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In this paper, we present an autonomous exploration method for unmanned aerial 
vehicles in unknown urban environment. We address two major aspects of exploration- map 
building and obstacle avoidance- by combining model predictive control (MPC) with a local 
obstacle map builder. An onboard laser scanner is used to build the online map of obstacles 
around the vehicle during the flight. A real-time MPC algorithm with a cost function that 
penalizes the distance to the nearest obstacle replans the path. The adjusted trajectory is 
sent to the position tracking layer in the Berkeley UAV avionics. The proposed approach is 
implemented on Berkeley rotorcraft UAVs and successfully tested in urban flight 
experiment setup.   

I. Introduction 
NMANNED aerial vehicles (UAVs) have become an indispensable platform for many applications where 
manned operation is considered unnecessary or too risky. As UAVs find their way into more demanding 

applications such as ground support or urban warfare, they are expected to fly autonomously without colliding into 
obstacles. So far, those situations have been avoided by operating UAVs at higher altitudes where chances of 
running into obstacles are very slim, or, if really necessary, by controlling UAVs with human operators in the loop. 
However, as UAVs are required to operate in cluttered or dynamically changing environments with more authority, 
the need for autonomous exploration capability is greatly increasing. Exploring autonomously in an unknown 
environment requires two crucial component technologies: map building and online trajectory replanning. 

Map building and obstacle avoidance have been intensively covered by robotics society since late 70s. As a 
result of these efforts, various algorithms and implementations are currently available for guiding mobile robots 
safely in unknown or partially known two-dimensional world. Although some algorithms can be extended to the 
modeling of three-dimensional spaces, these are still computationally expensive, and have limitations in outdoor 
applications. In 1990s, researchers introduced probability theories into map building techniques,1 enhancing 
robustness and performance of those algorithms even with cheaper and inaccurate sensors.2 Naturally, intensive 
computations are required for these enhancements, and the situation becomes worse in three-dimensional problems. 
UAVs also pose more challenges than the ground robots do in the development and implementation. UAVs typically 
fly at a much faster speed than the ground robots, and therefore demand faster and more accurate decision making. 
The payload allocated to the avionics and onboard sensors is no less limiting than ground robots.  Finally, during the 
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development stage, trial-and-error approaches are 
strictly prohibited because any failure to avoid 
obstacles inescapably leads to a costly and very 
dangerous accident.  

Model predictive control has been found highly 
attractive for addressing control problems in dynamic 
environments. The online optimization3 with preview 
enables a control system more responsive to the 
changes in the system dynamics and the surroundings. 
Further, it has been suggested a variety of performance 
goals, in addition to the feedback stabilization, can be 
incorporated into the cost function. Shim, Kim, and 
Sastry4 proposed MPC-based flight control algorithms 
by introducing a set of cost functions for decentralized 
collision avoidance and aerial pursuit-evasion.5  
Particularly, it is shown that MPC is capable of 
obstacle avoidance using a cost function that penalizes 
the distance to the nearest obstacle.  

The obstacles in the flight path can be made known to the path planner by a pre-programmed map or a 
dynamically built obstacle map. Whereas the former approach does not suffer from any sensor-induced errors, the 
map itself may be inaccurate or outdated. Therefore, we favor onboard sensors, especially, the laser scanner due to 
its accuracy and long detection range.  

In this paper, we propose an autonomous exploration algorithm suitable for, but not limited to, urban navigation 
by combining the MPC-based obstacle avoidance with local obstacle map building using onboard laser scanning. 
Starting from the given trajectory, the MPC layer solves for a collision-free trajectory by the real-time gradient-
search based algorithm. The proposed algorithm is validated in simulations, and in experiments using a simulated 
urban environment as shown in Figure 1.   

II. Formulation 
 In this section, we provide some background in the system dynamics, MPC formulation, and the coordinate 
transformation for laser scanning.  
 
