
Toward Design Parameterization Support for
Model Predictive Control

Jonathan Sprinkle, J. Mikael Eklund and S. Shankar Sastry
Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720-1774

Email: {sprinkle,eklund,sastry}@EECS.Berkeley.Edu

Abstract— Research into the autonomous behavior of Un-
manned Aerial Vehicles (UAVs) requires concise and dependable
specification techniques in order to provide behavioral descrip-
tions for the controllers of these aircraft. Practical issues with
autonomous aircraft involve the safety and reliability of the
controller (e.g., guarantee of stability), as well as verification
of the high-level intention of the autonomous behavior. Since
most behaviors are implemented orthogonally to their high-level
specification, improvements in the ability to rapidly specify the
models that govern the behavior are certainly welcome. This
paper describes the framework for decreasing the abstraction
required to specify the behavior of an autonomous controller
implemented through model predictive control.

I. INTRODUCTION

The increased usage of Unmanned Aerial Vehicles (UAVs)
is practically guaranteed for the foreseeable future. Recently,
UAVs are most famously deployed for military or surveillance
purposes, due to their reduced risk of loss-of-life, decreased
visibility by adversaries (when compared to manned vehicles)
as well as drastically reduced cost of production.

For the most part, however, UAVs have literally been an
extended version of manned flight, since notable UAVs such
as the Predator are (for the the most part) deployed, flown,
and retrieved by a remote pilot, who is supported by a large
staff that monitors the aircraft and its surroundings. This
implementation is required, because the safety and reliability
of the UAV demands human intervention, due to the real-time
constraints of its behavior.

The use of models in the specification of behaviors of UAVs
tends to be more important when specifying the mathematical
definition of the dynamics of the aircraft, rather than the
actual autonomous behavior of the aircraft. The state of the
art for behavior specification is through the use of (Nonlinear)
Model Predictive Control (MPC, or NMPC), which provides a
guide for desired behavior under certain environmental stimuli.
The complexity of the models of the system dynamics, in
combination with the highly ad hoc nature of the behavioral
specifications, renders this problem as (1) computationally
intensive and (2) prone to iterative designs that require trial
and error testing.

This paper describes a proposed framework for model-
based specification of the autonomous behavior of systems
that may be governed by NMPC techniques. Section II gives
background information about the definition and behavior of

NMPC. Section III discusses the physical constraints of an
avionics system (UAV), and justifies the requirement that
these constraints be satisfied in real-time. Section IV describes
the limitations and advantages of using models to meet the
constraints of the system, as well as possible ways in which the
desired behavior of the system can be mapped directly into the
format required by an NMPC controller. Finally, conclusions
and ideas for future work are given.

II. NMPC

Nonlinear Model Predictive Control (NMPC) is a method
by which behaviors may be encouraged in system controllers.
NMPC is performed through the global or local optimization
of some cost function that describes the encoded behavior of
the system. By using predictions of the future behavior of
the cost function, a controller utilizing NMPC can give an
autonomous set of behaviors to a system.

A. Cost Functions

In [1] the use of NMPC allowed for a fixed-wing aircraft
to participate in evasive maneuvers when confronted by an
adversary with similar behavioral characteristics. The cost
function, J , is generically stated as,

J = φ(b1N ..MN
) +

N−1∑
k=0

L(x,u,b1..M ), (1)

where,

φ(b1N ..MN
) = C

m=M∑
m=1

bT
mB0m

bm (2)

and,

L(xk,uk,bk1..M ) �

C

(
xT
kX0xk + uT

kU0uk +
m=M∑
m=1

bT
mk

B0m
bmk

)
(3)

where N represents the number of timesteps the NMPC
controller looks ahead for its predictive calculations, b is the
set of M different encoded axes of behaviors for the NMPC
controller, x is the state of the system, and u is the system
input interface. The function L(·) is used to calculate the
behavior of the system according to the relative cost of certain
behaviors.



