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Abstract: We present two results about regular hybrid systems with no branching
(Simić et al., 2000a). The first one provides a condition for asymptotic stability of
hybrid closed orbits in terms of contraction-expansion rates of resets and flows in a
hybrid system. The second one is a generalization of the Poincaré-Bendixson theorem
to planar hybrid systems.
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1. INTRODUCTION

Research in the area of hybrid systems has been mo-
tivated by a variety of applications to air traffic man-
agement, automotive control, embedded software,
process control, highway systems, manufacturing,
and other areas. Numerous methods for modeling,
analyzing, and controlling hybrid systems have been
proposed. However, many fundamental questions in
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the field still remain open. The main reason is that
in addition to being nonlinear, hybrid systems are
not smooth. When analytic methods for analysis
fail – as they generally do, which is the principal
reason for the development of the modern theory
of dynamical systems – the only resort we have is
qualitative analysis.

This is why in (Simić et al., 2000a) and (Simić et
al., 2000b), we proposed a framework for a geo-
metric (i.e., qualitative) theory of hybrid systems.
We restricted ourselves to a class of systems, called
regular and without branching, which behave like



piecewise smooth dynamical systems (without slid-
ing) on piecewise smooth manifolds. We introduced
a single state space called the hybrifold for the hybrid
dynamics captured by the hybrid flow, explained the
geometric reason for the Zeno phenomenon (when
the system makes infinitely many switches in finite
time), and locally classified it in dimension two. In
(Lygeros et al., 2000), we studied along similar lines,
among other problems, stability of equilibria and
invariant sets of hybrid systems via linearization and
LaSalle’s principle.

In this article we continue with our program and
deal with the question of stability of hybrid closed
orbits (Section 3). We propose a stability criterion in
terms of expansion-contraction rates of reset maps
and flows involved in creating the closed orbit in
question. We then address the problem of recurrence
in planar hybrid systems (Section 4) and show that
the classical Poincaré-Bendixson theorem can be
generalized to regular systems without branching.
We close (Section 5) by outlining the conclusions and
directions for future work.

Due to a space limit, we omit all proofs. They will
appear in the forthcoming full version of the paper.

2. PRELIMINARIES

In this section we define the basic notions, fix the
notation, and state the standing assumptions. We
closely follow (Simić et al., 2000a) (and its prelimi-
nary version (Simić et al., 2000b)) to which the reader
is referred for details.

Definition 2.1. An n-dimensional hybrid system is a
6-tuple H = (Q, E,D,X ,G,R), where:

• Q = {1, . . . , k} is the collection of (discrete)
states of H, where k ≥ 1 is an integer;

• E ⊂ Q × Q is the collection of edges;
• D = {Di : i ∈ Q} is the collection of domains of

H, where Di ⊂ {i} ×Rn for all i ∈ Q;
• X = {Xi : i ∈ Q} is the collection of vector

fields such that Xi is Lipschitz on Di for all
i ∈ Q; we denote the local flow of Xi by {φi

t}.
• G = {G(e) : e ∈ E} is the collection of guards,

where for each e = (i, j) ∈ E, G(e) ⊂ Di;
• R = {Re : e ∈ E} is the collection of resets,

where for each e = (i, j) ∈ E, Re is a relation
between elements of G(e) and elements of Dj ,
i.e. Re ⊂ G(e) × Dj .

Given H, the basic idea is that starting from a point
in some domain Di we flow according to Xi until
(and if) we reach some guard G(i, j), then switch
via the reset R(i,j), continue flowing in Dj according
to Xj and so on. This is formalized in the following
two definitions.

Definition 2.2. A (forward) hybrid time trajectory
is a sequence (finite or infinite) τ = {Ij}

N
j=0 of

intervals such that Ij = [τj , τ
′

j ] for all j ≥ 0 if the
sequence is infinite; if N is finite, then Ij = [τj , τ

′

j ]
for all 0 ≤ j ≤ N − 1 and IN is either of the form
[τN , τ ′

N ] or [τN , τ ′

N ). The sequences τj and τ ′

j satisfy:
τj ≤ τ ′

j = τj+1, for all j.

One thinks of τj ’s as time instants when discrete
transitions (or switches) from one domain to another
take place. If τ is a hybrid time trajectory, we will
call N its size and denote it by N(τ). Also, we use
〈τ〉 to denote the set {0, . . . , N(τ)} if N(τ) is finite,
and {0, 1, 2, . . .} if N(τ) is infinite.

