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Abstract. We consider the problem of security constrained optimal con-
trol for discrete-time, linear dynamical systems in which control and mea-
surement packets are transmitted over a communication network. The
packets may be jammed or compromised by a malicious adversary. For a
class of denial-of-service (DoS) attack models, the goal is to find an (op-
timal) causal feedback controller that minimizes a given objective func-
tion subject to safety and power constraints. We present a semi-definite
programming based solution for solving this problem. Our analysis also
presents insights on the effect of attack models on solution of the optimal
control problem.

1 Introduction

Attacks to computer networks have become prevalent over the last decade. While
most control networks have been safe in the past, they are currently more vul-
nerable to malicious attacks [7, 18]. The consequences of a successful attack on
control networks can be more damaging than attacks on other networks be-
cause control systems are at the core of many critical infrastructures. Therefore,
analyzing the security of control systems is a growing concern [4,7,12,13,15,18].

In the control and verification community there is a significant body of work
on networked control [16], stochastic system verification [6,1], robust control [2,
11, 3, 10], and fault-tolerant control [21]. We argue that several major security
concerns for control systems are not addressed by the current literature. For
example, fault analysis of control systems usually assumes independent modes
of failure, while during an attack, the modes of failure will be highly correlated.
On the other hand, most networked control work assumes that the failure modes
follow a given class of probability distributions; however, a real attacker has
no incentives to follow this assumed distribution, and may attack in a non-
deterministic manner. Finally, the work in stochastic system verification has
addressed safety and reachability problems for fairly general systems; however,
the potential applicability of these results for securing control systems has not
been studied.

In this article, we formulate and analyze the problem of secure control for
discrete-time linear dynamical systems. Our work is based on two ideas: (1) the
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introduction of safety-constraints as one of the top security requirements of a
control system, and (2) the introduction of new adversary models—we generalize
traditional uncertainty classes for control systems to incorporate more realistic
attacks. The goal in our model is to minimize a performance function such that
a safety specification is satisfied with high probability and power limitations are
obeyed in expectation when the sensor and control packets can be dropped by a
random or a resource-constrained attacker. Our analysis uses tools from optimal
control theory such as dynamic and convex programming.

1.1 Attacks on Control Systems

Malicious cyber attacks to control systems can be classified as either deception
attacks or denial-of-service DoS attacks.

In the context of control systems, integrity refers to the trustworthiness of
sensor and control data packets. A lack of integrity results in deception: when a
component receives false data and believes it to be true. In Figure 1, A1 and A3
represent deception attacks, where the adversary sends false information ỹ �= y
or ũ �= u from (one or more) sensors or controllers. The false information can
include: an incorrect measurement, the incorrect time stamp, or the incorrect
sender identity. The adversary can launch these attacks by compromising some
sensors (A1) or controllers (A3).

On the other hand, availability of a control system refers to the ability of
all components of being accessible. Lack of availability results in a DoS of sen-
sor and control data. A2 and A4 represent DoS attacks in Figure 1, where the
adversary prevents two entities from communicating. To launch a DoS the ad-
versary can jam the communication channels, compromise devices and prevent
them from sending data, attack the routing protocols, flood with network traffic
some devices, etc.

Lastly, A5 represents a direct attack against the actuators or the plant. Solu-
tions to these attacks, fall in the realm of detecting such attacks and improving
the physical security of the system.

As shown by the analysis of a database that tracked cyber-incidents affecting
industrial control systems from 1982 to 2003 [4], DoS is the most likely threat
to control systems; therefore in this article we focus on DoS attacks, leaving
deception attacks for future work.

