
Journal of Ambient Intelligence and Smart Environments 1 (2009) 1–5 1
IOS Press

Distributed Recognition of Human Actions
Using Wearable Motion Sensor Networks 1

Allen Y. Yang a,∗, Roozbeh Jafari b, S. Shankar Sastry a, and Ruzena Bajcsy a

a Department of EECS, University of California, Berkeley
Berkeley, CA 94705, USA
E-mail: {yang,sastry,bajcsy}@eecs.berkeley.edu
b Department of EE, University of Texas at Dallas
Richardson, TX 75083, USA
E-mail: rjafari@utdallas.edu

Abstract. We propose a distributed recognition framework to classify continuous human actions using a low-bandwidth wearable
motion sensor network, called distributed sparsity classifier (DSC). The algorithm classifies human actions using a set of training
motion sequences as prior examples. It is also capable of rejecting outlying actions that are not in the training categories.
The classification is operated in a distributed fashion on individual sensor nodes and a base station computer. We model the
distribution of multiple action classes as a mixture subspace model, one subspace for each action class. Given a new test sample,
we seek the sparsest linear representation of the sample w.r.t. all training examples. We show that the dominant coefficients in
the representation only correspond to the action class of the test sample, and hence its membership is encoded in the sparse
representation. Fast linear solvers are provided to compute such representation via `1-minimization. To validate the accuracy
of the framework, a public wearable action recognition database is constructed, called wearable action recognition database
(WARD). The database is comprised of 20 human subjects in 13 action categories. Using up to five motion sensors in the WARD
database, DSC achieves state-of-the-art performance. We further show that the recognition precision only decreases gracefully
using smaller subsets of active sensors. It validates the robustness of the distributed recognition framework on an unreliable
wireless network. It also demonstrates the ability of DSC to conserve sensor energy for communication while preserve accurate
global classification.
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1. Introduction

Action/activities recognition has been extensively
studied in the past in the literature of computer vision.
Compared with either model-based or appearance-
based vision systems, the body sensor networks we
study in this paper have several distinct advantages:
1. Body sensor systems do not require that the envi-
ronment be instrumented with cameras or other sen-
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1-0076, NSF TRUST Center, and the startup funding from the Uni-
versity of Texas and Texas Instruments.
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sors. 2. Such systems also have the necessary mobil-
ity to support persistent monitoring of a subject during
her daily activities in both indoor and outdoor envi-
ronments (e.g., ALARM-NET [31]). 3. With the con-
tinuing miniaturization and integration of mobile pro-
cessors and wireless sensors, it has become possible
to manufacture wearable sensor networks that densely
cover the human body to record and analyze very small
movements of the human body such as breathing and
spine movements with higher accuracy than most ex-
tant vision systems (e.g., the Moven motion capture
system). Such sensor networks can be used in appli-
cations such as medical-care monitoring, athlete train-
ing, tele-immersion, and human-computer interaction
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(e.g., integration of accelerometers in the Wii game
controller and smart phones).

Fig. 1. A subject wearing a body sensor system with the numbering
of the sensors superimposed in the image. The sensor system con-
sists of five wireless motion sensors, two on the wrists, one on the
waist, and two on the ankles, respectively.

In traditional sensor networks, the computation car-
ried by the sensor board is fairly simple: Extract cer-
tain local information and transmit the data to a com-
puter server over the network for processing. In this
paper, we propose a new method for distributed pat-
tern recognition. In this system, each sensor node will
be able to classify local, albeit biased, information.
Only when the local classification detects a possible
object/event does the sensor node become active and
transmit the measurement to a network server. 1 On the
server side, a global classifier receives the data from
the sensor nodes and further optimizes the classifica-
tion upon local sensor decisions. The global classifier
can be more computationally involved than the dis-
tributed classifiers, but it has to adapt to the change
of available network sensors due to local measurement
error, sensor failure, and communication congestion.