Definition 2.3. An execution (or forward execution)
of a hybrid system H is a triple χ = (τ, q, x), where
τ is a hybrid time trajectory, q : 〈τ〉 → Q is a map,
and x = {xj : j ∈ 〈τ〉} is a collection of C1 maps
such that xj : Ij → Dq(j) and for all t ∈ Ij ,

ẋj(t) = Xq(j)(xj(t)).

Furthermore, for all j ∈ 〈τ〉 such that j < N(τ), we
have (q(j), q(j + 1)) ∈ E, and

(xj(τ
′

j), xj+1(τj+1)) ∈ R(q(j),q(j+1)).

For an execution χ = (τ, q, x), denote by τ∞(χ) its

(forward) execution time τ∞(χ) =
∑N(τ)

j=0 (τ ′

j − τj).
We distinguish several types of executions (see (Simić
et al., 2000a) or (Lygeros et al., 2000) for details).
Infinite executions make infinitely many switches or
have infinite execution time, while maximal ones
are maximal with respect to a natural ordering
on executions. An execution χ is called a Zeno
execution if N(τ) = ∞ and τ∞(χ) < ∞. That is,
it makes infinitely many switches in finite time. A
Zeno execution is called dynamic if for every l > 0
there exists j ≥ l such that τ ′

j > τj , i.e., it doesn’t
cease to make time progress.

In (Simić et al., 2000a) we studied a class of hy-
brid systems which behave like piecewise smooth
dynamical systems on piecewise smooth manifolds.
We called such systems regular hybrid systems with-
out branching. Roughly speaking, H is regular and
without branching if each guard can be glued to
the image of the corresponding reset in such a way
to obtain a topological manifold on which the cor-
responding projected dynamics look like that of a
piecewise smooth flow. So for instance, for every
initial condition there is a unique infinite execution,
the domains are piecewise smooth manifolds, the
guards are smooth submanifolds of the boundary of
the domains, resets are diffeomorphisms, executions
cross (i.e., are not tangent to) the guards except
possibly along the boundary, and guards and images
of reset maps can meet only along their boundaries.
For the complete list of assumptions, please see the
above reference.



In the same paper, we introduced the notion of
the hybrifold MH of a hybrid system H and its
hybrid flow ΨH. The hybrifold is the single state
space for the hybrid dynamics and is obtained by
“gluing” the domains along guards via reset maps.
Just like the flow of a smooth system, the hybrid
flow satisfies ΨH

t (ΨH

s (x)) = ΨH

t+s(x), for all x ∈ MH

and t, s ∈ R for which both sides are defined.
So instead of studying executions of H in several
different locations, we study orbits (see below for
a definition) of the corresponding hybrid flow on
a single hybrifold. The advantage of this is that it
allows the use of techniques from the theory classical
continuous-time dynamical systems. Furthermore, it
provides a convenient setting for global analysis of
hybrid systems.

Standing assumption: Every hybrid system H
henceforth is regular and without branching. Its hy-
brifold is denoted by MH and its hybrid flow by ΨH.

Recall that, for x ∈ MH, t 7→ ΨH

t (x) denotes the
unique execution (viewed in MH) starting at x at
time 0. Let J(x) be the set of all real numbers t for
which ΨH

t (x) is defined and let τ∞(x) = sup J(x).
For each x, we call the collection of points ΨH

t (x),
t ∈ J(x), the orbit of x. Also, denote by π the
projection map

⋃

i Di → MH, which assigns to each
p the set of points p is identified with in the hybrifold
construction (Simić et al., 2000a).

Since our goal is to study asymptotic behavior of
orbits, analogously to the classical case (Palis Jr. and
de Melo, 1982) and following (Simić et al., 2000a), we
introduce the notion of the ω-limit set.

Definition 2.4. A point y ∈ MH is called an ω-limit
point of x ∈ MH if

y = lim
m→∞

ΨH

tm
(x),

for some increasing sequence (tm) in J(x) such that
tm → τ∞(x), as m → ∞. The set of all ω-limit points
of x is called the ω-limit set of x and is denoted by
ω(x).

One final note: smooth will mean of class C∞. If
f : M → N is a smooth map between smooth
manifolds and p ∈ M , Tpf will denote the tangent
map (or derivative in the case when M = Rn) of f
at p; it maps the tangent space of M at p denoted
by TpM to Tf(p)N .

