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Abstract. In this paper we address the problem of designing energy
minimizing collision-free maneuvers for multiple agents moving on a
plane. We show that the problem is equivalent to that of finding the
shortest geodesic in a certain manifold with nonsmooth boundary. This
allows us to prove that the optimal maneuvers are C1 by introducing
the concept of u-convex manifolds. Moreover, due to the nature of the
optimal maneuvers, the problem can be formulated as an optimal con-
trol problem for a certain hybrid system whose discrete states consist
of different “contact graphs”. We determine the analytic expression for
the optimal maneuvers in the two agents case. For the three agents case,
we derive the dynamics of the optimal maneuvers within each discrete
state. This together with the fact that an optimal maneuver is a C1 con-
catenation of segments associated with different discrete states gives a
characterization of the optimal solutions in the three agents case.

1 Introduction and background

Many problems arising in practical situations have boundary constraints and can
be described in the setting of manifolds with boundary. Here we are interested
in certain geometric aspects of such manifolds, specifically those concerning the
properties of geodesics, i.e., locally distance minimizing curves. It is intuitively
clear that when the boundary consists of cells of various dimensions pieced to-
gether, a geodesic is in general “hybrid” in the sense that it is a concatenation
of different segments, each one of which being a geodesic of a particular cell (in
its own geometry). Thus in the hybrid systems terminology ([16]) , the geodesics
can be naturally described as the executions of an underlying hybrid system.
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Note that our interpretation of a manifold with boundary as the domain for
the continuous state of a hybrid system is the inverse of the procedure adopted
in [21], where the concept of hybrifold is introduced by piecing together the do-
mains corresponding to all the discrete modes of a hybrid system to form a single
topological manifold. Another difference is that, in addition to the topological
properties of the hybrid systems such as stability, zenoness, ergodicity, etc., we
are also interested in their metric properties such as distance, curve length, an-
gle, etc. Therefore when piecing domains together, isometries instead of merely
diffeomorphisms are required as the identifying maps of the boundaries.

To be precise, let M be a connected m-dimensional C∞ Riemannian man-
ifold with boundary. The boundary of M can be either smooth or nonsmooth.
Consider only those curves in M which are piecewise C1, i.e., curves which can
be partitioned into a countable number of C1 segments. For such curves the arc
length is well defined. The distance between two points in M is then defined as
the infimum of the arc length of all the piecewise C1 curves connecting them. A
geodesic in M is a locally distance minimizing curve. More precisely, the curve
γ : (t0, tf )→M is a geodesic if and only if for each t ∈ (t0, tf ), γ is the shortest
curve between γ(t1) and γ(t2) for every t1, t2 belonging to a neighborhood of t
with t1 < t < t2. Given two arbitrary points in M , the (globally) shortest curve
connecting them is automatically a geodesic. However, it is well known that the
converse is not true: a geodesic is not necessarily distance minimizing between
its end points. In fact, even for manifolds without boundary, a geodesic is no
longer distance minimizing after its first conjugate point ([5]).

Due to the presence of the boundary, regularity of geodesics in M is an issue.
The special case of geodesics in manifolds with smooth boundary is dealt with
in [2, 3], to name a few. We now review briefly some of the results in these
papers relevant to our study in the nonsmooth boundary case. For manifolds
with smooth boundary, it is shown in [3] that geodesics are in general C1 but
not C2. The simplest example is R2 with a unit disk removed. Two points across
the disk and “invisible” to each other are connected by at most two shortest
geodesics, which are C1 everywhere but fail to be C2 at exactly the points where
geodesics switch from a line segment to a boundary arcs or vice versa. In [3] it is
further suggested that a geodesic in a manifold M with smooth boundary can be
decomposed into: (1) interior segments, which are geodesic segments belonging to
the interior of M ; (2) boundary segments, which are geodesic segments belonging
to the boundary ∂M of M ; (3) switch points, which are points where the geodesic
switches from a boundary segment to an interior segment or vice versa; (4)
intermittent points, which are accumulation points of the set of switch points. It is
proved in [1] that when the boundary ∂M is locally analytic, a geodesic can have
only a finite number of switch points in any segment of finite arc length, hence
no intermittent points at all. In our interpretation of geodesics as the executions
of an underlying hybrid system, switch points correspond to transitions between
discrete states, and the existence of intermittent points in a geodesic implies that
the corresponding execution, hence the hybrid system, is Zeno ([16]). Therefore



the result in [1] can be rephrased by saying that a hybrid system whose executions
correspond to geodesics in a manifold with locally analytic boundary is non-Zeno.