1.1. Literature Overview

Past studies on sensor-based action recognition were
primarily focused on single accelerometers [12,15] or

1Studies have shown that the power consumption required to
successfully send one byte over a wireless channel is equivalent
to executing between 1e3 and 1e6 instructions on an onboard
processor[27]. Hence it is paramount in sensor networks to reduce
the communication cost while preserve the recognition performance.

other motion sensors [16,24]. More recent systems
prefer using multiple motion sensors [20,17,14,2,19,
26,1]. Depending on the type of sensor used, an action
recognition system is typically comprised of two parts:
a feature extraction module at the sensor level and a
classification module at the server level.

There are three major directions for feature extrac-
tion in wearable sensor networks. The first direction
uses simple statistics in a motion sequence such as the
max, mean, variance, and energy. The second type of
feature is computed using fixed filter banks such as
FFT and wavelets [24,15]. The third type is based on
classical dimensionality-reduction techniques such as
principal component analysis (PCA) and linear dis-
criminant analysis (LDA) [20,19].

In terms of classification on the action features, a
large body of previous work favored thresholding or
k-nearest-neighbor (kNN) due to the simplicity of the
algorithms for mobile devices [24,15,26]. Other more
sophisticated techniques have also been used, such as
decision trees [2,4] and hidden Markov models [19].

For distributed pattern recognition, there exist stud-
ies on distributed speech recognition [33] and dis-
tributed expert systems [23]. One particular problem
associated with most distributed sensor systems is that
each local observation from a distributed sensor is bi-
ased and insufficient to classify all classes. For exam-
ple in our system, the sensors placed on the lower-body
would not perform well to classify those actions that
mainly involve upper body motions, and vice versa.
Consequently, traditional majority-voting type classi-
fiers may not achieve the best performance globally.

Due to the unique mobility of wearable sensor net-
works, such systems have been applied to a variety of
applications, especially in the area of human-computer
interaction. One dominant application in the past has
been single action detection for elderly people, such
as falling [30,9,28,7] and walking [25,3]. There have
been other systems that tackle more general prob-
lems of recognizing multiple different human actions
that would be commonplace in people’s daily lives
[22,21,19,8]. The algorithm proposed in this paper
falls in the latter category.

1.2. Design of the Wearable Sensor Network

Our wearable sensor network is based on a novel
sensor platform called DexterNet [18]. DexterNet is an
open-source body sensor platform that adopts a three-
level architecture to control heterogeneous body sen-
sors: At the body sensor layer, the platform can inte-
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grate and control a variety of experimental and com-
mercial sensor units, including MICAz, SHIMMER,
and GPS. At the personal network layer, a mobile base
station (e.g., a PDA or a smartphone) is utilized to
communicate and process the sensor data from a single
subject. At the global network layer, multiple personal
network components communicate with a remote In-
ternet server (e.g., located at a hospital clinic or a re-
search lab) to permanently log the sensor data and sup-
port higher-lever applications.

The implementation in this paper consists of five
custom-built sensor nodes placed at different body lo-
cations (see Figure 1), which communicate with a base
station attached to a computer server through a USB
port. The sensor nodes and base station are built using
the commercially available Tmote Sky boards. Tmote
Sky runs TinyOS on an 8MHz microcontroller with
10K RAM and communicates using the 802.15.4 wire-
less protocol. Each custom-built sensor board has a
triaxial accelerometer and a biaxial gyroscope, which
is attached to Tmote Sky (shown in Figure 2). Each
axis is reported as a 12bit value to the node, indicat-
ing values in the range of ±2g and ±500◦/s for the
accelerometer and gyroscope, respectively.

Fig. 2. Illustration of a motion sensor node. The sensor board on the
top is a custom-built motion sensor with a triaxial accelerometer and
a biaxial gyroscope. The middle layer contains a Li-ion battery. The
sensor board on the bottom is a standard Tmote Sky network node.