2 Problem Setting

2.1 System Model

We consider a linear time invariant stochastic system over a time horizon k =
0, . . . , N−1with measurement and control packets subject toDoS attacks (γk, νk):

xk+1 = Axk + Bua
k + wk k = 0, . . . , N − 1, (1)

ua
k = νkuk νk ∈ {0, 1}, (2)

xa
k = γkxk γk ∈ {0, 1}, (3)
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Fig. 1. Attacks on a control system: A1 and A3 indicate integrity attacks, A2 and A4
indicate DoS attacks, and A5 indicate direct physical attacks to the process

where xk ∈ R
n and uk ∈ R

m denote the state and the control input respectively,
wk ∈ R

n is independent, Gaussian distributed noise with mean 0 and covariance
W (denoted as wk ∼ N (0, W )), x0 ∼ N (x̄, P0) is the initial state, and {γk}
(resp. {νk}) is the sensor (resp. actuator) attack sequence. Also, x0 and wk are
uncorrelated. The available state (resp. available control input) is denoted by
xa

k (resp. ua
k) after a DoS attack on the measurement (resp. control) packet.

Following [16], for an acknowledgment based communication protocol such as
TCP, the information set available at time k is Ik = {xa

0 , . . . , x
a
k, γk

0 , νk−1
0 } where

γj
i = (γi, . . . , γj) and νj

i = (νi, . . . , νj). Define uN−1
0 = (u0, . . . , uN−1).

We note that due to (3), the controller receives perfect state information xk

when γk = 1 and 0 when γk = 0. However, our analysis presented can also be
extended for the case of measurement equation ya

k = γkCsxk + vk.

2.2 Goals and Requirements

At this stage, we have not specified any restrictions on the DoS attack actions
except that (γk, νk) ∈ {0, 1}2 for k = 0, . . . , N − 1. We will impose constraints
on the attacker actions in Section 3.1. Given such constraints, our goal is to
synthesize a causal feedback control law uk = μk(Ik) such that for the system (1),
(2), and (3), the following finite-horizon objective function is minimized

JN (x̄, P0, u
N−1
0 ) = E

[
x�

NQxxxN +

N−1∑
k=0

(
xk

uk

)� (
In 0
0 νkIm

)
Q

(
xk

uk

) ∣∣∣uN−1
0 , x̄, P0

]

(4)

where Qxx � 0, and Q � 0 is partitioned as

Q =
(

Qxx 0
0 Quu

)
∈ R

(n+m)×(n+m),

and constraints on both the state and the input in an expected sense

E

[(
xk

uk

)� (
In 0
0 νkIm

)
Hi

(
xk

uk

)]
≤ βi for i = 1, . . . , L, and k = 0, . . . , N − 1 (5)
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with Hi � 0 and scalar constraints on the state and the input in a probabilistic
sense

P

[
t�i

(
In 0
0 νkIm

)(
xk

uk

)
≤ αi

]
≥ (1 − ε) for i = 1, . . . , T, and k = 0, . . . , N − 1 (6)

with ti ∈ R
n+m are satisfied. The constraints (5) can be viewed as power con-

straints that limit the energy of state and control inputs at each time step. The
constraint (6) can be interpreted as a safety specification stipulating that the
state and the input remain within the hyperplanes specified by ti and αi with a
sufficiently high probability, (1− ε), for k = 0, . . . , N − 1. Equations (5) and (6)
are to be interpreted as conditioned on the initial state, i.e., E[·] := E[·|x0] and
P[·] := P[·|x0].

3 Optimal Control with Constraints and Random Attacks

3.1 A Random DoS Attack Model

Networked control formulations have previously considered the loss of sensor or
control packets and their impact on the system. While previous results model
packet drops caused by random events (and not by an attacker) we believe these
packet drop models can be used as a first-step towards understanding the impact
of DoS attacks to our objective and constraints.