B. Optimization

The gradient descent algorithm described in [2], [3] can
be used to find a locally optimal solution to the equation
J = 0. The input interface u, being part of this equation,
can be directly applied to the controller, yielding the behavior
that was predicted by the NMPC controller (assuming that the
environment continues as was predicted as well).

At least one implementation of the gradient descent algo-
rithm (in use in [1], [2]) can be employed to run as a real-
time task for fixed-wing aircraft control. The optimization
procedures, when given a simple-enough characteristic model
of the behavior of the aircraft, can execute rapidly enough to
allow a 1–3 Hz refresh rate. While this is not sufficient for
an inner-loop controller, it is an acceptable rate for an outer-
loop controller, e.g., control through an autopilot interface that
guarantees basic stability of the aircraft.

III. AVIONICS CONSTRAINTS

As detailed in [1], NMPC can be used to give behaviors to
aircraft based on the a priori design requirements of the system
modeler. Included in these behavioral models are not only the
dynamical equations that govern the Eulerian motion of the
aircraft, but also the hard constraints that describe the physical
(or empirical) limits of the aircraft. Examples of these kinds
of avionics constraints are the maximum/minimum velocity,
climb/descent rate, turn rate, attitude, wind speed, etc.

These avionics constraints find there way into the u vector
mapping, which constrains the inputs possible to the system. In
an autopilot situation, the inner-loop calculations and feedback
definitions are not used, but high-level inputs (such as the turn
rate command) are given. The avionics constraints for physical
limits of the aircraft in [1] are given as,

map(uv̇) =

⎧⎨
⎩

−50[f/s]
[−50, 50] [f/s]
50[f/s]

−∞ < uv̇ < −1
−1 � uv̇ � 1
1 < uv̇ < ∞

map(uψ̇) =

⎧⎨
⎩

−π/50[s−1]
[−π/50, π/50] [s−1]
π/50[s−1]

−∞ < uψ̇ < −1
−1 � uψ̇ � 1
1 < uψ̇ < ∞

map(uż) =

⎧⎨
⎩

−10[ft/s]
[−10, 10] [ft/s]
10[ft/s]

−∞ < uż < −1
−1 � uż � 1
1 < uż < ∞

,

(4)
with,

u =
[
uv̇, uψ̇, uż

]
∈ [−1, 1]3 ∈ R

nu (5)

where uv̇ is the desired rate of change of airspeed velocity,
uψ̇ is the desired rate of change of turn, and uż is the desired
rate of change altitude. The input space is constrained by the
[−1, 1]3 matrix.

Other constraints, beyond the scope of this paper, restrict the
latitude/longitude of flight, may restrict certain headings while
in fly-zones, or possibly even disallow input to the system in
a no-fly-zone (e.g., if a secondary autonomous unit, such as
the Soft Walls [4], [5] implementation, takes control of the
aircraft in an emergency situation).

The importance of these constraints to an NMPC solution
is that they are required to guarantee the high-level stability
of the system. That is, the NMPC controller is designed to
account for a predetermined refresh in the system state—if
there is an overflow or backup in the real-time behavior, then
the system will slowly (or, perhaps rapidly) become unstable.

IV. USE OF MODELS

In order to ensure the high-level stability of the aircraft,
then, we must restrict (or approximate) the models that de-
scribe the behavior of the aircraft (as they are represented in
the NMPC model) such that

• the behavior is simple enough to allow real-time execu-
tion of N steps of evaluation in the future, and

• the behavior is accurate enough to reflect the actual
behavior (with some acceptable difference).

For example, the precision of the flight dynamics need not be
hundredths of an inch, but should be more accurate than 100
miles. When designing NMPC controllers, the determination
of dynamics is second only to the definition of the X0,U0,
and B01..M

matrices in terms of difficulty.

A. Determining Matrix Values

The matrices X0,U0, and B01..M
are used to obtain scalar

values for individual portions of the cost function (note that
xT
kX0xk is a scalar, and that the dimensions of X0 are nx ×

nx). The basic scalar portions, we will call them sx and su, are
present in each NMPC implementation, regardless of whether
it is an aerial vehicle, ground vehicle, or some other controlled
system.