The current hardware design of the sensor con-
tributes certain amounts of measurement error. The ac-
celerometers typically require some calibration in the
form of a linear correction, as sensor output under 1g
may be shifted up to 15% in some sensors. It is also
worth noting that the gyroscopes produce an indica-
tion of rotation under straight line motions. Fortunately
these systematic errors appear to be consistent across
experiments for a given sensor board. However, with-
out calibration to correct them, the errors may affect

the action recognition if different sets of sensors are
used interchangeably in the experiment. 2

To avoid packet collision in the wireless channel,
we use a time division multiple access (TDMA) proto-
col that allocates each node a specific time slot during
which to transmit data. This allows us to receive sensor
data at 30Hz with minimal packet loss. To avoid drift
in the network, the base station periodically broadcasts
a packet to resynchronize the nodes’ individual timers.
The code to interface with the sensors and transmit
data is implemented directly on the motes using nesC,
a variant of C.

1.3. Wearable Action Recognition Database

We have constructed a benchmark database for hu-
man action recognition using the above wearable mo-
tion sensor network, called Wearable Action Recogni-
tion Database (WARD). The purpose of WARD is to
offer a public and relatively stable data set as a plat-
form for quantitative comparison of existing and future
algorithms for human action recognition using wear-
able motion sensors. The database has been carefully
constructed under the following conditions:

1. The database contains sufficient numbers of hu-
man subjects with a large range of age differ-
ences.

2. The designed action classes are general enough
to cover most typical actions that a human sub-
ject is expected to perform in her daily life.

3. The locations of the wearable sensors are se-
lected to be practical for full-fledged commercial
systems.

4. The sampled action data contain sufficient varia-
tion, measurement noise, and outliers in order for
existing and future algorithms to meaningfully
examine and compare their performance.

The WARD database is available for download at:
http://www.eecs.berkeley.edu/~yang/software/
WAR/. The data are sampled from 7 female and 13
male human subjects (in total 20 subjects) with age
ranging from 19 to 75. The current version, version
1.0, includes the following 13 action categories: 1.
Stand (ST). 2. Sit (SI). 3. Lie down (LI). 4. Walk for-

2More sophisticated motion sensors do exist in the industry,
which can utilize heterogeneous sensor fusion techniques to self-
calibrate the accelerometer and gyroscope. One example is the Mi-
crostrain Gyro Enhanced Orientation Sensor at: http://www.
microstrain.com/.
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ward (WF). 5. Walk left-circle (WL). 6. Walk right-
circle (WR). 7. Turn left (TL). 8. Turn right (TR). 9. Go
upstairs (UP). 10. Go downstairs (DO). 11. Jog (JO).
12. Jump (JU). 13. Push wheelchair (PU). For more
details about the data collection, please refer to the hu-
man subject protocol included in the WARD database.
The sensor data have been converted and saved in the
MATLAB environment. The database also includes a
MATLAB program to visualize the action data from
the five motion sensors.

1.4. Contribution

We propose a distributed action recognition algo-
rithm using up to five wearable motion sensors. The
work is inspired by an emerging theory of compressive
sensing [5,6]. We assume each action class satisfies a
low-dimensional subspace model. If a linear represen-
tation is sought to represent a valid test sample w.r.t.
all training samples, the dominant coefficients in the
sparsest representation correspond to the training sam-
ples from the same action class, and hence they encode
the membership of the test sample.

A distributed recognition system on wireless sensor
networks needs to further consider the following is-
sues:

1. How to extract compact and accurate low-dimensional
action features for local classification and trans-
mission over a band-limited network?

2. How to classify the local measurement efficiently
using low-power processors?

3. How to design a classifier to globally optimize
the recognition and adapt to the change of the
network?

4. Whether the accuracy of an action recognition
system is identity independent? That is, a good
classifier should only be sensitive to different ac-
tion classes, but neutral to the subject who per-
forms the actions.