One of these models is the Bernoulli packet drop model, in which at each time,
the attacker randomly jams a measurement (resp. control) packet according to
independent Bernoulli trials with success probability γ̄ (resp. ν̄). This attack
model, referred as the Ber(γ̄, ν̄) adversary, has the following admissible attack
actions

ABer(γ̄,ν̄)
= {(γN−1

0 , νN−1
0 )|P(γk = 1) = γ̄,P(νk = 1) = ν̄, k = 0, . . . , N − 1}. (7)

For the ABer(γ̄,ν̄) model, we can write the Kalman filter equations for the state
estimate x̂k|k := E[xk|Ik] and the state estimation error ek|k := (xk − x̂k|k). For
the update step we have

x̂k+1|k = Ax̂k|k + νkBuk and, ek+1|k = Aek|k + wk

and for the correction step

x̂k+1|k+1 = γk+1xk+1 + (1 − γk+1)x̂k+1|k and, ek+1|k+1 = (1 − γk+1)ek+1|k,

starting with x̂0|−1 = x̄ and e0|−1 ∼ N (0, P0). It follows that the error covari-
ance matrices Σk+1|k := E[ek+1|ke�k+1|k|Ik] and Σk|k := E[ek|ke�k|k|Ik] do not
depend on the control input uk. Thus, the separation principle holds for TCP-like
communication [16]. Furthermore, it is easy to see that

E[ek|kx�
k|k] = 0. (8)
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Taking expectations w.r.t. {γk}, the expected error covariances follow

Eγ [Σk+1|k] = AEγ [Σk|k]A� + W and, Eγ [Σk+1|k+1] = (1 − γ̄)Eγ [Σk+1|k],

for k = 0, . . . , N − 1 starting with the initial condition Σ0|−1 = P0. For the ease
of notation, we denote x̂k+1 := x̂k+1|k, ek+1 := ek+1|k, and Σk+1 := Σk+1|k.
Using the Kalman filter equations we obtain for k = 0, . . . , N − 1

x̂k+1 = Ax̂k + νkBuk + γkAek (9)
ek+1 = (1 − γk)Aek + wk (10)

Eγ [Σk+1] = (1 − γ̄)AEγ [Σk]A� + W. (11)

Definition 1. For Bernoulli attacks, (γN−1
0 , νN−1

0 ) ∈ ABer(γ̄,ν̄) over systems
controlled over TCP-like communication protocols, the safety-constrained robust
optimal control problem is equivalent to minimizing (4) subject to (9), (11), (5)
and (6).

3.2 Controller Parameterization

In this section, we deal with the safety-constrained optimal control problem as
defined in Definition 1. Naive implementation of the control law u∗

k = −Lkx̂k|k
may not guarantee constraint satisfaction for any initial state. Recent research
has shown that for the optimal control problems involving state and input con-
straints, more general causal feedback controllers can guarantee a larger set of
initial states for which the constrained optimal control problem admits a feasible
solution [3, 10, 17, 14, 19]. Specifically, these approaches consider the problem of
designing causal controllers that are affine in all previous measurements such
that a convex objective function is minimized subject to constraints imposed by
the system dynamics, and the state and inputs constraints are satisfied.

When considering a system under DoS attacks, (1), (2), and (3), the class of
causal feedback controllers can be defined as an affine function of the available
measurements, i.e.,

uk = ūk +
k∑

j=0

γjMk,jxj , k = 0, . . . , N − 1 (12)

where ūk ∈ R
m is the open-loop part of the control, and Mk,j ∈ R

m×n is
the feedback gain or the recourse at time k from sensor measurement xj . For
a lost measurement packet, say xj′ for γj′ = 0, the corresponding feedback
gain Mk,j′ has no contribution toward the control policy. We note that the
above parameterization can be re-expressed as an affine function of innova-
tions vk|k−1 := γk(xk − x̂k|k−1) = γkek as

uk = u◦
k +

k∑
j=0

γjMk,jej , k = 0, . . . , N − 1 (13)

where u◦
k := ūk +

∑k
j=0 γjMi,j x̂j|j−1.
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Remark 1. When only the current available measurement is used for computing
the feedback policy, the mapping μk can be expressed as

uk = ūk + γkMk,kxk = u◦
k + γkMkek, k = 0, . . . , N − 1, (14)

where Mk := Mk,k for ease of notation and u◦
k := ūk + γkMkx̂k|k−1. ��

3.3 Convex Characterization

In this section, we will show that unlike (12), the use of control parameter-
ization (13) yields an affine representation of state and control trajectories
in terms of the control parameters ūk (or u◦

k) and Mk,j . We use x, x̂, u, e
and w to denote the respective trajectories over the time horizon 0, . . . , N .
That is, x = (x�

0 , . . . , x�
N )� ∈ R

n(N+1) and similarly for x̂ ∈ R
n(N+1) and

e ∈ R
n(N+1); u = (u�

0 , . . . , u�
N−1)

� ∈ R
mN and similarly for w ∈ R

nN . Using
this representation, the system (1) and the control parameterization (12) can be
written as

x = Aw + BNu + x0, (15)
u = ū + MΓx, (16)

where x0, A, B, Γ, N are given in the Appendix and

M =

⎛
⎜⎜⎜⎝

M0,0 0 . . . 0
M1,0 M1,1 . . . 0

...
. . .

. . .
...

MN−1,0 . . . MN−1,N−1 0

⎞
⎟⎟⎟⎠ ∈ R

mN×n(N+1), ū =

⎛
⎜⎝

ū0

...
ūN−1

⎞
⎟⎠ ∈ R

mN (17)

Using (15) and (16), we can show that the closed-loop system response can be
written as (

x
u

)
=
(
G̃xw

G̃uw

)
w +

(
x̃
ũ

)
(18)

where

G̃xw =
(
A + BNMΓ(I − BNMΓ)−1A

)
G̃uw =

(
MΓ(I − BNMΓ)−1A

)
x̃ = x0 + BNū + BNMΓ(I − BNMΓ)−1(x0 + BNū)

ũ = MΓ(I − BNMΓ)−1(x0 + BNū) + ū

Equation (18) is nonlinear in the control parameters (ū,M) and hence, pa-
rameterization (12) cannot be directly used for solving constrained stochastic
optimal control problems. On the other hand, using (10), the error trajectory
can be written as

e = e0 + Hw (19)



Safe and Secure Networked Control Systems 37

where e0 and H are also given in the Appendix. Using (19), (15) and the control
parameterization (13) we can re-express the closed-loop system response as(

x
u

)
=
(
Ĝxw

Ĝuw

)
w +

(
x̂
û

)
(20)

where

Ĝxw = (A + BNMΓH), Ĝuw = MΓH

x̂ = BNMΓe0 + x0 + BNu◦, û = MΓe0 + u◦

Thus, we arrive at the following result

Theorem 1. Under the error feedback parameterization (13), the closed loop
system response (20) is affine in the control parameters (u◦,M). ��
We will now use the error feedback parameterization (13) for our analysis. Al-
ternatively, we also note the following result:

Remark 2. Using the transformation

Q := MΓ(I − BNMΓ)−1, r := (I + QBN)ū (21)

where Q ∈ R
mN×n(N+1) and r ∈ R

mn, the terms in equation (18) can be writ-
ten as: Gxw = (I + BNQ)A, Guw = QA, x̃ = (I + BNQ) x̄ + BNr, and
ũ = Qx̄+r. Using simple matrix operations, the relations in (21) can be inverted
as MΓ = (I + QBN)−1Q and ū = (I − MΓHN)r. Thus, under parameteri-
zation (21), the closed-loop system response also becomes affine in the control
parameters (r,Q). ��

3.4 Safety-Constrained Optimal Control for Bernoulli Attacks

For the control parameterization (12), and for the Bernoulli attack model,
ABer(γ̄,ν̄) we will now solve the safety-constrained optimal control problem as
stated in Lemma 1, i.e., minimize (4) subject to (9), (11), (5), and (6). We state
the following useful lemma

Lemma 1 (Schur Complements). For all X ∈ S
n, Y ∈ R

m×n, Z ∈ S
m, the

following statements are equivalent:

a)Z � 0, X − Y �Z−1Y � 0,

b)Z � 0,
(

X Y �

Y Z

)
� 0

For the sake of simplicity we will consider the parameterization (14). However,
our results can be re-derived for the parameterization (12). First, we will derive
the expression for

