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Abstract— In this paper, we present two approximate filtering
algorithms for estimating states of a distributed networked
control system (DNCS). A DNCS consists of multiple agents
communicating over a lossy communication channel, e.g., wire-
less channel. While the time complexity of the exact method
can be exponential in the number of communication links, the
time complexity of an approximate method is not dependent
on the number of communication links. In addition, we discuss
the general conditions for stable state estimation of DNCSs.

I. INTRODUCTION

With the recent developments in communication, com-
puting, and control systems, a networked control system
(NCS) has received a fair amount of attention recently. In
a general sense, an NCS consists of spatially distributed
multiple systems or agents equipped with sensors, actuators,
and computing and communication devices. The operation
of each agent is coordinated over a communication network.
The examples of an NCS include sensor networks [1]],
[2]], networked autonomous mobile agents [3], e.g., a team
of UAVs, and arrays of micro or micro-electromechanical
sensors (MEMS) devices.

Recently, different aspects of NCSs have been studied
extensively. Sinopoli er al. [4]] showed the phase transition
behavior of the Kalman filter when the measurement packet
loss is modeled by a Bernoulli random process and estab-
lished the relationship between the speed of dynamics and
the packet loss rate for stable state estimation of the system.
Similar estimation problems are discussed in [5]], [6]], [7]]. The
control problems over an unreliable communication channel
have been studied by many authors, including [8], [9], [[10].
The stability of NCSs has been also studied in [[L1]], [[12]].

There is a growing interest in consensus and coordination
of networked systems inspired by the model by Vicsek et al.
[13], in which a large number of particles (or autonomous
agents) move at a constant speed but with different headings.
At each discrete time, each particle updates its heading based
on the average heading of its neighboring particles. The
analysis of the Vicsek model in different forms are reported
in [14], [15], [16].

In literature, a single plant is usually assumed for an NCS
and the links between the plant and the estimator or con-
troller are closed by a common (unreliable) communication
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channel. This notion is extended by a distributed networked
control system (DNCS) in which there are multiple agents
communicating over a lossy communication channel [17]. A
DNCS extends an NCS to model a distributed multi-agent
system such as the Vicsek model. The best examples of
such system include ad-hoc wireless sensor networks and a
network of mobile agents. The exact state estimation method
based on the Kalman filter is introduced in [17]]. However, the
time complexity of the exact method can be exponential in
the number of communication links. In this paper, we address
this issue by developing two approximate filtering algorithms
for estimating states of a DNCS. The approximate filtering
algorithms bound the state estimation error of the exact
filtering algorithm and the time complexity of approximate
methods is not dependent on the number of communication
links.

The stability of estimators under a lossy communication
channel is studied in [4], [5]. However, the extension of the
result to the general case with an arbitrary number of lossy
communication links is unknown. While computing the exact
communication link probabilities required for stable state
estimation is nontrivial, we describe the general conditions
for stable state estimation using jump linear system theory.

The remainder of this paper is structured as follows. The
dynamic models of DNCSs are described in Section [II} The
modified Kalman filtering methods for DNCSs are described
in Section [[II] and the approximate filtering algorithms are
derived in Section Conditions for stable state estimation
is discussed in Section[Vland simulation results are described
in Section [VIl

II. DISTRIBUTED NETWORKED CONTROL SYSTEMS
WITH LOSSY LINKS

Let us first consider a distributed control system consisting
of N agents, in which there is no communication loss. The
discrete-time linear dynamic model of the agent j can be
described as following:

N
zi(k+1) = Agyzi(k) + Gjw; (k) (1)
=1

where k € ZT, z;(k) € R"= is the state of the agent j at time
k, w;(k) € R™ is a white noise process, A;; € R™**"= and
G; € R*=*™_Hence, the state of the agent j is governed
by the previous states of all N agents. We can also consider
A;;x;(k) as a control input from the agent ¢ to the agent j
for i # j.

Now consider a distributed networked control system
(DNCS), in which agents communicate with each other over



a lossy communication channel, e.g., wireless channel. We
assume an erasure channel between a pair of agents. At each
time k, a packet sent by the agent ¢ is correctly received by
the agent j with probability p;;. We form a communication
matrix Pom = [pi;]. Let Z;;(k) € {0,1} be a Bernoulli
random variable, such that Z,;(k) = 1 if a packet sent by
the agent ¢ is correctly received by the agent j at time k,
otherwise, Z,;(k) = 0. Since there is no communication loss
within an agent, p;; = 1 and Z;;(k) = 1 for all ¢ and k. For
each (4, 7) pair, {Z;;(k)} are ii.d. (independent identically
distributed) random variables such that P(Z;;(k) = 1) = p;;
for all k; and Z;;(k) are independent from Z;,,, (k) for [ # ¢
or m # j. Then we can write the dynamic model of the
agent j under lossy links as following:

j(k+1) Z Zij(k)Agzi(k) + Gjw; (k). 2)
Let x(k) = [:1c1(k)T7 . ,xN(k)T]T and w(k) =
[wi(k)T, ..., wn(k)T]", where y™ is a transpose of y. Let