A. System Dynamics and Path Generation using MPC 
 A model for a given system dynamics can be written as a discrete-time dynamic equation such that: 
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 Our model-predictive path planning strategy combines the potential field concept with the online optimization 
with preview. The cost function in Eq. (2) is formulated to reflect the aspect of a potential function for path planning 
in the environment with stationary or moving obstacles. This allows the trajectory generation and vehicle 
stabilization to be combined into a single problem, and the look-ahead feature of the MPC framework makes this 

Figure 1. Berkeley UAV flying autonomously in a 
simulated urban environment 
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approach less vulnerable to local minima.4 In this scenario, we assume that each vehicle is aware of nearby obstacles 
by means of onboard sensors or a pre-programmed map.   
 The following potential function term is added to the cost function ( )( ), ( )q k kx u : 
 

 2 2 2
1

( ( ))
( ( ) ( )) ( ( ) ( )) ( ( ) ( ))i i i

N
obst i

S S S
i i i i

K
q k

a x k x k b y k y k c z k z k ε=

=
− + − + − +∑x , (3) 

 
where ( , , )S S Sx y z denotes the position of the vehicle, and ( , , )i i ix y z denotes the position of the i-th nearest obstacle 
(or the position of other vehicles) in local Cartesian coordinate frame. Eq. (3) introduces a potential field near N 
obstacle points into the MPC framework. ( , , )i i ia b c is a set of scaling factors in x, y, z directions, respectively.  Note 
ε is a positive constant to prevent Eq. (3) from being singular when ( , , ) ( , , )S S S

i i ix y z x y z= .  
 It has been shown in Ref. 4, along with the detailed description on algorithms, that the proposed MPC 
framework allows the trajectory generation and the vehicle stabilization problems to be combined into a single 
problem. In Section III, we will present an obstacle avoidance algorithm using the MPC framework shown above for 
urban exploration problems. 
 
B. Coordinate Transformation for Laser Scan Data 
 The laser scanner we adopted in our research consists of a laser source, a rotating mirror for planar scanning, and 
a laser receptor. The mirror reflects the laser beam in a plane. At each scanning, the sensor reports a stream of 
measurements that supplies the following information: 

   { }( , ), 1,...,L n n measY d n Nβ= = , (4) 

where nd , nβ , and measN  represent the distance from an obstacle, the angle in the scanning plane, and the total 
number of measurements per scan, respectively. Each measurement can be written into a vector form such that 

 ( )L
n

L
nnn

L
LD d jiX ββ sincos|/ += , (5) 

where Li  and Lj  are orthonormal unit vectors lying 
in the scanning plane. The subscripts D and L 
represent scanned data and laser scanner, 
respectively. 
 In order to find the spatial coordinates of each 
detected point, we need a few coordinate 
transformations among three coordinate systems: 
body coordinate systems attached to the laser 
scanner and to the host vehicle, respectively, and the 
spatial coordinate system, to which the vehicle 
location and attitude are referred.  
 In order to fly around obstacles in the 
surrounding environment, the laser scanner should 
be able to scan the area large enough to cover the 
space that the entire vehicle body may pass through 
with some clearance. For example, if the laser 
scanner is installed to scan the area horizontally, an actuation in the pitch axis is added so that the scanner can cover 
the area higher than the rotor plane and lower than the landing gear.  
 Each laser measurement vector in laser scanner-attached body coordinates is first transformed into the vehicle-
attached body coordinates and then the spatial coordinate system as following: 
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Figure 2. Coordinate transformations for laser scan data 
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where the subscripts S and B represent spatial- and body-coordinate system, respectively. / ( )B L αR  is the 
transformation matrix from the laser body coordinate L to vehicle body coordinate B where α is the tilt angle with 
respect to the vehicle body. If the laser scanner is mounted without additional tilting motion, / ( )B L αR  reduces to a 
constant matrix. /S BR  denotes the transformation matrix from vehicle body coordinates to spatial coordinates.  
 Finally, the spatial coordinate of the obstacle is found by: 