In this paper we study the problem of optimal collision-free motion planning
for multiple agents moving on a plane, where a collision is the event that any two
agents get closer than a minimum allowed distance. We show that each collision-
free joint maneuver has a natural representation as a curve in a certain manifold
with boundary, and among all such joint maneuvers the one with the least energy
corresponds to a geodesic parameterized proportionally to arc length. Geodesics
satisfying this property are called normalized. Unless otherwise stated, we assume
throughout the paper that all geodesics are normalized.

The problem which inspired this work originally is the development of algo-
rithms for aircraft conflict resolution. Aircraft flying at the same altitude must
maintain a horizontal separation of at least 3 nautical miles (nmi) inside the ter-
minal radar approach control facilities and 5 nmi in the en-route airspace ([20]).
Moreover, the energy of an aircraft maneuver is closely related to practical as-
pects such as travel distance, fuel consumption, passenger comfort, etc. Numer-
ous approaches have been suggested in the literature to deal with aircraft conflict
resolution (see the survey paper [13]). Some of them ([6, 8, 11, 17]) actually pose
the problem as a constrained optimization problem. In particular, in [11] the
geometric interpretation of aircraft motions as a braid is used in performing the
optimality analysis. Optimal multi-agent coordination also finds applications in
other transportation systems, for example [18]. Another related field is the mo-
tion planning for mobile robots. Most of the papers in this field focus on the
feasibility and the algorithmic complexity aspect of the problem ([7, 9, 14, 22]).
Among those dealing with optimal coordination, [15] considers the case when
each robot minimizes its own independent goal by using techniques from multi-
objective optimization and game theory. [4] studies the problem of time-optimal
control of multiple vehicles moving on a plane with constant speed and bounded
curvature.

The rest of the paper is organized as follows. In Sect. 2, we describe the opti-
mal collision-free motion planning problem and show how it can be reformulated
as the problem of finding the shortest geodesic in a manifold M with nonsmooth
boundary. Using the fact that M is a u-convex manifold, we are able to prove
in Sect. 2.2 that the optimal motions for the agents are C1. We then introduce
in Sect. 3 the notion of “contact graph”, which leads to a natural interpretation
of the problem in the framework of optimal control for a certain hybrid system.
The C1 property implies that the reset maps of the hybrid system are all identity
maps. The shortest geodesic can be obtained by appropriately piecing together
geodesic segments in different discrete modes, and is the optimal execution for
the hybrid system. In Sect. 3.1 necessary conditions are introduced to simplify
the determination of such geodesics, which are then used in Sect. 3.2 and 3.3
to characterize the optimal collision-free motions for the two agents and three
agents case respectively. Finally some concluding remarks are given in Sect. 4.



2 Problem formulation

Consider the situation when n agents, numbered from 1 to n, are moving on a
common plane R2. The n agents are required to start from positions a1, . . . , an ∈
R

2 at time t0 and reach positions b1, . . . , bn ∈ R2 at a fixed time tf . We assume
that each one of the two sets {ai}ni=1 and {bi}ni=1 satisfies the r-separation con-
dition for some positive r, in the sense that the minimum pairwise Euclidean
distance in each set is at least r.

A maneuver for agent i, 1 ≤ i ≤ n, is defined to be a piecewise C1 map
αi : [t0, tf ]→ R

2 satisfying αi(t0) = ai and αi(tf ) = bi. The set of all maneuvers
for agent i is denoted as Pi. Then P =

∏n
i=1 Pi is the set of joint maneuvers for

the n-agent system. Here we are interested in the subset P(r) of P consisting of
all the collision-free maneuvers, i.e., those joint maneuvers α = (α1, . . . , αn) ∈ P
such that {αi(t)}ni=1 satisfies the r-separation condition at each time t, t ∈ [t0, tf ].