A ; be a Nn, x Nn, block matrix. The entries of A;; 4 are all
zeroes except the (7,4)-th block is A;;. For example, when

N=2 0 0
Ao — ng ng
12 A12 On,; )
where 0,,, is a ng X ng zero matrix. Then the discrete-time

linear dynamic model of the DNCS with lossy links can be
represented as following:

- (2w

i=1 j=1

z(k+1) z(k) + Guw(k), (@)

where G is a block diagonal matrix of G1,...,Gy.

For notational convenience, we introduce a new index n €
{1,...,N?} such that ij is indexed by n = N(i — 1) +
7. With this new index n, the dynamic model can be
rewritten as

(k) + Gu(k). 4

ZZ

By letting A(k) = (Zgil Zn(k;)fLL), we see that (4) is

a time-varying linear dynamic model:
z(k+1) = A(k)z(k) + Guw(k). (5)

Until now we have assumed that A,, is fixed for each n.
Now suppose a more general case where the matrix A is
time-varying and its values are determined by the commu-
nication link configuration Z(k) = [Z1(k),..., Zn2(k)]T.
Hence, A is a function of Z(k) and this general case can be
described as

2k +1) = A(Z(k)z(k) + Gu(k). ©6)

The dynamic model (6) or is a special case of the linear
hybrid model or a jump linear system [18] since A(k) takes
an element from a set of a finite number of matrices. We will
call the dynamic model () as the “simple” DNCS dynamic
model and (6) as the “general” DNCS dynamic model.

III. MODIFIED KALMAN FILTER FOR DNCSS

In this section, we outline a recursive filtering algorithm
described in [17] for the general DNCS dynamic model (6).
Since Z(k) is independent from Z(t) for t # k, we derive
an optimal linear filter. Notice that we denote Z(k) by Z
when there is no confusion.

Consider the general DNCS dynamic model (6), where
w(k) is a Gaussian noise with zero mean and covariance @,
and the following measurement model:

y(k) = Cx(k) + v(k), @)

where y(k) € R™ is a measurement at time k, C' €
R"v*Nne and v(k) is a Gaussian noise with zero mean and
covariance R. Hence, we are assuming that the measurements
are collected by a remote sensor or by a sensor in one of the
agents. Notice that Z(k) is not observed.

The following terms are defined to describe the modified
Kalman filter.

&(klk) = Elz(k)ly k]
P(klk) = E [e(k e |yk]
Fk+1k) = Elzk+1)|yx
P(k+1|k) E[ (k+1lk)e (k—i—l\k) ]7
where yi, = {y(t) : 0 < t < k}, e(k|k) = (k) — 2(k[K).

and e(k + 1|k) = x(k + 1) — &(k + 1]k).

Suppose that we have estimates #(k|k) and P(k|k) from
time k. At time k+1, a new measurement y(k+1) is received
and our goal is to estimate &(k + 1|k +1) and P(k+ 1|k +
1) from Z(k|k), P(k|k), and y(k + 1). First, we compute
Z(k+1|k) and P(k + 1|k).

a(k+1k) = Ez(k+ 1)y
= E[A(Z)z(k) + Gu(k)lyi]
A (k|k), ®)

where .
A= "p.A(z
ZEZ

is the expected value of A(Z). Here, p. = P(Z = z), and
Z is a set of all possible outcome vectors for 7, i.e., Z is a
set of all possible communication link configurations.

The prediction covariance can be computed as following.

P(k + 1|k) = Ele(k + 1[k)e(k + 1/k)" |y
=GQGT + 3.,z p-A(2) P(k[R)A(2)T )
+3.ez - A(2)E (k)2 (k|k)T (A(z) — A)T.
Given Z(k + 1lk) and P(k + 1|k), &(k + 1|k + 1) and
P(k + 1|k 4+ 1) are computed as in the standard Kalman
filter.

dk+1k+1) = @(k+1k) (10)
+ Kk +1)(ylk+1) — Ci(k + 1]k))
Plk+1k+1) = P(k+1]k) (11)

— K(k+1)CP(k+1|k),

where K (k+1) = P(k+1|k)CT(CP(k+1]k)CT + R)™!