 / /

/ / / / /( )

S S S S
D D L L B B

L B S
S B B L D L S B L B Bα

= + +

= + +

X X X X

R R X R X X
 (7) 

 Using Eq. (7), one can find the spatial coordinate of a detected obstacle point by combining the raw 
measurement vector with the position and attitude of the vehicle, which is available from the INS and the GPS 
onboard. Note that the accuracy of the detection in the spatial coordinate system not only depends on the laser 
scanner itself, but also the accuracy of the vehicle position and attitude.  
 Figure 3 shows fixed and actuated types of laser scanner mountings on Berkeley UAVs. The scanner shown in 
the left is a fixed mounting and the one on the right is installed on a tilt actuator with a tilt angle encoder. It is noted 
the laser scanner on a fixed mounting can provide vertical scanning with a limited range due to the small body 
motion caused by the main rotor gyration.  

   

III. Autonomous Exploration using MPC with Local Maps 
 In this section, we present a MPC-based trajectory generation for autonomous exploration in an unknown 
environment with obstacles. Particularly, we are interested in addressing safe navigation of UAV in urban 
environments with no prior information available on the obstacles. We begin with the following statement: 
 
 Problem Statement 
Find a trajectory that allows the vehicle to navigate from the given starting point A to the destination point B with 
safe distance from obstacles in the environment.  
 
 We address the problem with an integral approach of MPC-based trajectory planner with local obstacle map 
generation using onboard sensors. 
 
A. Trajectory Replanning with MPC 
 In this section, we consider a navigation problem from point A to point B, connected by a reference trajectory. 
Without loss of generality, the trajectory is assumed as a straight line. The MPC approach in Section II-A can be 
formulated as a tracking control problem with a cost function term for Eq. (2) such that 
 

  
Figure 3. Laser scanning devices mounted on Berkeley UAVs (left: fixed, right: actuated mounting) 
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  ( ) ( )1( ( )) ( ) ( ) ( ) ( )
2

Ttrk
ref refq k k k Q k k= − −x y x y x , (8) 

 
where ( ( )) ( ( )) ( ( ))trk obstq k q k q k= +x x x  in Eq. (2). 
 In Ref. 4, Eq. (1) is chosen to be the full vehicle dynamic model so that the optimized variable ( )ku  is the 
stabilizing control input that also minimizes other penalties for tracking, obstacle avoidance, or aerial pursuit-
evasion games. Although the MPC can be formulated either for direct stabilization or reference trajectory generation, 
we opt for the latter due to the safety during flight experiments using our UAVs. By separating the trajectory layer 
from the stabilization layer, any failure of the optimization routine to converge to a solution does not directly affect 
the stability of the overall vehicle. However, the difference between the reference position and the physical position 
due to the tracking error should be considered in the obstacle map building process in Section III-B.  Therefore, in 
this paper, we choose a simplified dynamic model to generate a reference trajectory in order to lower the numerical 
load of the optimization process for experiment.  
 
  ( 1) ( ) ( )sk k T k+ = +x x u , (9) 
 
where [ ]SS S Tx y zx ,

TS S S
x y zv v v⎡ ⎤⎣ ⎦u  and Ts is the sampling time of the discretized model. In this setup, 

the optimization results in the reference velocity in the spatial coordinates. The optimization output is fed back into 
Eq. (9) to obtain the reference trajectory, which is then sent to the tracking layer in Berkeley UAV avionics.6 
 As described in Section II, an MPC-based trajectory generator can be formulated for obstacle avoidance as well. 
In Ref. 4, it was shown that the cost term (Eq. (3)) with N=1 is sufficient although Eq. (3) with N > 1 is expected to 
result in a smoother cost function surface and thus allow a better convergence in the gradient-search based 
optimization. In favor of efficiency of algorithms and computation, we choose the nearest-point method, i.e., N=1 so 
that only the nearest point is considered in the optimization(Figure 4). The cost term in Eq. (3) for urban navigation 
is set to  
 
  ( )min min

12 2 2
min( ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))obst S S S

obsq k K x k x k y k y k z k z k ε
−

= − + − + − +x , (10) 
 
where the cost function is chosen to decay uniformly in every direction from the obstacle point at min min min( , , )x y z . 
Kobs is a tuning parameter to balance the tendency to stay on the original given path and to break away from the 
given path to go around obstacles.  
 