The energy of a joint maneuver α = (α1, . . . , αn) ∈ P is defined as

J(α) ,
1
2

n∑
i=1

∫ tf

t0

‖α̇i(t)‖2 dt.

The goal is to find the collision-free maneuver α ∈ P(r) with minimal energy.
This leads to the following formulation of the problem:

Minimize J(α) subject to α ∈ P(r). (1)

Notice that in formulating problem (1), we make the restrictive assumption
that all the agents involved in the encounter reach their destinations at the same
known time instant tf . This is important in time-critical applications such as air
traffic management. The issue of choosing tf is not dealt with in this paper.

Remark 1. Problem (1) can be alternatively formulated as an optimal control
problem with state constraints, and approached by using the corresponding tech-
niques from optimal control theory. In this paper, however, we adopt a geometric
point of view. The geometric method not only yields elegant results and proofs,
but more importantly, by using information on the curvature of the domains, it
also allows us to obtain deeper results concerning the global uniqueness of the
optimal solutions under certain conditions (see [12]).

2.1 A geometric interpretation

Each joint maneuver α = (α1, . . . , αn) in P can be re-interpreted as a curve
in R2n defined by α(t) = (α1(t), . . . , αn(t)), t ∈ [t0, tf ], which starts from a =
(a1, . . . , an) and ends at b = (b1, . . . , bn). If we use (x1, y1, . . . , xn, yn) to denote
the coordinates of a generic point in R2n, then the collision-free constraint on
the joint maneuver α translates into the condition that α viewed as a curve in
R

2n is strictly contained in M , a manifold with boundary obtained by removing
from R

2n the “static obstacle” W given by

W = {P ∈ R2n :
√

(xi − xj)2 + (yi − yj)2 < r for some 1 ≤ i < j ≤ n}. (2)



In other words, M = R
2n\W . Thus there is a one-to-one correspondence between

maneuvers in P(r) and piecewise C1 curves in M connecting a and b. Moreover,
the energy of a joint maneuver α = (α1, . . . , αn) ∈ P can be expressed as
J(α) = 1

2

∑n
i=1

∫ tf
t0
‖α̇i(t)‖2 dt = 1

2

∫ tf
t0
‖α̇(t)‖2 dt, which coincides with the usual

definition of the energy of α viewed as a curve in R2n. Hence (1) is equivalent
to the following geometric problem:

Find the energy minimizing curve α in M joining point a to point b. (3)

It is a standard result (see, e.g., [19]) that solutions to (3) are shortest curves
in M from a to b parameterized proportionally to arc length, i.e., minimizing
geodesics in M connecting a to b. We shall henceforth study problem (3) instead
of (1) with the understanding that all the curves connecting a to b in M are
parameterized so that they start from a at t0 and end at b at tf .

Notice that W defined in (2) is the union of n(n−1)/2 convex open cylinders,
each one of the form {(x1, y1, . . . , xn, yn) :

√
(xi − xj)2 + (yi − yj)2 < r} for

some (i, j), with i 6= j. Therefore M obtained by removing W from R2n is an
instance of the following class of manifolds with boundary:

Definition 1 (u-convex manifolds). A manifold with boundary is called u-
convex if it is obtained by removing from some Euclidean space Rm a finite union
of open convex subsets, each one of which has a smooth boundary.

We will show in the next section that geodesics in u-convex manifolds are
C1, which implies that solutions to problem (3), hence (1), are C1.

2.2 Geodesics in u-convex manifolds

In this section we study the properties of geodesics in u-convex manifolds. Many
technicalities encountered in the general case can be avoided when analyzing this
special case. For example, when the boundary of M is nonsmooth, geodesics in
M are in general not C1 since they can bend into sharp corners of the boundary.
However, we next show that this is not the case for u-convex manifolds.