Vk = E

[(
x̂k

u◦
k

)(
x̂k

u◦
k

)�]
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Using (14), the update equation for the state estimate (9) becomes

x̂k+1 = Ax̂k + νkBu◦
k + γk(A + νkBMk)ek, (22)

and further defining F = [In, 0] ∈ R
n×(n+m) we have,

FVk+1F
� = V x̂x̂

k+1 = E
[
x̂k+1x̂

�
k+1

]
= E

[
(Ax̂k + νkBu◦

k + γk(A + νkBMk)ek)(Ax̂k + νkBu◦
k + γk(A + νkBMk)ek)�

]

=
[
A
∣∣√ν̄B

]
E

[(
x̂k

u◦
k

)(
x̂k

u◦
k

)�] [
A
∣∣√ν̄B

]�
+

√
γ̄(A +

√
ν̄BMk)Eγ [Σk](A +

√
ν̄BMk)�

√
γ̄

=
[
AVk

∣∣√ν̄BVk

]
(Vk)−1 [AVk

∣∣√ν̄BVk

]�
+

√
γ̄(AEγ [Σk] +

√
ν̄BUk)(Eγ [Σk])−1(AEγ [Σk] +

√
ν̄BUk)�

√
γ̄

where we have used Uk = MkEγ [Σk]. An upper bound on V can be obtained in
the form of the following LMI by replacing the equality by � and using Schur
complements for k = 0, . . . , N − 1:

⎡
⎣ (FVk+1F

�) ∗ ∗ ∗[
AVk

√
ν̄BVk

]�
0 Vk ∗√

γ̄(AEγ [Σk] +
√

ν̄BUk)� 0 0 Eγ [Σk]

⎤
⎦ � 0 (23)

The objective function (4) can be expressed as

E
[
Tr
{

QxxxNx�
N

}]
+

N−1∑
k=0

E

[
Tr

{(
Qxx 0
0 νkQuu

)}(
xk

uk

)(
xk

uk

)�]

= Tr
{

QxxE
[
xNx�

N

]}
+

N−1∑
k=0

Tr

{(
Qxx 0
0 E[νk]Quu

)
E

[(
xk

uk

)(
xk

uk

)�]}

= Tr
{

QxxE
[
x̂N x̂�

N

]}
+

N−1∑
k=0

Tr

{(
Qxx 0
0 ν̄Quu

)
E

[(
x̂k

uk

)(
x̂k

uk

)�]}

+

N∑
k=0

Tr {QxxEγ [Σk]}

Since Σk does not depend on the control input (refer to eq. (11)),∑N
k=0 Tr {QxxEγ [Σk]} is a constant and minimizing JN (x̄, P0, u

N−1
0 ) is the same

as minimizing

Tr
{
QxxV x̂x̂

N

}
+

N−1∑
k=0

Tr
{(

Qxx 0
0 ν̄Quu

)
Pk

}
(24)
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where V x̂x̂
N is equal to E

[
x̂N x̂�

N

]
and the upper bound Pk is defined as

Pk � E

[(
x̂k

uk

)(
x̂k

uk

)�]
= E

[(
x̂k

u◦
k + γkMkek

)(
x̂k

u◦
k + γkMkek

)�]

= E

[(
x̂k

u◦
k

)(
x̂k

u◦
k

)�]
+
[
0 0
0 γ̄Uk(Eγ [Σk])−1U�

k

]

Again using Schur complement, we obtain for k = 0, . . . , N − 1⎡
⎢⎢⎣

Pk ∗ ∗
Vk Vk ∗[
0√
γ̄Uk

]�
0 Eγ [Σk]

⎤
⎥⎥⎦ � 0 (25)

The power constraints (5) can be written as

Tr

{
Hi

[
In 0
0 E[νk]Im

]
E

[(
xk

uk

)(
xk

uk

)�]}

= Tr

{
Hi

[
In 0
0 ν̄Im

]
E

[(
x̂k

uk

)(
x̂k

uk

)�]}
+ Tr {Hxx

i Eγ [Σk]}

Therefore the power constraints (5) become for i = 1, . . . , L, k = 0, . . . , N − 1