IV. APPROXIMATE KALMAN FILTER FOR DNCSs

The modified KF proposed in Section [III] for the general
DNCS is an optimal linear filter but the time complexity of
the algorithm can be exponential in N since the size of Z
is O(QN(N’D) in the worst case, i.e., when all agents can
communicate with each other. In this section, we describe
two approximate Kalman filtering methods for the general
DNCS dynamic model (6) which are more computationally
efficient than the modified KF by avoiding the enumeration
over Z. Since the computation of P(k + 1|k) is the only
time-consuming process, we propose two filtering method
which can bound P(k + 1|k). We use the notation A > 0 if
A is a positive definite matrix and A > 0 if A is a positive
semidefinite matrix.

A. Lower-bound KF for General DNCS

The lower-bound KF (Ib-KF) is the same as the modified
KF described in Section except we approximate P(k +
1|k) by P(k+1|k) and P(k|k) by P(k|k). The covariances
are updated as following:

AP(k|k)AT + GQGT
P(k+ 1|k)
K(k+1)CP(k +1]k),

P(k+ 1|k)
Pk+1k+1) =

(12)
13)

where A is the expected value of A( ) and K(k +1) =
P(k+1]k)CT(CP(k+1|k)CT+R)~!. Notice that A can be
computed in advance and the 1b-KF avoids the enumeration
over Z.
Lemma 1: If P(k|k) < P(k|k), then P(k+1|k) < P(k+
11k).
Proof: Using (9), we have

Pk +1]k) — P(k + 1|k)

= E[A(2)P(k|k)A(Z)"] + E[A(Z)a(k|k) 2 (k|k)T A(Z)"]

— Az (k|k)&(k|k)T AT — AP(k|k)AT
=P + P,
where Py = E[A(Z)P(k|k)A(Z)T]— AP (k|k) AT and P, =

E[A(Z)&(k|k)2 (k|k)T A(Z)] — Az (k[k)(k|k)" AT

If P, = 0and P, = 0, then P(k+1|k)— P(k+1]k) =
and it completes the proof.
Pi = E[A(Z)P(klk)A(Z)"] - AP(K|k)AT
—  AP(k|k)AT + AP(k|k) AT
= E[AZ)P(k|k)A(Z)T] — AP(k|k) AT
+ A(P(k|k) — P(k|k)AT.

Since P(k|k) is a symmetric matrix, P(k|k) can be decom-
posed into P(k|k) = Uy DU, where Uy is a unitary matrix
and D, is a diagonal matrix. Hence,

P = E[(A(Z)U,D)*)(A(Z2)UD;/*)7]
~  E[A(2)UDy/*E[A(Z)U, Dy/?)T
+ A(P(k|k) — P(k|k))AT

= Cov[A(Z)UL D1/ + A(P(k|k) — P(k|k)) AT,

where Cov[H]| denotes the covariance matrix of H. Since a
covariance matrix is positive definite and P(k|k)— P(k|k) =
0 by assumption, P; = 0. P, is a covariance matrix since

#(k|k)2(k|k)T is symmetric, hence P, = 0. |

Lemma 2: If P(k+1|k) < P(k+1|k), then P(k+ 1|k +
1) X P(k+1lk+1).

Proof: Applying the matrix inversion lemma to @P

we have P(k+ 1|k +1) = (P(k+ 1|k)"' + CTR™C) "
Let P = P(k + 1|k) and P = P(k + 1|k). Then

Vi r
p! p!
P14+ CTR™1C P t+CTRC
(Pt +CTR'C) (P~ +CTR'C)
Pk+1lk+1) P(k+ 1|k +1).

-1

Y 1Y A TATY

]
Finally, using Lemma [T} Lemma and the induction
hypothesis, we have the following theorem showing that the
Ib-KF maintains the state error covariance which is upper-
bounded by the state error covariance of the modified KF.
Theorem 1: If the 1b-KF starts with an initial covariance
P(0]0), such that P(0|0) < P(0|0), then P(k|k) <X P(k|k)
for all £ > 0.