B. Local Obstacle Map Building 
 For the MPC-based trajectory generation with obstacle avoidance, we need to find min

OX , the relative vector with 
minimum length from the reference position to a point on an obstacle such that  
 
  min

2
( ) arg min

i
O obs

i
O ref O ref

S∈
= −

X
X X X X , (11) 

 
where ||⋅||2 is Euclidian norm in three-dimensional space and 
Sobs is the set of all points on the obstacles in the surrounding 
three-dimensional space. 
 Theoretically, Eq. (11) demands a perfect knowledge on 
all obstacles in the surrounding environment, which would 
require an ideal sensor capable of omni-directional scanning 
with infinite detection range. Further, if the MPC is for 
reference trajectory generation, the ideal sensor should be 
moving along the trajectory of the reference points during the 
state propagation over a finite horizon at every optimization 
stage. Obviously, such a scenario is impractical. Therefore, 
in order to provide min

OX  to the MPC-based trajectory 
 

Figure 4. Nearest-point method 

min
/O BX  
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generator with these restrictions, it is necessary to maintain a 
local obstacle map consisting of recent measurements from 
onboard sensors.  
 At each sample time, the sensor provides measN  
measurements of scan points on obstacles nearby. Due to the 
imperfect coverage of the surroundings with possible 
measurement error, each measurement set i

OX  is first filtered, 
transformed into local Cartesian coordinates, and cached in the 
local obstacle map. A first-in first-out (FIFO) buffer is chosen 
for the data structure for such a map, whose update rate 
depends on the types of obstacles nearby. If the surrounding is 
known to be static, the caching time is desired to be as long as 
the memory and processing overhead permits. On the other 
hand, a more dynamic environment would require shorter caching to reduce the chance to detect an obstacle that 
may not exist any more.  
 In order to solve Eq. (11), the measurement set in the FIFO should be sorted in an ascending order of 

2

i
O ref−X X  for all i

OX  in the local obstacle map. Prior to be registered in the database, any anomalies such as salt-

and-pepper noise are discarded. In case that the sensor detects small debris, such as grass blades or leaves blown by 
the vehicle, those small-size objects, not being a serious threat for safety, should be ignored by the trajectory planner. 
We apply an algorithm that computes a bounding box of the minimum volume that contains a series of subsequent 
points in FIFO where the distance between adjacent points in the sorted sequence is less than a predefined length. 
Then, if the volume of the box is larger than a threshold so that it is considered as a safety threat, the coordinates of 
the nearest point in the bounding box is found and used for computing Eq. (3). The procedure of the local obstacle 
map building method proposed above is illustrated in Figure 5.  
 

IV. Experiment Results 
 In this section, we present the simulation and experiment results of autonomous exploration in an urban 
environment. The experiment design is strongly affected by the safety regulations: it is performed in a field with 
portable canopies simulating buildings, not with real buildings. The canopies, measuring 3 meter × 3 meter × 3 
meter each, are arranged as shown in Figure 6. The distance between canopies is set to 10 meters in the north-south 
direction and 12 meters in the east-west direction so that the UAV with 3.5 meter long fuselage can pass between the 
canopies with minimal safe clearance, about 3 meters from the tip to a canopy when staying on course. For 
validation, the MPC engine developed in Ref. 4 is applied to the proposed urban experiment setup. A simulation 
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Figure 5. Local partial map building method 
for nearest-point approach using MPC 
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Figure 6. Aerial view of urban experiment (black: 
given straight path, red: actual flight path of UAV 
during experiment) 



Submitted to 2005 AIAA GN&C Conference 

 
American Institute of Aeronautics and Astronautics 

 

7

model is constructed in MATLABTM/SimulinkTM, where 
the local map building with a laser scanner is replaced 
with a pre-programmed map to avoid building a laser 
sensing model. The MPC algorithm with the local map 
building algorithm is implemented in C language for 
speed and portability. 