Tr
{

Hi

[
In 0
0 ν̄Im

]
Pk

}
≤ βi − Tr {Hxx

i Eγ [Σk]} . (26)

Thus, we can now state the following theorem

Theorem 2. For the (γN−1
0 , νN−1

0 ) ∈ ABer(γ̄,ν̄) attack model the optimal causal
controller of the form (14) for the system (1), (2), (3) that minimizes the ob-
jective function (4) subject to power constraints (5) is equivalent to solving the
following semidefinite program (SDP):

P(x̄, P0, N) :

{
minVi,Pi,Ui (24)
subject to (23), (25), (26).

(27)

��
In order to handle the safety specification (6), we refer to Theorem 3.1 in [5]
which says that for any ε ∈ (0, 1), the chance constraint of the form

inf
d∼D

P
[
d�x̃ ≤ 0

] ≥ 1 − ε

is equivalent to the second order cone constraint (SOCP)√
1 − ε

ε
x̃�Γ x̃ + d̂�x̃ ≤ 0
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where D is the set of all probability distributions with mean d̂ and covariance
Γ , d is the uncertain data with distributions in the set of distributions D, and
x̃ is the decision variable. We claim without proof that safety specifications of
type (6) can be converted to SOCP constraints following [5], [19].

4 Modeling General DoS Attacks

From the security viewpoint, it might be difficult to justify the incentive for the
attacker to follow a ABer(γ̄,ν̄) model. Therefore, in this section we introduce more
general attack models that impose constraints on the DoS attack actions (γk, νk).

First, note that if we know in advance the strategy of the attacker—for any
arbitrary sequence (γN−1

0 , νN−1
0 )—we can use the results from the previous the-

orem.

Corollary 1. The results of Theorem 2 be specialized to any given attack sig-
nature (γN−1

0 , νN−1
0 ) ∈ {0, 1}2N . ��

However, in practice we do not know the strategy of the attacker, thus we need
to prepare for all possible attacks. Our model constrains the attacker action in
time by restricting the DoS attacks on the measurement (resp. control) packet
for at most p < N (resp. q < N) time steps anywhere in the time interval i =
0, . . . , N − 1. This attack model is motivated by limitations on the resources of
the adversary—such as its battery power, or the response time of the defenders—
which in turn limits the number of times it can block a transmission. We refer
this attack model as the (p, q) adversary and it has the following admissible
attack actions

Apq = {(γN−1
0 , νN−1

0 ) ∈ {0, 1}2N
∣∣ ‖ γN−1

0 ‖1≥ N − p, ‖ νN−1
0 ‖1≥ N − q}, (28)

where ‖ · ‖1 denotes the 1−norm. The size of Apq is
∑p

i=0

(
N

N−i

) ·∑q
j=0

(
N

N−j

)
.

An interesting sub-class of Apq attack actions is the class of block attack
strategies

Aτxτu
pq = {(γN−1

0 , νN−1
0 ) ∈ {0, 1}2N |γτx+p−1

τx
= 0, ντu+q−1

τu
= 0} (29)

where τx ∈ {0, . . . , N − p} and τu ∈ {0, . . . , N − q} are the times at which the
attacker starts jamming the measurement and control packets respectively. The
size of Aτxτu

pq is (N − p + 1) · (N − q + 1). The intuition behind this attack sub-
class is that an attacker will consume all of its resources continuously in order
to maximize the damage done to the system. In this attack sub-class, p and q
can represent the response time of defensive mechanisms. For example, a packet-
flooding attack may be useful until network administrators implement filters or
replicate the node under attack; similarly a jamming attack may be useful only
until the control operators find the jamming source and neutralize it.