3. HYBRID CLOSED ORBITS

The simplest types of recurrence in any dynamical
system are exhibited by equilibria and closed orbits.
The notion of an equilibrium of a hybrid system
we use was defined in (Simić et al., 2000b) (as well
as (Lygeros et al., 2000) for more general hybrid
systems). Namely, a point x ∈ MH is an equilibrium
for ΨH if ΨH

t (x) = x, for all t ∈ J(x). Note that

Zeno executions which make no time progress (i.e.,
J(x) is a singleton) also give rise to equilibria.

Definition 3.1. An orbit γ of a hybrid flow ΨH on
MH is closed if it is not an equilibrium and there
exists a positive number T such that for some (and
therefore all) x ∈ γ, ΨH

T (x) = x. The smallest such
T is called the period of γ. If γ is not contained in
a single domain π(Di), it is called a hybrid closed
orbit.

We also speak of closed orbits of the hybrid system H
itself (as opposed to its hybrid flow ΨH). Those are
the executions of H which project to closed orbits of
ΨH via π.

In general, it is hard to find closed orbits even of
smooth dynamical systems. In the plane, we have
Bendixson’s criterion in terms of divergence which
tells us when there are no closed orbits (Sastry,
1999), and the Poincaré-Bendixson theorem (see be-
low) on the 2-sphere or the 2-disk which is only an ex-
istence result. In higher dimensions, however, looking
for closed orbits is a matter of hard hands-on analysis
and simulation. Similarly, for non-smooth or hybrid
systems, little is known about existence and stability
of closed orbits (see, for instance, (Guckenheimer
and Johnson, 1994; Johansson et al., 1997; Matveev
and Savkin, 2000)). The recent book Qualitative
Theory of Hybrid Dynamical Systems (Matveev and
Savkin, 2000) deals with similar questions (among
many others) as we do in this paper but in a different
setting; for instance, Zeno executions are not allowed
and in the study of limit cycles, only constant vector
fields are permitted. It should also be mentioned
that planar switching systems were investigated by
A. A. Andronov and his group in the Soviet Union
before 1950 (for a historical account and references,
please see (Bissell, 2001)). Another good reference for
stability of closed orbits of smooth and discontinuous
systems is (Leonov et al., 1996).

Closed orbits which attract other orbits are of special
significance: a closed orbit γ is called a limit cycle if
there exists a point x /∈ γ such that ω(x) = γ. Some
limit cycles have an additional property of attracting
a whole neighborhood of orbits around them.

Definition 3.2. A closed orbit γ of a hybrid flow ΨH

is called asymptotically stable if for every neighbor-
hood U of γ in MH there is a neighborhood V ⊂ U
of γ such that ΨH

t (V ) ⊂ U , for all t > 0, and for
every x ∈ V ,

lim
t→∞

d(ΨH

t (x), γ) = 0. (1)

Here d(x, γ) denotes the minimum distance from
x to γ measured by the metric on MH (Simić et
al., 2000a) defined in a standard way as the infimum



of the length of curves between points.

Remark. We briefly remind the reader of the basic
result on stability of closed orbits for smooth systems
(cf. (Hirsch and Smale, 1974)). Suppose X is a
smooth vector field on (for simplicity) Rn which
has a closed orbit γ with period τ . Denote the flow
of X by φt. Take a point p ∈ γ and let H be a
hyperplane through p transverse to γ (i.e., X(p) and
H span Rn) which is invariant under Tpφτ . Recall
that Tpφτ has the eigenvalue 1 corresponding to the
eigenvector X(p), so all other eigenvalues correspond
to directions in H . Consider the first-return map g
from some neighborhood U of p in H into H . Then
g(p) = p and p is asymptotically stable for g if and
only if γ is asymptotically stable. Further, it can be
shown that

Tpg = Tpφτ |H .

Therefore, if n− 1 eigenvalues of Tpφτ are less than
1 in absolute value, then γ is asymptotically stable.

As far as it is known to the authors, there exists
no similar result which does not require integrating
the vector field. Consequently, it is not reasonable to
expect it for hybrid systems.

The main result of this section which we now state
is in the spirit of the above remark.

Theorem 3.1. Let γ be a hybrid closed orbit of ΨH.
Denote by Γ = π−1(γ) the execution of H which
gives rise to γ, and assume that Γ cyclically visits
an ordered collection of distinct domains which we,
without loss of generality, denote by D1, . . . , Dl.
Assume that Γj = Γ ∩ Dj is a single smooth arc
(as opposed to a collection of them) starting at aj

and ending at bj .