As shown in Figure 7, the MPC path planner is 
capable of generating a collision-free trajectory around 
the buildings from the original trajectory with intentional 
intersection with buildings. The green and red lines 
pointing to the buildings are min

OX at each sample time. 
For experiments, the Simulink model is modified to 
function as the online trajectory generator. Although 
Simulink was not designed for a real-time controller in 
the loop, it can be forced to run for soft real-time control 
by adding a real-time enforcing block. Using the 
behavior of TCP/IP communication, a custom TCP/IP 
transport block is configured to enforce soft real-time 
operation of the Simulink model at 10Hz in this case.  

Urban exploration experiments were performed using a Berkeley UAV, whose detailed specification is given in 
Table 1. For obstacle detection, the vehicle is equipped with an LMS-200 from Sick AG (Figure 3), a two-
dimensional laser range finder, which is capable of 80 m scanning range with 10 mm resolution and weighs 4.5 kg. 
The measurement is sent to the flight computer via RS-232 and then relayed to the ground station running the MPC-
based trajectory generator in Simulink and the ground station software with a three-dimensional rendering window. 
The laser scanner data stream is then processed following the method proposed in Section III-B. In Figure 8, a three-
dimensional rendering from the ground station software is given. The display shows the location of the UAV, the 
reference point marker, min

/O BX  to a point in the local obstacle map at that moment, and laser-scanned points as blue 

  Table 1. Specification of a Berkeley UAV 
Base platform Yamaha R-50 Industrial Helicopter  

Dimension 0.7 m(W) × 3.5 m (L) × 1.08 m (H) 
Rotor Diameter 3.070 m 

Weight 44 kg (dry weight) 
20 kg (payload including avionics) 

Engine 2 cycle gasoline engine 
12 hp 

Operation Time Fuel: 40 minutes 
Avionics: 200 minutes 

Onboard System 

Two PC104-based computers  
Boeing DQI-NP INS 

NovAtel GPS MillenRT-2 
IEEE 802.11b Wireless Ethernet 

Ultrasonic altimeters 
SICK laser range finder (LMS-200) 

Pan-tilt-zoom Camera 

Capabilities 
Waypoint navigation 

Position tracking 
Interactive operation mode 

 
Figure 8. A snapshot of three-dimensional rendering during an urban exploration experiment 
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dots. During the experiments, the laser scanner used in our experiment demonstrated its capability to detect the 
canopies within the line of sight with great accuracy, and other surrounding natural and artificial objects including 
buildings, trees and power lines.  

 The processed laser scanned data in a form of local obstacle map is used to generate a trajectory using the 
algorithm in Section III-A. The trajectory is then sent via IEEE 802.11b to the avionics system with a dedicated 
process running to enforce the command update rate at 10Hz. The tracking control layer enables the host vehicle to 
follow the given trajectory with sufficient distance. In the repeated experiments, the vehicle was able to fly around 
the obstacles with sufficient distance to reach the destination as shown in Figure 6 (red line).  

V. Conclusion 
 This paper presented an autonomous exploration method for unmanned aerial vehicles in unknown urban 
environments. An onboard laser scanner is used to build an online map of obstacles around the vehicle. This local 
map is combined with a real-time MPC algorithm that generates a safe vehicle path, which uses a cost function that 
penalizes the distance to the nearest obstacle. The adjusted trajectory is then sent to a position tracking layer in the 
hierarchical UAV avionics architecture. In a series of experiments using a Berkeley UAV, the proposed approach 
successfully guided the vehicle safely through the urban canyon.  
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