Suppose M is u-convex, i.e., M = R
m \ ∪ki=1Di is the complement in Rm

of the union of open convex bodies D1, . . . , Dk ⊂ Rm, whose boundary ∂Di is
smooth for each i = 1, . . . , k. Then at each point x ∈M , we can define the visible
cone of x to be the cone V (x) with vertex x and consisting of all the rays which
start from x and lie inside M within a sufficiently small distance. In other words,
V (x) is the region a viewer sitting at x can see if only local obstacles around x
are considered. V (x) can be obtained in the following way. If x ∈M lies on the
boundary of Di for exactly those i belonging to a subset I of {1, . . . , k}, then the
obstacles Di, i ∈ I, are called the active obstacles at x. For each active obstacle
Di, let Tx(∂Di) be the plane tangent to ∂Di at x and ni be the unit normal
vector of ∂Di at x pointing outside of Di. Tx(∂Di) separates Rm into two open
half spaces. We denote the one containing ni as P+

i,x and its closure as P+
i,x. The

convexity of Di implies that P+
i,x and Di are disjoint sets. Then V (x) is given by
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Fig. 1. Examples of visible cones. On the right a degenerate case.

V (x) =
⋂
i∈I P

+
i,x. V (x) is a closed convex cone since it is the finite intersection

of closed convex sets (half spaces), and it can have an arbitrary dimension lower
than m. Figure 1 shows examples of visible cones in R3. In the case when x is
in the interior of M , V (x) = R

m since there are no active obstacles at x.
By using the notion of visible cone, one can prove the following result.

Theorem 1. Suppose that M is u-convex. Then any geodesic in M is C1.

Proof. Let γ : I →M be a geodesic of M , where I is an open interval in R. For
each s ∈ I, the one-sided derivatives γ′(s−) and γ′(s+) of γ at s exist since γ
is piecewise C1. By using a reparameterization if necessary, we can assume that
both of them are unit vectors. Construct the visible cone V (x) of x = γ(s). By
definition, both γ′(s+) and −γ′(s−) based at x lie inside V (x) and they span an
angle θ ∈ [0, π]. Suppose by contradiction that γ′(s−) 6= γ′(s+), then θ < π.

Fix a neighborhood U of x small enough so that only the active obstacles
at x intersect U . Choose ε such that γ|[s−ε,s+ε] ⊂ U . For each t ∈ [s − ε, s],
let γ̂(t) be the projection of γ(t) onto the line through x and along the direc-
tion −γ′(s−); for each t ∈ [s, s + ε], let γ̂(t) be the projection of γ(t) onto the
line through x and along the direction γ′(s+). Notice that γ̂|[s−ε,s+ε] is a curve
through x contained completely within M . By choosing ε small enough, one
can ensure that the line segments γ(s− ε)γ̂(s− ε) and γ(s+ ε)γ̂(s+ ε) both lie
completely inside M . Therefore by replacing the arc γ|[s−ε,s+ε] with the con-
catenation of γ(s− ε)γ̂(s− ε), the arc γ̂|[s−ε,s+ε], and γ̂(s+ ε)γ(s+ ε), the to-
tal arc length is increased by at most o(ε). Notice further that we can short-
cut γ̂|[s−ε,s+ε] by the line segment γ̂(s− ε)γ̂(s+ ε), which lies completely inside
V (x) (hence M) by the convexity of V (x). Doing so can reduce the arc length of
γ̂|[s−ε,s+ε] by at least 2ε(1− sin(θ/2)) + o(ε), where we use the fact that γ′(s−)
and γ′(s+) are unit vectors. Therefore the concatenation of the line segments
γ(s− ε)γ̂(s− ε), γ̂(s− ε)γ̂(s+ ε), and γ̂(s+ ε)γ(s+ ε) is a curve in M shorter
than the arc γ|[s−ε,s+ε] for ε small enough. This contradicts the fact that γ is
locally distance minimizing. Thus θ = π and γ is C1 everywhere.

To show the necessity of u-convexity in proving Theorem 1, we plot in Fig. 2
an example in which M is obtained by removing from R

3 a nonconvex obstacle
given by the exterior D1 of a cylinder with axis l1 and a convex obstacle given by
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Fig. 2. Geodesic in a manifold with boundary that is not u-convex.

the interior D2 of a cylinder with the same radius and with axis l2 intersecting
l1 at a right angle. Hence M consists of all those points in R3 which lie inside
the cylinder with axis l1 but outside the cylinder with axis l2, with the points
on their boundaries included. The heavy-weighted curve in Fig. 2 is a geodesic
in M with end points a and b, which is clearly not C1 at x.

