1 and S2 as:




1 −2
−1 2
0 1
0 −1




(
x
y

)
+




0
1
0
1


 ,




1 0
−1 0
0 1
0 −1




(
x
y

)
+




−2
3
0
1


 ,

respectively. For a visual interpretation of these results, see Figure 3.

5 Spatial Equivalence

In this section we use the sequence of admissible faces found in Section 4 to
prove the Main Theorem of this paper. In the proof of this theorem, the hybrid
system Hid is constructed. This allows Hid to be explicitly computed, as will be
seen through an example following the proof of the Main Theorem.

5.1. A hybrid system H = (QH, DH, EH, V H) is said to be spatially equivalent
to a hybrid system G = (QG, DG, EG, V G) if the following conditions hold:

1. |QG| ≥ |QH| = m.
2. For every i ≤ m, DH

i = DG
i and for i > m, there exist admissible faces Xi

and Yi such that DG
i = Ξ(Xi, Yi).

3. For every edge e ∈ EH there exists a sequence of k discrete states ν(1), ...,
ν(k) > m and edges η1, ..., ηk+1 ∈ EG such that

Tη1(Faceπ3(e)(D
H
π1(e))) = Xν(1),

Tη2(Yν(1)) = Xν(2),

...
Tηk+1(Yν(k)) = Faceπ4(e)(D

H
π2(e)).

In the special case where k = 0, we require η1 to be an edge such that

Tη1(Faceπ3(e)(D
H
π1(e))) = Faceπ4(e)(D

H
π2(e)).

4. For i ≤ m, V H
i = V G

i , and for i > m, V G
i is a vector field such that

φG
i (1, Xi) = Yi, where φG

i (t, x) is the solution to V G
i .
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Remark 5.1. Note that spatial equivalence is not an equivalence relation. The
term “equivalence” is used in order to stress the equivalence of the qualitative
behavior of H and G, when H is spatially equivalent to G. Although it might be
appropriate to replace “spatial equivalence” by a term such as “spatial embed-
ding”, the authors are concerned that this term would not stress the behavioral
similarities of the two hybrid systems.

Definition 5.1. A hybrid system H is compact if each of its domains is com-
pact.

Theorem 5.1. If H is a compact hybrid system, then H is spatially equivalent
to a hybrid system Hid such that every transition map is the identity, i.e., Tη = id
for every η ∈ EHid . Moreover, Hid is computable.

Proof. In order to prove this theorem, we will explicitly construct the hybrid
system Hid. First, we define

EH
�id := {e ∈ EH : Te �= id},

which is the set of edges such that the associated transition map is not the
identity. If |EH

�id | = k, then we can write the elements of EH
�id as e1, ..., ek (by

arbitrarily indexing them). For simplicity of notation, define the functions

f(n) =
11
2

n(n − 1) + 2,

g(m, n, i) = (i − 1)f(n) + m + 1,

which will be used throughout the course of the construction.

Construction of Hid

QHid : If QH = {1, ..., m}, then define QHid = {1, ..., m+ kf(n)}, with k = |EH
�id |.

DHid : For i ≤ m, define DHid
i = DH

i . If Aix + ai are the affine constraints
determining DH

i , then we also let Aix + ai (with the order of the rows main-
tained) be the affine constraints determining DHid

i . In particular, this implies
that Facej(DHid

i ) = Facej(DH
i ).

Now we can construct the other domains of Hid. For every edge ei ∈ EH
�id ,

1 ≤ i ≤ k, the transition map is given by Tei(x) = Reix + pei
, or we have

Faceπ4(ei)(D
H
π2(ei)) = Rei

Faceπ3(ei)(D
H
π1(ei)) + pei

.

Now by Theorem 4.1 we have the following admissible sequence of faces

Zi
0 = Faceπ3(ei)(D

H
π1(ei)), Zi

1, ..., Zi
f(n)−1, Zi

f(n) = Faceπ4(ei)(D
H
π2(ei)).
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Setting

Xg(m,n,i) = Zi
0,

Xg(m,n,i)+1 = Zi
1 = Yg(m,n,i),

...
Xg(m,n,i)+f(n)−1 = Zi

f(n)−1 = Yg(m,n,i)+f(n)−2,

Zi
f(n) = Yg(m,n,i)+f(n)−1,

define the domains

DHid
g(m,n,i)+j = Ξ(Xg(m,n,i)+j , Yg(m,n,i)+j), 1 ≤ i ≤ k, 0 ≤ j ≤ f(n) − 1.

It can be verified that for these values of i and j, g(m, n, i) + j takes all values
from m + 1 to m + kf(n), inclusive, and with no repeats.

EHid : If e ∈ EH and e /∈ EH
�id , then the associated transition map is Te = id.

So define an edge η(e) ∈ EHid to be η(e) = e. It follows that Tη(e) = id.
If e ∈ EH

�id , then e = ei for i ∈ {1, ..., k}. We can now define a set of edges
η1(ei), η2(ei), ..., ηf(n)+1(ei) ∈ EHid as follows: if we index the faces of DHid

g(m,n,i)+j

such that

Xg(m,n,i)+j = Face1(DHid
g(m,n,i)+j), Yg(m,n,i)+j = Face2(DHid

g(m,n,i)+j),

then we define

η1(ei) = ((π1(ei), g(m, n, i)), (π3(ei), 1),
η2(ei) = ((g(m, n, i), g(m, n, i) + 1), (2, 1)),

...
ηj(ei) = ((g(m, n, i) + j − 2, g(m, n, i) + j − 1), (2, 1)),

...
ηf(n)(ei) = ((g(m, n, i) + f(n) − 2, g(m, n, i) + f(n) − 1), (2, 1)),

ηf(n)+1(ei) = ((g(m, n, i) + f(n) − 1, π2(ei)), (2, π4(ei)).