We tackle these problems by proposing a novel
recognition framework consisting of the following
three integrated components: 1. Low-dimensional ac-
tion feature extraction. 2. Fast distributed classifiers
via `1-minimization. 3. An adaptive global classifier
on the base computer. The method can accurately
classify human actions from a continuous motion se-
quence. The local classifiers that reject potential out-
liers can reduce the sensor-to-server communication
to about 50%. One can also choose to activate only
a subset of the sensors on the fly due to sensor fail-

ure or network congestion. The global classifier is able
to adaptively update the optimization process and im-
prove the global classification upon available local de-
cisions. Finally, in the experiment, we examine the
identity-independence performance on a test sequence
by excluding the training samples of the same subject.

Note that a similar algorithm was previously pub-
lished in a manuscript [29]. In comparison, [29] mainly
discusses simultaneous segmentation and classifica-
tion of transient actions, such as from standing to sit-
ting, from sitting to lying down, and bending. In this
paper, we discuss classification of continuous actions.
The preliminary results shown in [29] only contain
recognition results from three human subjects with age
ranging from 28 to 32. In this paper, the system uti-
lizes the much larger WARD benchmark to validate its
performance.

The rest of the paper is organized as follows. Sec-
tion 2 proposes a unified classification algorithm via
a novel sparse representation framework on individual
motion sensors to classify human actions with local
bias. Section 3 further proposes a global classification
algorithm on a base computer that receives action fea-
tures from active sensors in the network and adaptively
boost the recognition upon individual sensor decisions.
Finally, we demonstrate the performance of the overall
algorithm based on the WARD benchmark in Section
4.

2. Classification via Sparse Representation

We first define the problem of distributed action
recognition.

Problem 1 (Distributed Action Recognition) Assume
a set of L wearable sensor nodes with triaxial ac-
celerometers (x, y, z) and biaxial gyroscopes (θ, ρ)
are attached to the human body. Denote

aj(t)
.= (xj(t), yj(t), zj(t), θj(t), ρj(t))T ∈ R5 (1)

as the measurement of the five readings on node j at
time t, and

a(t) .= (aT1 (t),aT2 (t), · · · ,aTL(t))T ∈ R5L (2)

collects all L sensors at time t. Further denote

s = (a(1),a(2), · · · ,a(l)) ∈ R5L×l (3)

as an action segment of length l in time.
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Given K different classes of human actions, a set
of ni training examples {si,1, · · · , si,ni

} are collected
for each ith class, all of which have the same dura-
tion l. Given a new test sequence s, we seek a dis-
tributed algorithm to classify the action into one of the
K categories, or reject the action as an invalid mea-
surement. Finally, given continuous measurements of
different human actions, determine an optimal dura-
tion parameter l to extract training samples and test
samples s.3

In this section, our focus should be an action clas-
sification method on each sensor node assuming an
action segment of a fixed duration l. Given sj =
(aj(1),aj(2), · · · ,aj(l)) ∈ R5×l on node j, define a
new vector sSj as the stacking of the l columns of sj :

sSj
.= (aj(1)T ,aj(2)T , · · · ,aj(l)T )T ∈ R5l. (4)

We will interchangeably use sj to denote the stacked
vector sSj without causing ambiguity.

Subsequently, we define a full-body action vector v
that stacks the measurement from all L nodes:

v
.= (sT1 , s

T
2 , · · · , sTL)T ∈ RD, (5)

where D = D1 + · · ·+DL = 5lL.
In this paper, we assume the samples v in an action

class satisfy a subspace model, called an action sub-
space. If the training samples {v1, · · · ,vni} of the ith
class sufficiently span the ith action subspace, given a
test sample y = (yT1 , · · · ,yTL)T ∈ RD in the same
class i, y can be linearly represented using the training
examples of the same class:

y = α1v1 + · · ·+ αnivni

⇔

 y1
y2

...
yL

 =

 s1
s2

...
sL


1

· · ·

 s1
s2

...
sL


ni

 α1
α2

...
αni

 .
(6)