We note that Apq and Aτxτu
pq are non-deterministic attack models in that the

attacker can choose its action non-deterministically as long as the constraints
defined by the attack model are satisfied.
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4.1 DoS Attacks against the Safety Constraint

One possible objective of the attacker can be to violate safety constraints:

Definition 2. [Most unsafe attack] For a given attack model A and control
strategy μk(Ik), the best attack plan to violate safety specification that a output
vector zk := (Cxk + νkDuk) remains within safe set S is

max
A

P[(Cxk + νkDμ(Ik)) ∈ Sc] for k = 0, . . . , N − 1 (30)

where Sc denotes the unsafe set.

We will now show that for control parameterization (12), the block pq attacks,
Aτxτu

pq can be viewed as the best attack plan for violating the safety constraint (re-
fer to Definition 2). We can write the system equation (1) as

xk+1 = Axk + νkBūk + νk

k∑
j=0

γjMk,jxj + wk

and for the attack strategy Aτxτu
pq :

xk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Axk + wk for k = τu, . . . , τu + q − 1

Axk + Būk + B
∑min(τx−1,k)

j=0 Mk,jxj

+1(k ≥ τx + p)B
∑k

j=0 Mk,jxj + wk for k =

{
0, . . . , τu − 1

τu + q, . . . , N − 1.

(31)

Now, if we ignore ūk and substitute τx = 0, τu = p in (31) we obtain

xk+1 =

{
Axk + wk for k = 0, . . . , p + q − 1
Axk + B

∑k
j=p Mk,jxj for k = p + q, . . . , N − 1

(32)

Thus, using the attack strategy A0p
pq , the first p+q−1 time steps evolve as open-

loop and beyond time step p + q, the system evolves as closed using available
measurements since time p. With this strategy output vector zk is expected to
violate the safety constraint in the shortest time.

5 Formulation of New Challenges

From the controller’s viewpoint, it is of interest to design control laws that are
robust against all attacker actions, i.e.:

Definition 3. [Minimax (robust) control] For a given attack model A, the secu-
rity constrained robust optimal control problem is to synthesize a control law that
minimizes the maximum cost over all (γN−1

0 , νN−1
0 ) ∈ A, subject to the power

and safety constraints. This can be written as the minimax problem

min
μk(Ik)

max
A

[(4) subject to (1), (2), (3), (5) and, (6)] . (33)
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In general, we note that the problem (33) may not always be feasible. When A is
probabilistic, Definition 3 can be treated in sense of expectation or almost-surely.

On the other hand, from the attacker’s viewpoint, it is of interest to determine
the optimal attack plan that degrades performance, i.e.,

Definition 4. [Maximin (worst-case) attack] For a given attack model A, the
optimal attack plan is the attacker action that maximizes the minimum operating
costs. This can be written as the maximin problem

max
A

min
μk(Ik)

[(4) subject to (1), (2), (3)] . (34)

As a first effort to analyze these goals we first consider the classical linear
quadratic control problem, and analyze the cost function for the case of (1)
no attacks, (2) ABer(γ̄,ν̄)attacks, and (3) Apq attacks.

The problem is to find the optimal control policy uk = μk(Ik) that minimizes
the objective (4) for the system (1), (2), and (3). The solution of this problem can
be obtained in closed form using dynamic programming (DP) recursions [9, 16].

We recall that for the case of no-attack, i.e., (γk, νk) = (1, 1) for all k,
the optimal control law is given by u∗

k = −Lkxk where Lk := (B�Sk+1B +
Quu)−1B�Sk+1A and the matrices Sk are chosen such that SN = Qxx and for
k = N − 1, . . . , 0,

Sk = A�Sk+1 + Qxx − Rk

with Rk = L�
k (B�Sk+1B + Quu)Lk. The optimal cost is given by

J∗
N = x̄�S0x̄ + Tr{S0P0} +

N−1∑
k=0

Tr{Sk+1W}. (35)

Following [16], the optimal control law for the case of ABer(γ̄,ν̄) attack model is
given by u∗

k = −Lkx̂k|k where x̂k|k is given by the Kalman filter equations; the
expressions for Lk, Rk, SN are same as those for the no-attack case, and for
k = N − 1, . . . , 0,

Sk = A�Sk+1A + Qxx − ν̄Rk.