Let ej = (j, j+1), for 1 ≤ j ≤ l−1, and el = (l, 1) be
the edges of E corresponding to transitions between
domains Dj . Let Aj = image Rej−1

and Bj = G(ej)
so that aj ∈ Aj and bj ∈ Bj . Suppose that aj , bj

lie in the interior (relative to the boundary of Dj) of
Aj , Bj respectively, and that Aj , Bj are smooth at
aj , bj (see Fig. 1).

Set νj = ‖Tbj
Rej

‖ and µj = ‖Taj
φj

τj
|Taj

Aj
‖. If

cγ =
l

∏

j=1

2µjνj < 1,

then γ is asymptotically stable. Furthermore, the
convergence in (1) is exponential.

Note that it is the interplay of the contractive-
expansive properties of both resets and flows that
determines stability of γ. In fact, the result can
be strengthened by assuming a weaker (but less
tractable) condition as follows. For each j = 1, . . . , l
there is a a diffeomorphism hj from a neighborhood
of aj in Aj to a neighborhood of bj in Bj , defined by:

PSfrag replacements
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Fig. 1. Illustration for Theorem 3.1.

hj(x) is the first intersection of the forward Xj-orbit
of x with Bj . Let κj = ‖Taj

hj‖. If kγ =
∏

j κjνj < 1,
then γ is asymptotically stable. However, κj may be
even more difficult to compute than µj . The reason
for the curious (but unfortunate) presence of the
number two in the above product is explained by
the following lemma which is an important step in
the proof of Theorem 3.1 and says that κj ≤ 2µj .
Here for a linear map L : Rn → Rn and a subspace
E ⊂ Rn, ‖L|E‖ = sup{‖Lv‖ : v ∈ E, ‖v‖ = 1}.

Lemma 3.1. Let X be a smooth vector field on Rn

with local flow φt without equilibria. Let A and B be
smooth disjoint hypersurfaces transverse to X such
that for some a ∈ A and τ > 0, φτ (a) = b ∈ B,
and for all t ∈ [0, τ), φt(a) /∈ B. Assume a, b lie in
the interior of A, B, respectively. Then there exist a
neighborhood U of a in A, a neighborhood V of b
in B, and a diffeomorphism h : U → V such that if
x ∈ U , then h(x) is the unique first intersection of
the forward X-orbit of x and B. Furthermore,

‖Tah‖ ≤ 2‖Taφτ |TaA‖.

Note that a useful and often only tool available
to estimate ‖Taφτ |TaA‖ is the well known second
variational equation (Hirsch and Smale, 1974)

d

dt
(Tpφt) = Tφt(p)X ◦ Tpφt.

Example 3.1. We force a damped pendulum into
cyclic motion using impulse control. Consider the
pendulum equation θ̈ + θ̇ + sin θ = 0, or equivalently
the system

θ̇ = ω

ω̇ =− sin θ − ω

near the stable equilibrium (0, 0) and apply the
following control strategy: when θ = 0 and ω < 0
increase the angular velocity ω in modulus by a
suitably chosen factor > 1. Otherwise do nothing.
This can be formalized in the following way.

Define a hybrid system H by setting:

• Q = {1, 2}, E = {(1, 2), (2, 1)};
• D1 = {(1, θ, ω) : θ ≤ 0}, D2 = {(2, θ, ω) : θ ≥

0};



• X1(1, θ, ω) = (ω,− sin θ − ω) and X2(2, θ, ω) =
(ω,− sin θ − ω);

• G(1, 2) = {(1, θ, ω) ∈ D1 : θ = 0, ω ≥ 0},
G(2, 1) = {(2, θ, ω) ∈ D2 : θ = 0, ω ≤ 0}.

Before we define the reset maps corresponding to
control impulses, we introduce the following nota-
tion. For each point p = (1, 0, ω) 1 in D1 with ω > 0,
denote by f−(ω) the unique positive number such
that the first intersection of the forward X1-orbit
of (1, 0,−f−(ω)) with the boundary of D1 is p (see
Fig. 2). For each point q = (2, 0, ω) ∈ D2 with ω > 0,
denote by f+(ω) the unique positive number such
that the first intersection of the forward X2-orbit of
q with the boundary of D2 is (2, 0,−f+(ω)). Clearly,
f+, f− are smooth monotonic functions from (0,∞)
to (0,∞), f−(ω) > ω, and f+(ω) < ω, for all ω > 0.
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Fig. 2. Example 3.1.