It is important to note that such linear constraint also
holds for each node j in (6):

yj = α1sj,1 + · · ·+ αni
sj,ni

∈ RDj . (7)

3The continuous actions such as sitting and walking can last from
a few seconds to minutes or hours. The single duration parameter l
is defined w.r.t. the recognition algorithm such that different actions
can be accurately classified using the shortest duration window. The
reader is referred to [29] for the segmentation problem of transient
actions with different action durations.

In theory, complex data such as human actions typ-
ically constitute more complex nonlinear models. The
linear models are used to approximate such nonlin-
ear structures in a higher-dimensional subspace (see
Figure 3). Notice that such linear approximation may
not produce good estimation of the distance/similarity
metric for the samples on the manifold. However, as
we will show in Example 1, given sufficient samples
on the manifold as training examples, a new test sam-
ple can be accurately represented on the subspace, pro-
vided that any two classes do not have similar subspace
models.

Fig. 3. Modeling a 1-D manifold M using a 2-D subspace V .

To recover label(y), a previous study [32] proposes
to reformulate the recognition using a sparse represen-
tation: Since label(y) = i is unknown, we can rep-
resent y using all the training samples from all K
classes:

y = (A1, A2, · · · , AK)

 x1
x2

...
xK

 = Ax, (8)

where

Ai = (vi,1,vi,2, · · · ,vi,ni
) ∈ RD×ni (9)

collects all the training samples of class i,

xi = (αi,1, αi,2, · · · , αi,ni
)T ∈ Rni (10)

collects the corresponding coefficients in (6), and A ∈
RD×n where n = n1+n2+· · ·+nK . Since y satisfies
both (6) and (8), one solution of x in (8) should be

x∗ = (0, · · · , 0,xTi , 0, · · · , 0)T . (11)

The solution is naturally sparse: in average only 1
K

terms in x∗ are nonzero.
It is important to note that, on each sensor j in this

section, solution x∗ of (8) is also a solution for the
representation:

yj = (A(j)
1 , A

(j)
2 , · · · , A(j)

K )x = A(j)x, (12)
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where A(j)
i ∈ RDj×ni consists of row vectors in Ai

that correspond to the jth node. Hence, x∗ can be
solved either globally using (8) or locally using (12),
provided that the action data measured on each node
are sufficiently discriminant. We will come back to the
discussion about local classification versus global clas-
sification in Section 3. In the rest of this section how-
ever, our focus will be on each node.

One major difficulty in solving (12) is the high di-
mensionality of the action data. In compressive sens-
ing [5,6], one reduces the dimension of a linear system
by choosing a linear projection Rj ∈ Rd×Dj :4

ỹj
.= Rjyj = RjA

(j)x
.= Ã(j)x ∈ Rd. (13)

After projection Rj , typically the feature dimension
d is much smaller than the number n of all train-
ing samples. Therefore, the new linear system (13)
is underdetermined. Numerically stable solutions ex-
ist to uniquely recover sparse solutions x∗ via `1-
minimization[10]:

x∗ = arg min ‖x‖1 subject to ỹj = Ã(j)x. (14)

These routines include (orthogonal) matching pursuit
(MP), basis pursuit (BP), the LASSO.5

In our experiment, we have tested multiple projec-
tion operators including PCA, LDA, locality preserv-
ing projection (LPP) [13], and random project stud-
ied in [32]. We found that 40-D feature spaces us-
ing LPP produces the best recognition in a very low-
dimensional space. Throughout this paper, we will use
40-D LPP features to represent local motions mea-
sured on sensor nodes.6

After the (sparsest) representation x is recovered,
we project the coefficients onto each action subspaces

δi(x) = (0, · · · , 0,xTi , 0, · · · , 0)T ∈ Rn, i = 1, · · · ,K.