B. Upper-bound KF for General DNCS

Similar to the 1b-KF, the upper-bound KF (ub-KF) ap-
proximates P(k + 1|k) by P(k + 1|k) and P(k|k) by
P(k|k). Let Amax = Amax(P(E|k)) + Amax (2(K| k)2 (K|K)T),
where Amax(S) denotes the maximum eigenvalue of S. The
covariances are updated as following:

Pk+1k) = IaE[A(Z)A(2)T) (14)
—  Az(k|k)z(k|k)TAT + GQGT
Pk+1k+1) = P(k+1]k) (15)

K (k+1)CP(k + 1|k),

where A is the expected value of A(Z) and K(k + 1) =
P(k + 1|k)CT(CP(k + 1]k)CT + R)~!. In the ub-KF,
E[A(Z)A(Z)"] can be computed in advance but we need to
compute A, at each step of the algorithm. But if the size of
Z is large, it is more efficient than the modified KF. (Notice
that the computation of Ap,x requires a polynomial number
of operations in N while the size of Z can be exponential
in N.)

Lemma 3: If P(k|k) = P(k|k), then P(k+1|k) = P(k+
11k).

Proof: Let M = &(k|k)z(k|k)T

matrix. Then using (9),

P(k|k) — P(k|k)
= )‘max]E[A(Z)A(Z)T}
—E[A(Z)P(k|k)A(Z)"] - E[A(Z)MA(Z)"]
= E[A(Z)(Amax (P(k|k) I — P(k|k))A(Z)T]
'HE[A(Z)(/\max(M)I - M)A(Z)T]'

Since P(k|k) = P(k|k) and Apax(S)I — S = 0 for any
symmetric matrix S, P(k|k) — P(k|k) = 0. |

and I be an identity



Using Lemma [3] Lemma [2] and the induction hypothesis,
we obtain the following theorem. The ub-KF maintains the
state error covariance which is lower-bounded by the state
error covariance of the modified KF.

Theorem 2: If the ub-KF starts with an initial covariance
P(0]0), such that P(0|0) = P(0|0), then P(k|k) = P(k|k)
for all k& > 0.

V. CONVERGENCE

In this section, we discuss conditions for stable state
estimation of the modified KF for DNCSs. Such condition
is studied in [4]], in which there is a lossy communication
channel between the plant and the estimator, and the result
is extend to the case with two communication links in
[5. However, the extension of their results to the general
case with an arbitrary number of communication links is
unknown. While computing the exact communication link
probabilities required for stable state estimation is nontrivial,
the general conditions for stable state estimation can be found
using jump linear system theory.

Definition 1: A DNCS model () is mean square stable
(MSS) if, for any initial condition xy and second-order
independent wide sense stationary random process {w(k)},
there exist z* and P* independent of x( such that:

(@ || Ez(k)]—z*| —0ask— o0
®) || E[z(k)x(k)T] — P* || — 0 as k — oo.

For a discrete-time Markov jump linear system, there
is a stationary filter with a finite state error covariance if
the system is mean square stable (MSS) and the governing
Markov chain is ergodic (Theorem 2 of [19]). Since the
communication configuration is independent over time, if a
DNCS is MSS, then the state error covariance of the modified
KF converges. We can use the following conditions to check
if a DNCS is MSS. In addition, using the optimization
techniques developed in [17], we can find the range of
communication link probabilities for mean square stability.

Theorem 3 (Corollary 1 of [18]): The DNCS model (@)
is MSS if and only if there exists G > 0 such that

G — Z p.A(2)TGA(2) = 0.

z2=Z
Theorem 4 (Theorem 2 of [I7]): The DNCS model (6) is
MSS if
> pap(A(2)"A2) < 1,

z2€EZ

where p(A) denotes the spectral radius of A.

The following theorem shows a simple condition under
which the state error covariance can be unbounded.

Theorem 5: 1f (E[A(Z)]T,E[A(Z)]TCT) is not stabiliz-
able, or equivalently, (E[A(Z)], CE[A(Z))]) is not detectable,
then there exists an initial covariance P(0|0) such that
P(k|k) diverges as k — oo.

Proof: Let us consider the Ib-KF. Let P, = P(k|k),

¥ =GQGT, A =FE[A], and

F=—(CAP,ATCT + 0yCT + R)~HCy + CAP,AT).

Then, based on the Riccati difference equation [20], we
can express P, as

Py, = AEkAT +9
_ T (CABkATCT +COyCT + R) F
= (AT + ATCTF)TP, (AT + ATCTF)
+ FT(CYCT + R)F + YCTF + FTCy + 1.

Hence, if (AT + ATCTF ) is not a stability matrix, for
some P, = P(0]0), P, diverges as k — co. Since the state
error covariance of the 1b-KF diverges and P(k|k) < P(k|k)
for all k > 0 (Theorem [1), P(k|k) diverges as k — co. W

VI. SIMULATION RESULTS

In simulation, we study the performance of the modified
Kalman filtering algorithm shown in Section [III] against the
standard Kalman filter which assumes no communication
errors. Then we provide motivating examples showing the
effectiveness of the 1b-KF and ub-KF.