3 Hybrid system solution

Now we go back to the discussion of the optimization problem (3) proposed in
Sect. 2, where M = R

2n \W with W defined in (2).
Consider a curve α = (α1, . . . , αn) from a to b in M corresponding a collision-

free maneuver in P(r). Fix a time instant t ∈ [t0, tf ]. We say that agent i and
agent j contact at time t if and only if ‖αi(t) − αj(t)‖ = r. A graph can be
associated to α at time t in the following way. The graph has n vertices, numbered
from 1 to n, each one corresponding to an agent, and an edge exists between
vertex i and vertex j if and only if agent i and agent j contact at time t. We
call this graph the contact graph of α at time t.

Let α∗ be a curve from a to b in M that is a solution to problem (3). Suppose
that there is a finite subdivision of [t0, tf ]: t0 ≤ t1 ≤ . . . ≤ tk−1 ≤ tk = tf , such
that the contact graph of α∗ over the subinterval (th−1, th) (which we denote as
Gh) remains constant for all h = 1, . . . , k, while contiguous subintervals have
distinct contact graphs. In each subinterval, say (th−1, th), α∗ moves on a certain
part of M determined by Gh. If Gh has no edges, then α∗ restricted to (th−1, th)
is a straight line segment in the interior of M . If Gh has at least one edge,
then α∗ restricted to (th−1, th) moves on a portion of the boundary of M , which
is a lower dimensional smooth submanifold of R2n consisting of all the points
(x1, y1, . . . , xn, yn) in R2n such that

√
(xi − xj)2 + (yi − yj)2 is equal to r for

(i, j) such that there is an edge between vertices i and j in Gh, and greater than
r for all others (i, j), i 6= j. Moreover, α∗ restricted to (th−1, th) is a minimizing
geodesic in this submanifold. In this way we can associate to each type of contact
graph a domain, i.e., the submanifold of M to which α∗ belongs when its contact
graph is of that type.



Based on the above analysis, α∗ can be viewed as an execution of a certain
hybrid system, whose continuous variable takes values in M , and whose discrete
modes have a one-to-one correspondence with the different contact graphs for
the n-agent system. For each discrete mode, the invariant set is the domain of
the corresponding contact graph, and the dynamics is governed by the geodesic
equation on that domain, which is a second-order ordinary differential equation.
By Theorem 1, when a transition occurs between discrete modes, the position α
and the velocity α̇ are reset by identity maps. α is an optimal solution to this
hybrid system if it satisfies α(t0) = a and α(tf ) = b, and has minimal energy.
The problem is to determine the initial velocity α̇(t0) and the time and sequence
of the discrete switchings so that the corresponding execution of this hybrid
system will generate the optimal solution.

3.1 Necessary conditions for optimality

We now derive some necessary conditions for α to be an optimal solution to
problem (3), which can then be used to simplify the determination of optimal
maneuvers for the two-agent and three-agent cases.

Proposition 1. Suppose that α∗ is a minimizing geodesic from a to b in M .
Fix an arbitrary w ∈ R2. Then β∗ = (β∗1 , . . . , β

∗
n) defined by

β∗i (t) = α∗i (t) + w
t− t0
tf − t0

, t ∈ [t0, tf ], i = 1, . . . , n, (4)

is a minimizing geodesic from a to b′ = (b1 + w, . . . , bn + w) in M .

Proof. For each curve β from a to b′ in M , define curve α = (α1, . . . , αn) =
T−w(β) in R2n as αi(t) = βi(t)− w t−t0

tf−t0 , for t ∈ [t0, tf ] and i = 1, . . . , n. Then
it is easily verified that α is a curve in M from a to b with energy

J(α) = J(β) +
wT (

∑n
i=1(ai − bi)− nw/2)

tf − t0
. (5)

The second term of the right hand side of (5) is a constant independent of
β, which we shall denote as C. From (5) and the optimality of α∗, we have
J(β) = J(α) − C ≥ J(α∗) − C = J(β∗), where the last equality follows by
noticing that α∗ = T−w(β∗). This is true for arbitrary β, hence the conclusion.