These matrices are usually diagonal, although occasionally
the dynamics of the system require non-zero values for non-
diagonal elements of the matrix in order to maintain certain
behaviors. The difference in value of each element in the
matrix reflects the relative importance of that value to each
individual scalar portion. For instance, the relative importance
of the uψ̇ portion of u can be obtained by dwarfing the uv̇ and
uφ̇ values in the U0 matrix. Usually, however, these values are
different because of unit differences, (for example, the values
in the cost function should reflect whether the amount is given
in radians vs. degrees).

Tuning the individual matrix values of the X0 and U0

generally yield an NMPC definition that controls the system to
maintain its current state; this only part of the overall NMPC
definition, however. The B01..M

matrices usually outnumber
those of the basic aircraft, sometimes substantially, and it is
these matrices that give the unique behavioral characteristics of
the system under certain stimuli. That is, the B01..M

matrices
override the steady-state behavior that would ensue if only X0

and U0 were present in the cost function.
The determination of these individual axis values is by

far the most complex portion of the NMPC development
process. Generally, an ad hoc method is used, which involves
closed-loop experimentation with a systems expert. Combined
with extended testing and verification of intent, this allows a



system designer to implement desired behaviors under certain
conditions.

B. Determining Models of Dynamics

The dynamics of the system are important for the look-
ahead portion of the NMPC controller using gradient descent
methods. Mathematical definitions (rather than data lookup-
table models obtained by system identifaction methods) are
required, since the gradient descent algorithm requires func-
tional based lookup of the partial derivatives at certain points
with respect to the input vector and the state vector.

Certainly, given the mathematical versions of the dynamics,
it would be possible to do a symbolic manipulation of the dy-
namics to obtain the proper partial derivatives. The dynamics
models, however, are not trivial to determine, and require the
input of a skilled domain expert who has deep knowledge of
the system.

V. MODEL GENERATION

We have discovered for our aerial application that using
basic Eulerian rules of motion we are able to sufficiently
approximate the actual behavior of the aircraft under flight
conditions1. This was an arduous process however, and now
that we have settled on using the Eulerian equations, we realize
that we have more computational time left to look further
“ahead” in time, that is, increase our value of N .

It is this kind of support that should enable another layer of
models for NMPC code generation. The gradient descent algo-
rithm is domain independent (meaning that it exists in mathe-
matical form, and orthogonal to any particular application that
is encoded into the x,u, and b1..M axes). In fact, it is this
encoding that is the “hard” part of the system specification—
yet, the problem of creating a rapid implementation that is
suitable to run in real time and on the appropriate operating
system is not a trivial one. Furthermore, much of the work
required to provide this NMPC implemenation is exactly the
same from system to system, differing only by,

1) the system dynamics, and partial derivatives;
2) the input and state vectors;
3) the lookahead count; and
4) the axes vectors b1..M used to determine behavior.

The question, then, is how best to provide the above inputs
to a system expert, while generating optimal (or at least an
acceptable local maximal) code that manages the “impleme-
nation details” of an NMPC controller.

Generating the NMPC controller in a fast language such
as C++ is an interesting exercise in software engineering.
Providing template classes and code generators that “fill in the
blanks” of the above design parameters is certainly a useful
task, but is not the most interesting science involved in this
research.

Where we see a need (and indeed, some possibility) for
support is in the high-level specification of desired behaviors

1This guarantee is given through a real-time simulator provided by Boeing,
not through actual flight tests. However, the Boeing simulator is guaranteed
by that company to accurately reflect the true behavior of the aircraft.

that generates the low-level axes vectors b1..M , along with
the initial population their coefficient matrices B01..M

. It may
be possible to capture certain known behaviors through case
study or recording, and determine how they should be encoded.
For example, pursuit/evasion of fixed-wing aircraft has a large
following among war aviators, and today’s pilots study tactics
and maneuvers to escape from adversaries in certain scenarios.
Texts such as [6] describe these maneuvers in detail; however,
it is not intuitively obvious how to encode them into an NMPC
controller, much less guarantee that such a behavior will occur
under those conditions, and not be blocked by another behavior
that is “cheaper” according to the cost function.