4Notice thatRj is not computed on the sensor node. These matri-
ces are computed offline and simply stored on each sensor node.

5The implementation of these routines is available in a MATLAB
toolbox called SparseLab: http://sparselab.stanford.
edu.

6The choice of an “optimal” low-dimensional feature space is not
the emphasis of this paper. On one hand, a practitioner may easily
replace LPP with other feature spaces without modification of the
algorithm. On the other hand, a previous result in [32] has shown that
the accuracy of sparse representation via `1-minimization converges
among different linear projections, as long as the dimension of the
feature space is sufficiently high. The result renders the choice of a
particular feature space not very significant in solving for a sparse
representation.

(15)

Subsequently, the membership of the test sample yj is
assigned to the class with the smallest residual

label(yj) = arg min
i
‖ỹj − Ã(j)δi(x)‖2. (16)

The overall algorithm deployed on each sensor node
is summarized in Algorithm 1, which is called local
sparsity classifier (LSC).

Algorithm 1 : Local Sparsity Classifier (LSC).
Input: A set of training samples A(j) = ( sj,1 ··· sj,n ),
a test sample yj on a sensor node j, and a linear pro-
jection matrix Rj .

1: Projection: ỹj = Rjyj .

2: x∗ = arg min ‖x‖1 subject to ỹj = RjA
(j)x.

3: label(yj) = arg mini=1,··· ,K ‖ỹj −
RjA

(j)δi(x)‖2.
Output: label(yj), action feature ỹj , and x∗.

Example 1 (Classification on Nodes) We demonstrate
the recognition accuracy of LSC on individual nodes
based on the WARD database. First, we look for fast
sparse solvers in the literature. We found that BP [11]
gives the best trade-off between speed, noise tolerance,
and recognition accuracy.

We design the training set and the test set as follows.
For each motion sequence in the WARD database, we
randomly sample 10 segments of length l in the train-
ing set. In total, there are 20 × 13 × 5 × 10 = 13000
training examples. During the testing, LSC attempts
to classify all continuous segments of length l in the
WARD database. With respect to each subject, the cor-
responding training examples will be excluded from
the training set before classification. Therefore, any
test subject is not present in the training set, and the
recognition is subject independent. In the experiment,
we found that l = 45 is a short action duration that
yields satisfactory performance, which corresponds to
1.5 seconds given the 30 Hz sampling rate.

Figure 4 illustrates an example of sparse represen-
tation x and its corresponding residuals estimated on
the first node (left wrist) of a jumping sequence (Action
12).

Table 1 shows the recognition accuracy of LSC on
all the 13 categories. There should be no surprise that
LSC alone based on the single node measurement of
human actions does not produce good classification,
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Fig. 4. Top: Sparse `1 solution by BP of a jumping motion on the
left wrist node. Bottom: Reconstruction residuals with respect to the
13 action categories. The test sample is correctly classified as Class
12. SCI(x) = 0.335 (see (17))

as many human actions engage movements at multiple
body parts. For example, nodes at the two ankle posi-
tions cannot differentiate walking forward and pushing
wheelchair because the feet engage similar movements
in both categories. In Table 1, we also show the perfor-
mance of a simple global classifier: majority voting.
If all the local decisions are collected and a majority
vote is chosen as the overall classification of the test
action, LSC achieves 90.2% accuracy. This will be-
come a baseline benchmark to compare with an adap-
tive classifier we will introduce in the next section.

Table 1
Recognition accuracy via LSC on WARD. The last column (1–5)
shows the recognition accuracy using majority voting.

Sen # 1 2 3 4 5 1–5
Acc [%] 65.08 61.26 63.9 78.56 77 90.2

Nearest neighbor (NN) is one of the popular meth-
ods used in sensor networks for classification. Table 2
shows the recognition accuracy of NN on the WARD
database. We compare Table 1 and Table 2. Because
the inherent correlation between the distributed mo-
tion sensors are not considered beyond the majority-
voting process, the two algorithms generate very sim-
ilar global recognition accuracy. Using majority vot-
ing, nearest neighbor achieves 90.5%.