One important implication of Proposition 1 is that it suffices to solve prob-
lem (3) only for those a and b that are aligned, i.e., a and b with the same
centroid 1

n

∑n
i=1 ai = 1

n

∑n
i=1 bi ∈ R2. In fact for non-aligned a and b, by choos-

ing w =
∑n
i=1 ai −

∑n
i=1 bi, one can ensure that a and b′ = (b1 +w, . . . , bn +w)

are aligned. Hence by Proposition 1, minimizing geodesics from a to b can be
obtained from minimizing geodesics from a to b′ by applying the inverse of the
transformation (4).



Proposition 2. Assume that α∗ is a minimizing geodesic from a to b in M .
Then

n∑
i=1

α∗i (t) =
(tf − t)

∑n
i=1 ai + (t− t0)

∑n
i=1 bi

tf − t0
, ∀t ∈ [t0, tf ].

Proof. Consider first the case when a and b are aligned. Define a piecewise C1

map g : [t0, tf ]→ R
2 by g(t) =

∑n
i=1 α

∗
i (t)−

∑n
i=1 ai, t ∈ [t0, tf ], which satisfies

g(t0) = g(tf ) = 0. For each λ ∈ R, let βλ = (βλ,1, . . . , βλ,n) be given by
βλ,i(t) = α∗i (t) + λ g(t), t ∈ [t0, tf ], i = 1, · · · , n. Note that βλ is a piecewise C1

curve from a to b in M with energy

J(βλ) = J(α∗) +
nλ2

2

∫ tf

t0

∥∥ n∑
i=1

α̇∗i (t)
∥∥2
dt+ λ

∫ tf

t0

∥∥ n∑
i=1

α̇∗i (t)
∥∥2
dt.

The difference J(βλ)−J(α∗) is a quadratic function of λ which, by the optimality
of α∗, must be nonnegative for all λ. Hence we have

∫ tf
t0
‖
∑n
i=1 α̇

∗
i (t)‖2 dt = 0,

implying that
∑n
i=1 α̇

∗
i (t) = 0 for almost all t ∈ [t0, tf ]. After integration, this

leads to the desired conclusion for the aligned case. In the case when a and b are
not aligned, the result follows from Proposition 1 by considering a minimizing
geodesic in M from a to b′ = (b1 + w, . . . , bn + w) with w =

∑n
i=1 ai −

∑n
i=1 bi

and noticing that a and b′ are aligned.

A geometric interpretation of the above results is as follows. Let N be
the two dimensional subspace of R2n spanned by vectors (0, 1, . . . , 0, 1) and
(1, 0, . . . , 1, 0), and V be the orthogonal complement of N in R2n such that
R

2n = V ⊕N . Then the condition that a and b are aligned is equivalent to the
condition that b− a belongs to V . Denote with Va the (n− 2)-plane through a
and parallel to V . Then if a and b are aligned, they both belong to Va, and by
Proposition 2, a minimizing geodesic α∗ in M from a to b lies in Va completely.
For non-aligned a and b, let b′ be the orthogonal projection of b onto Va. Then
Proposition 1 and Proposition 2 say that a minimizing geodesic α∗ between a
and b in M can be decomposed into two parts: its projection onto Va, which is a
minimizing geodesic from a to b′ in Va ∩M ; and its projection onto N , which is
a straight line. These conclusions become evident under the following important
observation: the obstacle W defined in (2) is cylindrical in the direction of N ,
i.e., x ∈W if and only if x+N ⊂W .

As a result of the above analysis, we can focus on the case when a and b are
aligned. Without loss of generality, we assume that a and b both belong to V .
Since any minimizing geodesic between such a and b is contained in V , we can
effectively reduce our space of consideration from M to M0 , V ∩M , which is a
cross section of M and two dimensions lower than M . This will make a difference
when n is relatively small.