Such a possibility indicates the possible use of hybrid
models to switch between optimal control laws in different
scenarios. This is an intersting use of hybrid models that will
be under our future study. Methods such as those described
in [7] have been used to explore the reachable states of a
hybrid (or other) model, and can perhaps be used to check to
ensure that only the desired behaviors issue in the appropriate
scenarios.

VI. CURRENT AND FUTURE SUPPORT FOR GENERATION

The current state of the generative support is in theory
only. There do not exist any tools or frameworks for the true
parameterization of NMPC-based controllers. However, our
empirical software construction suggests that a large majority
of the existing codebase is parameterizable—with emphasis
on the configuration of the lookahead length and the equations
governing the dynamics of the aircraft.

Support for model generation should be initially related to
the actual dynamics of the system and the final “requirements”
of the system. Once these two portions of the cost function
are formally defined, then the gradient-descent method can
be applied to their formal specification. Once support for this
has been established, additional axes of the requirements (e.g.,
constraints around certain execution paths or state values)
can be introduced through additional specification. Possibly
the most difficult portion of the generative support is the
extraction of the system dynamics from experimental runs or
desired outputs. This is similar to controller synthesis (given
a desired path of the controller, and providing an input that
gives that path), so it will be possible to get inspiration from
system identification and existing controller synthesis engines
to provide these mappings.

VII. CONCLUSION AND OUTLOOK

We have described the use of models in the definition of
a nonlinear model predictive controller, and how the decision
to choose the precision of those models can affect the ability
of the controller to run as a real-time task. We also discussed
how the cost functions that give the stability and behavior
of a controller using NMPC can be difficulty to encode, and
obfuscate the actual behavior of the system when that behavior
is encoded.

Our position is that the behavior that is encoded into
an NMPC controller can to a large degree be automated,



reducing the time to develop the controller. Furthermore, the
specification of the encoded behavior, as the most difficult
portion of the controller implementation, is in need of a higher-
level form of specification, and we hope to explore how best
to capture this information.

ACKNOWLEDGMENT

Many thanks to Jin Kim and Ian Mitchell, who have worked
hard to implement and use model checking software, as well
as provide assistance in the understanding of NMPC and
reachability calculations.

This work was supported in part by the DARPA Software
Enabled Control (SEC) project.

REFERENCES

[1] J. Sprinkle, J. M. Eklund, H. J. Kim, and S. S. Sastry, “Encoding aerial
pursuit/evasion games with fixed wing aircraft into a nonlinear model
predictive tracking controller,” in IEEE Conference on Decision and
Control. Submitted, Dec. 2004.

[2] H. J. Kim, D. H. Shim, and S. S. Sastry, “Nonlinear model predictive
tracking control for rotorcraft-based unmanned aerial vehicles,” in Amer-
ican Control Conference, May 2002.

[3] ——, “Decentralized nonlinear model predictive control of multiple flying
robots in dynamic environments,” in IEEE Conference on Decision and
Control. IEEE Press, Dec. 2003.

[4] A. Cataldo, “Control algorithms for soft walls,” Master’s thesis, Univer-
sity of California, Berkeley, Berkeley, CA 94720, Jan. 2004, technical
Memorandum UCB/ERL M03/42.

[5] E. A. Lee, “Soft walls - modifying flight control systems to limit the
flight space of commercial aircraft,” University of California, Berkeley,
Berkeley, CA, 94720, Tech. Rep. Revised from UCB/ERL Memorandum
M001/31, Oct. 2001.

[6] R. L. Shaw, Fighter Combat: Tactics and Maneuvering. United States
Naval Inst., Sept. 1988.

[7] I. Mitchell, “Application of level set methods to control and reachability
problems in continuous and hybrid systems,” Ph.D. dissertation, Stanford
University, Aug. 2002.