The associated transition maps are

Tη1(ei) : Faceπ3(ei)(D
H
π1(ei)) → Xg(m,n,i),

Tηj(ei) : Yg(m,n,i)+j−2 → Xg(m,n,i)+j−1, 1 < j ≤ f(n),

Tηf(n)+1(ei) : Yg(m,n,i)+f(n)−1 → Faceπ4(ei)(D
H
π2(ei)),

so

Faceπ3(ei)(D
H
π1(ei)) = Xg(m,n,i),

Yg(m,n,i)+j−2 = Xg(m,n,i)+j−1, 1 < j ≤ f(n),

Yg(m,n,i)+f(n)−1 = Faceπ4(ei)(D
H
π2(ei)).



Affine Hybrid Systems 29

By definition, it follows that

Tη1(ei) = Tη2(ei) = · · · = Tηf(n)+1(ei) = id.

If we apply this construction to every edge in EH the result is the set EHid . It
is clear that for every edge in η ∈ EHid , Tη = id. It also follows that |EHid | =
|EH| + 2f(n).

V Hid : If i ≤ m, define V Hid
i = V H

i . If i > m, then DHid
i = Ξ(Xi, Yi), where Xi

and Yi differ by an element of SE(n), i.e., Yi = QiXi + qi. Using this, we define

φHid
i (t, x) = (1 − t)x + t(Qix + qi), V Hid

i (x) =
d

dt
(φHid

i (t, x)),

and we have the property that φHid
i (1, Xi) = QiXi + qi = Yi.

To conclude the proof we note that in the process of constructing Hid we
have shown that H and Hid satisfy properties 1-4 of Paragraph 5.1, hence H is
spatially equivalent to Hid. 	


Remark 5.2. Note that the hybrid system we constructed in the proof of The-
orem 5.1 is not unique. Moreover, the number of discrete states given in the
construction is not necessarily the smallest number of discrete states needed to
construct a spatially equivalent hybrid system. For example, if for every edge
e ∈ EH, the faces Faceπ3(e)(D

H
π1(e)) and Faceπ4(e)(D

H
π2(e)) are admissible (see

Definition 4.1), then we can construct a hybrid system Hid, spatially equivalent
to H, with QHid = {1, ..., m+k}. This will be the case in the following example.

Example 5.1. We will construct T
2
id, or a hybrid system spatially equivalent to

T
2 (see Example 2.1) where every transition map is the identity. In this case we

have two edges, e1, e2 ∈ ET
2
, and |ET

2

�id | = 2. First, note that we can define T
2
id in

terms of fewer than the number of discrete states given in the proof of Theorem
5.1 because Faceπ3(ei)(D

H
π1(ei)) and Faceπ4(ei)(D

H
π2(ei)) are admissible faces for

i = 1, 2 (see Remark 5.2).
Set QT

2
id = {1, 2, 3}, and let D

T
2
id

1 = DT
2

1 , which we defined in Example 2.1.

To construct D
T
2
id

2 and D
T
2
id

3 , note that

Face2(DT
2

1 ) = Face1(DT
2

1 ) +
(

1
0

)
, Face3(DT

2

1 ) = Face4(DT
2

1 ) +
(

0
1

)
.

Since Face1(DT
2

1 ) ⊂ {x = 0} and Face4(DT
2

1 ) ⊂ {y = 0}, by applying Proposition
3.1 to the affine constraints AT

2

11x + aT
2

11 and AT
2

14x + aT
2

14 , given in equations (3)
and (4), it can be verified that

Ξ(Face1(DT
2

1 ), Face2(DT
2

1 )) = Ξ(Face4(DT
2

1 ), Face3(DT
2

1 )) = DT
2

1 .
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Fig. 4. Left: T
2. Right: T

2
id.

Now as in the proof of Theorem 5.1, define

X2 = Face2(DT
2

1 ), Y2 = Face1(DT
2

1 ),
X3 = Face3(DT

2

1 ), Y3 = Face4(DT
2

1 ),

then
D

T
2
id

2 = Ξ(X2, Y2) = DT
2

1 , D
T
2
id

3 = Ξ(X3, Y3) = DT
2

1 ,

and DT
2
id = {D

T
2
id

1 , D
T
2
id

2 , D
T
2
id

3 }.
Now we will determine the edges of T

2
id. As in the proof of Theorem 5.1,

index the faces of D
T
2
id

2 and D
T
2
id

3 such that

X2 = Face1(D
T
2
id

2 ), Y2 = Face2(D
T
2
id

2 ),

X3 = Face1(D
T
2
id

3 ), Y3 = Face2(D
T
2
id

3 ),

and for the two edges e1, e2 ∈ ET
2
, define

η1(e1) = ((1, 2), (2, 1)), η1(e2) = ((1, 3), (4, 1)),
η2(e1) = ((2, 1), (2, 1)), η2(e2) = ((3, 1), (2, 3)).

Set ET
2
id = {η1(e1), η2(e1), η1(e2), η2(e2)}, and note that the corresponding tran-

sition maps Tη1(e1) = Tη2(e1) = Tη1(e2) = Tη2(e2) = id (see Figure 4).

Finally, define V
T
2
id

1 = V T
2

1 and

V
T
2
id

2 (x) =
(−1

0

)
, V

T
2
id

3 (x) =
(

0
−1

)
,

So, V T
2
id = {V

T
2
id

1 , V
T
2
id

2 , V
T
2
id

3 }. This completes the construction of T
2
id.
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