Remark 2. Optimal maneuvers for the n-agent system can be alternatively viewed
as the outcomes of a mechanical experiment, in which n particles of unit mass
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Fig. 3. Optimal α∗1 for two agents case.

move from positions a1, . . . , an on a plane with certain initial velocities and no
external force acting on them. In this interpretation, the result in Proposition 2
becomes the law of conservation of momentum. See [10] for further details.

3.2 Two agents case

Consider the simplest case when n = 2 with aligned a = (a1, a2) and b = (b1, b2)
such that a1 + a2 = b1 + b2 = 0. If α∗ = (α∗1, α

∗
2) is a solution to problem (3),

then Proposition 2 implies that α∗1(t) and α∗2(t) are symmetric with respect to
the origin for all t ∈ [t0, tf ]. Hence specifying one of them, say α∗1, is sufficient for
describing α∗. Moreover, the r-separation constraint can be formulated as the
condition that α∗1 can never enter the open ball B(0, r/2) of radius r/2 around
the origin. By noting that α∗1 and α∗2 give identical contributions to the total
energy, we finally have a simplified but equivalent version of problem (3):

Find the energy minimizing curve α1 in R2 \B(0, r/2) joining a1 to b1. (6)

Figure 3 shows the geometric construction of a solution α∗1 to problem (6),
which is a geodesic of R2 \B(0, r/2) and, depending on the positions of a1 and
b1, may contain up to three segments: first a line segment from a1 to p1 tangent
to ∂B(0, r/2) at p1; next from p1 to q1 along ∂B(0, r/2); and finally the line
segment from q1 to b1 tangent to ∂B(0, r/2) at q1. The case when b1 is “visible”
from a1 is trivial.

3.3 Three agents case

The case n = 3 is more complicated. Figure 4 shows all the possible contact
graphs and the transitions between them, with the “ground” symbol indicating
that there is a transition relation with state 1. We now determine the geodesics
in each one of the discrete states.

Geodesics in state 1. State 1 corresponds to the contact graph of three isolated
vertices, hence its domain X1 corresponds to int(M), the interior of M . By the
discussion in Sect. 3.1, we only consider X1 = V ∩ int(M), which has dimension
4. Geodesics in X1 are straight lines.
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Fig. 4. State diagram.

Geodesics in state 2, 3, and 4. States 2, 3 and 4 correspond to contact graphs
where two vertices are connected to each other and the third one is isolated. Let
us consider state 2. Its domain X2 is:

X2 = {(x1, y1, x2, y2, x3, y3) : d12 = r, d13 > r, d23 > r} ∩ V

where dij ,
√

(xi − xj)2 + (yi − yj)2 denotes the distance between agent i and
agent j. X2 has dimension 3. As long as the boundary of X2 is not reached,
a geodesic in X2 consists of a constant velocity motion for agent 3 since it is
“free”, while the motions for agents 1 and 2 are determined as in Sect. 3.2 for
the two agents case, followed by a possible application of Proposition 1 if their
starting and destination positions are not aligned. Similarly for X3 and X4.

Geodesics in state 5, 6, and 7. In states 5, 6 and 7, one agent, called the pivotal
agent, contacts with both the other two agents, which do not contact each other
themselves. The domain for state 5 is:

X5 = {(x1, y1, x2, y2, x3, y3) : d12 = r, d13 = r, d23 > r} ∩ V.

X5 is a 2-dimensional submanifold with global coordinates (θ12, θ13) defined by

θ12 = arctan
y2 − y1

x2 − x1
, θ13 = arctan

y3 − y1

x3 − x1
.

(θ12, θ13) takes values in [0, 2π] × [0, 2π] with opposite edges identified, i.e., the
2-torus T 2. In order to satisfy the constraint d23 > r, the shaded region (see
Fig. 5) has to be removed from T 2, resulting in a subset X̂5 homeomorphic
to S1 × (0, 1). So topologically X̂5 (hence X5) is an untwisted ribbon whose
boundary consists of two disjoint circles.