Let ρ : [0,∞) → [0,∞) be a smooth increasing map
such that ρ(0) = 0, ρ(f+(1)) = f−(1), and for all
ω 6= 1, ρ(f+(ω)) 6= f−(ω). Now define the resets

• R(1,2)(1, 0, ω) = (2, 0, ω) and R(2,1)(2, 0,−ω) =
(1, 0,−ρ(ω)), for all ω ≥ 0.

It can be verified that H is a regular hybrid system
without branching with a unique closed orbit γ
through the point π(1, 0, 1).

Let t1 and t2 be the smallest positive numbers such
that φ1

t1
(1, 0,−f−(1)) ∈ G(1, 2) and φ2

t2
(2, 0, 1) ∈

G(2, 1), where φj
t is the flow of Xj . Observe that

t1 + t2 is the period of γ. It can be shown (in the
notation of Theorem 3.1 and the comment following
it) that

kγ =

∣

∣

∣

∣

ρ′(f+(1))
f ′

+(1)

f ′

−
(1)

∣

∣

∣

∣

.

Furthermore, using the second variational equation
and Grönwall’s inequality (Sastry, 1999) we can
estimate

cγ ≤ 4 |ρ′(f+(1))| e3(t1+t2).

If ρ is chosen so that kγ < 1 (weaker condition)
or cγ < 1 (stronger condition), then Theorem 3.1
implies that γ is asymptotically stable.

1 Recall that “1” refers to the domain to which p belongs.

4. HYBRID POINCARÉ-BENDIXSON
THEOREM

In this section we show that regular hybrid systems
without branching in the plane exhibit only trivial
recurrence. We refer the reader to (Palis Jr. and
de Melo, 1982) for the classical Poincaré-Bendixson
theorem which states the same for smooth systems.
Namely, if a smooth vector field on the 2-sphere S2

(or 2-disk) has only finitely many equilibria, then
for any x ∈ S2 its ω-limit set ω(x) is either an
equilibrium, a limit cycle, or a union of saddles and
their connections.

Further recall (Simić et al., 2000a) that for a hybrid
system H, a point z ∈ MH is called a Zeno state
if z ∈ ω(x) and the execution starting from x is a
dynamic Zeno execution. Isolated Zeno states were
investigated in (Simić et al., 2000a) and locally clas-
sified in dimension two. It was shown there that near
a planar Zeno state, the hybrid flow is topologically
equivalent to a smooth spiral sink. Recall that two
flows (hybrid or smooth) are said to be topologically
equivalent if there exists a homeomorphism send-
ing orbits of one to the orbits of the other pre-
serving their time direction (though not necessarily
time itself). For more details see (Palis Jr. and de
Melo, 1982) for smooth and (Simić et al., 2000a) for
hybrid systems.

Let us remark that in (Matveev and Savkin, 2000) a
version of the Poincaré-Bendixson theorem is stated
and proved, but in a setting which does not permit
Zeno executions, which is allowed in our framework.

We now state the main result of this section.

Theorem 4.1. Let H be 2-dimensional regular hy-
brid system without branching. Suppose that MH

is homeomorphic to the 2-sphere (or the unit 2-disk)
and that there are only finitely many equilibria, Zeno
states, and closed orbits. Then for every x ∈ MH,
ω(x) is either

(a) an equilibrium,
(b) a Zeno state,
(c) a limit cycle,
(d) a union of saddles and their connections.

In particular, the system exhibits no nontrivial re-
currence.

Corollary 4.1. Suppose that H is 2-dimensional and
there exists a compact invariant set K ⊂ MH such
that in K, ΨH has no equilibria and Zeno states, and
has only finitely many closed orbits. Then for every
x ∈ K, ω(x) is a closed orbit.

5. CONCLUSION AND FUTURE WORK

We provide a relatively simple stability criterion for
hybrid closed orbits which, as for smooth systems,



unfortunately requires integrating the vector fields
along the closed orbit. The result is applied to
study the periodic motion of a pendulum under
impulsive forcing. We also derive a generalization
of the classical Poincaré-Bendixson theorem, which
rules out nontrivial recurrence in planar regular
hybrid systems without branching.

It remains to see if there can be more complicated
types of recurrence in more general planar hybrid
systems. Further, it would be desirable to develop
an index theory (cf. (Sastry, 1999)) for equilibria
(including Zeno states) of hybrid systems, especially
those of greater generality than studied in this paper.
These are, among others, some possible directions for
future work.
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