The optimal cost in this case is given by

J∗
N,ABer(γ̄,ν̄)

= x̄�S0x̄ + Tr{S0P0} +

N−1∑
k=0

Tr{Sk+1W} +

N−1∑
k=0

Tr{ν̄RkEγ [Σk|k]} (36)

Lemma 2. J∗
N,ABer(γ̄,ν̄)

≥ J∗
N for all (γ̄, ν̄) ∈ [0, 1]. ��

We now consider the case of Apq attacks. We can solve the problem of optimal
attack plan for the Apq attack class (refer to Definition 4):

For any given attack signature, (γN−1
0 , νN−1

0 ) ∈ {0, 1}2N , the update equa-
tions of error covariance are Σk+1|k = AΣk|kA� + W and Σk+1|k+1 = (1 −
γk+1)Σk+1|k and the optimal cost is given by
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JN,Apq =x̄�S0x̄ + Tr{S0P0}

+
N−1∑
k=0

Tr{Sk+1Q} +
N−1∑
k=0

Tr{(A�Sk+1A + Qxx − Sk)Σk|k} (37)

where SN = Qxx and for k = N − 1, . . . , 0,

Sk = A�Sk+1A + Qxx − νkA�Sk+1B(B�Sk+1B + Quu)−1B�Sk+1A. (38)

and for k = 1, . . . , N − 1,

Σk|k =
k∏

j=1

(1 − γj)A
kP0A

k�
+

k−1∑
i=0

k∏
j=(k−i)

(1 − γj)A
iWAi�. (39)

Proposition 1 An optimal attack plan for Apq attack model is a solution of the
following optimization problem:

max
Apq

(37) subject to (38), (39),

‖ γN−1
0 ‖1≥ (N − p), and ‖ νN−1

0 ‖1≥ (N − q).

We note that while Σk|k is affected by the past measurement attack se-
quence {γk

0}, Sk is affected by the future control attack sequence {νN−1
k }.

Remark 3. We can use dynamic programming or convex duality theory to solve
the problem without the �1 constraints on γN−1

0 and νN−1
0 , see [9]. In this case,

it is well-known that the optimal control policy is given by the linear feedback
law that depends only on the current state. To solve the constrained problem as
posed in Proposition 1, we propose to use suitable convex relaxations for the �1

constraints and solve the relaxed problem using semidefinite programming. ��

In future work we intend to address these problems and extend our results to
deception attacks.
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Appendix

x0 :=

⎛
⎜⎜⎜⎜⎜⎝

In

A
A2

...
AN

⎞
⎟⎟⎟⎟⎟⎠ x0 ∈ R

n(N+1), A :=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
In 0 0 . . . 0
A In 0 . . . 0
...

...
...

. . . 0
AN−1 AN−2 AN−3 . . . In

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

n(N+1)×nN ,

B := A(IN ⊗ B) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
B 0 0 . . . 0

AB B 0 . . . 0
...

...
...

. . . 0
AN−1B AN−2B AN−3B . . . B

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

n(N+1)×mN ,

Γ = diag(γN−1
0 ) ⊗ In =

⎛
⎜⎝

γ0In

. . .

γN−1In

⎞
⎟⎠ ∈ R

nN×nN ,

N = diag(νN−1
0 ) ⊗ Im =

⎛
⎜⎝

ν0Im

. . .

νN−1Im

⎞
⎟⎠ ∈ R

mN×mN ,

and

e0 =

⎛
⎜⎜⎜⎜⎜⎝

In

(1 − γ0)A
(1 − γ0)(1 − γ1)A

2

...∏N−1
j=0 (1 − γj)A

N

⎞
⎟⎟⎟⎟⎟⎠ e0 ∈ R

n(N+1)

H =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0
In 0 . . . 0

(1 − γ1)A In . . . 0
...

...
...

. . .
...∏N−1

j=1 (1 − γj)A
N−1 ∏N−1

j=2 (1 − γj)A
N−2 . . . In

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

n(N+1)×nN
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