θ

θ

13

12

2π
�����
�����
�����
�����

�����
�����
�����
�����

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�������
�������
�������

�������
�������
�������

0 2π0

Fig. 5. The domain X5 of discrete state 5.

Each (θ12, θ13) ∈ X̂5 determines a unique point f(θ12, θ13) in X5 by

f(θ12, θ13) =
r

3
(− cos θ12 − cos θ13,− sin θ12 − sin θ13, 2 cos θ12 − cos θ13,

2 sin θ12 − sin θ13,− cos θ12 + 2 cos θ13,− sin θ12 + 2 sin θ13)T ,

which is an embedding of X̂5 into R6. The standard metric on R6 induces by f
isometrically a metric on X̂5. A curve (θ12(t), θ13(t)) is a geodesic in X̂5 under
the induced metric if and only if γ(t) = f(θ12(t), θ13(t)) is a geodesic in X5.
Using the fact that γ is a geodesic in X5 if and only if its acceleration as a curve
in R6 at each point is orthogonal to the tangent space of X5 ([5]), we obtain
after some calculations the geodesic equation on X̂5 as (see [11] for details){

2θ̈12 − cos(θ12 − θ13)θ̈13 = sin(θ12 − θ13)(θ̇13)2

2θ̈13 − cos(θ12 − θ13)θ̈12 = − sin(θ12 − θ13)(θ̇12)2.
(7)

There are certain symmetries in equation (7), which become evident by writ-
ing (7) in the new coordinates ξ = θ12 + θ13 and η = θ12 − θ13, leading to:{

(2− cos η)ξ̈ = −ξ̇η̇ sin η
(2 + cos η)η̈ = 1

2 ((ξ̇)2 + (η̇)2) sin η.
(8)

Integrating the first equation in (8), we have

ξ̇(2− cos η) = C2, (9)

for some constant C2. On the other hand, since geodesics have constant speed,
there exists another constant C1 such that ([11])

(2− cos η)(ξ̇)2 + (2 + cos η)(η̇)2 = 4C1.

Substitution of (9) into the above equation leads to

(η̇)2 =
8C1 − C2

2 − 4C1 cos η
4− cos2 η

, (10)

which together with (9) governs the dynamics of η and ξ respectively.
Geodesics in X6 and X7 can be obtained similarly.
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Fig. 6. Concatenation of geodesic segments.

Geodesics in state 8 and 9. Domains X5, X6 and X7 share a common boundary
consisting of two disjoint circles, which form the domains of state 8 and state 9
respectively. In both states, the three agents form an equilateral triangle centered
at the origin. The only difference is their orientation. Agents 1, 2 and 3 are
numbered counterclockwise in state 8 and clockwise in state 9.

Consider state 8 and its domain X8. X8 is a one dimensional circle and can
be parameterized by σ, which is the angle between the line segment joining the
origin to agent 1 and the positive x-axis. A geodesic in X8 in this coordinate
must then be of the form σ(t) = ωt for some constant angular velocity ω.

In summary, we have characterized geodesic segments in each one of the
discrete states. By Theorem 1, the minimizing geodesics corresponding to the
optimal collision-free maneuvers for the three agents are C1 concatenation of
such segments. One example of such concatenations is shown in Fig. 6, where
the starting and destination positions of the three agents are marked with stars
and diamonds respectively. A rod exists between two agents if and only their
distance at the corresponding positions is r. However, it should be pointed out
that the problem of finding when and where the switches between geodesic seg-
ments occur remains an open issue. In [11], we propose a numerical procedure to
approximate the minimizing geodesics based on the successive optimization of
piecewise linear curves in M . At each iteration a convex optimization problem
is solved. By choosing a small step size for the piecewise linear curves, we can
obtain a reasonably good approximation.

4 Conclusions

The problem of optimal collision-free maneuvers for multiple agents is formulated
and shown to be equivalent to the problem of finding minimizing geodesics in a
certain manifold with boundary, which can in turn be interpreted as an optimal
control problem for a hybrid system. The solution is given for the two agents case.
For the three agents system we derive the dynamics of the segment of optimal
maneuver associated to each discrete state. The overall optimal maneuver is
shown to be a C1 concatenation of such segments.
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