Our simulation is based on a scenario inspired by the
model by Vicsek et al. [[13]. Consider a general DNCS
system (6) consisting of N = 5 agents. The state vector
of each agent is = [x,y,%,9]T, where (z,y) and (&,7)
are the position and the velocity components of the vehicle
along the x and y axes, respectively.

The agent 1 is a leader and its dynamics is modeled as

.Tl(k —+ 1) = Alll'l(k) -+ Blul(k) -+ lel(k),

where u;(k) € R™ is a control input to the leader agent
and By € R"%>"u,
The dynamics of an agent ¢ > 0 is

i+1
zi(k+1) = Z Ay D)z ) (k) + Gow; (k),
j=i—1
where k(j) = (j —1 mod N) + 1. For k(j) =1,
10 o 0 % 0
A(Z) = 01 0 & |03
14 = 0 0 S%i) (1) i = 5 0|
00 O O] 0 §
where ¢ is the sampling interval. For k(j) # 1,
0 0 0 0
0 0 0 0
A@ilZ) =1 o o Zyoyi/ S (@) 0
0 0 0 Zﬂ(j)i/S(i)

with S(i) = 22271 Z,(j)i- Hence, when the agent i
communicates with its neighboring agents x(i — 1) and
k(i + 1), its new velocity is the average of its velocity and
velocities received from its neighboring agents. In addition,
§ =1 and Q; = diag(0.012,0.012)

The mission of this multi-agent system is to visit sites
of interests in minimum time with a bounded control input.
The mission scenario is shown in Figure [I] along with the
trajectory of the leader agent. The control inputs to the



Fig. 1. The mission of the multi-agent system is to visit sites of interests
(shown in squares) sequentially from site 1 to site 6 (starting from site 6).
The trajectory of the leader agent is shown in solid line. The control inputs
to the leader are computed using the robust minimum-time control described
in [2].

leader are computed using the robust minimum-time control
described in [2f]. The trajectories of all agents at different
times are shown in Figure

We first study the performance gap between the modified
KF against the standard KF which does not assume commu-
nication losses. Let the communication matrix be

1 0000
A1 A0 0

Pom=10 X1 X0 (16)
00 A 1 A\
A0 0 A1

The measurement model is used where C' is a 10 x 20
matrix such that y(k) consists of noisy position measure-
ments of all agents and R = diag(0.1%,...,0.12). We varied
A from 0.1 to 1.0 with a 0.1 increment. For each value of A,
100 test cases are generated. For each test case, we ran the
modified KF and the standard KF and computed the mean
square error (MSE) of state estimates. The result is shown
in Figure [2] The figure shows a clear benefit of the modified
KF when the communication loss uncertainty is higher. In
addition, the modified KF shows an excellent performance
for all values of A.

We now consider two cases: Case A and Case B. Case A
is the model described above with A = 0.7. Case B is the
same as Case A except C is a 6 x 20 matrix such that y(k)
consists of noisy position measurements of agent 1, 3, and 4.
The positions of agents 2 and 5 are not observed in Case B.
The results are summarized in Table [l The modified KF
performs well compared to the standard KF but it requires
more computation time. The approximate KFs perform better
than the standard KF without much overhead in run-time.
Since a less number of states are observed in Case B, the
state uncertainty is higher in Case B and the ub-KF performs
better than the 1b-KF for Case B.

Fig. 2.
A, 100 test cases are used to compute the average MSE. As the value of A
decreases, the performance gap between the modified KF and the standard
KF increases.

The average MSE as a function of X in . For each value of

TABLE I
COMPARISON OF DIFFERENT KALMAN FILTERS: STANDARD KF,
MODIFIED KF (MoD-KF), LOWER-BOUND KF, AND UPPER-BOUND KF

KF mod-KF 1b-KF  ub-KF

Case A MSE  0.303 0.283  0.292 0.352
Run-time  0.56s 11.69s 0.64s 0.81s

Case B MSE  0.696 0.542  0.748 0.512
Run-time  0.52s 11.69s 0.60s 0.87s

VII. CONCLUSIONS

In this paper, we have described efficient approximate
filtering algorithms for estimating states of a distributed
networked control system (DNCS). A DNCS is an extension
of an NCS to model a distributed multi-agent system such as
the Vicsek model, where multiple agents communicate over
a lossy communication channel. While the time complexity
of the exact estimation method can be exponential in the
number of communication links, the time complexity of an
approximate method is not dependent on the number of
communication links. We have also described the general
conditions for stable state estimation using jump linear
system theory.
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