Table 2
Recognition accuracy via nearest neighbor on WARD. The last col-
umn (1–5) shows the recognition accuracy using majority voting.

Sen # 1 2 3 4 5 1–5
Acc [%] 64.9 59.3 67.4 80.3 76.0 90.5

3. Adaptive Global Recognition

In this section, we introduce an adaptive frame-
work to optimize a global classification based on all
the available distributed sensor data. First, we discuss
an outlier rejection criterion to identify invalid mo-
tion samples measured on the individual sensor nodes.
The invalid samples would not be sent to the global
classifier that we will introduce later. The ability to
locally reject invalid measurement reduces the power
consumption on the sensor nodes to communicate with
the network station, as we will show in Section 4.

Based on the previous sparsity assumption, if yj is
not a valid segment on node j w.r.t. the training ex-
amples A(j), the dominant coefficients of its sparsest
representation x should not correspond to any single
class. We utilize a sparsity concentration index (SCI)
[32]:

SCI(x) .=
K ·maxj=1,··· ,K ‖δj(x)‖1/‖x‖1 − 1

K − 1
∈ [0, 1].

(17)

If the nonzero coefficients of x are evenly distributed
among K classes, then SCI(x) = 0; if all the nonzero
coefficients are associated with a single class, then
SCI(x) = 1. Therefore, we introduce a sparsity
threshold τ1 applied on individual sensor nodes: If
SCI(x) > τ1, the motion sample is a valid local mea-
surement, and its 40-D LPP features ỹ will be sent to
the base station; otherwise, the sample will be ignored.

It is important to note that a local measurement that
is labeled as a valid sample w.r.t. τ1 may not truly cor-
respond to a valid human action when multiple sen-
sor data are jointly considered based on the training
actions defined in the WARD database. For example,
WF, UP, and DO all involve similar upper body move-
ments; on the other hand, if a subject only tries to
mimic a WF motion by moving the upper body but not
the lower body, the movement becomes an invalid ac-
tion when both the upper body data and the lower body
data are jointly considered. Therefore, a global con-
straint is needed to reject such invalid samples, which
will be discussed next.

Suppose at time t, the base station receives L′ action
features from the active sensors (L′ ≤ L). Without loss
of generality, assume these features are from the first
L′ sensors: ỹ1, ỹ2, · · · , ỹL′ .

Denote

ỹ′ = (ỹT1 , · · · , ỹTL′)T ∈ RdL
′
. (18)
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Then the global sparse representation x of ỹ′ satisfies
the following linear system

ỹ′ =

(
R1 ··· 0 ··· 0

...
. . .

...
...

0 ··· RL′ ··· 0

)
Ax = R′Ax = Ã′x, (19)

where R′ ∈ RdL′×D is a new projection matrix that
only extracts the action features from the firstL′ nodes.
Consequently, the effect of changing active sensor
nodes for the global classification is formulated via the
global projection matrix R′. During the transforma-
tion, the data matrix A and the sparse representation
x remain unchanged. The linear system (13) then be-
comes a special case of (19) where L′ = 1.

Similar to the outlier rejection criterion on each
node, we introduce a global rejection threshold τ2. If
SCI(x) > τ2 in (19), the most significant coefficients
in x are concentrated in a single training class. Hence
ỹ′ is assigned to that class. Otherwise, the sample will
be rejected as an outlier. The overall algorithm on the
network station is summarized in Algorithm 2, which
is called distributed sparsity classifier (DSC). DSC
provides a unified solution to detect and classify action
segments in a network of body sensors using only two
simple parameters τ1 and τ2.

Algorithm 2 : Distributed Sparsity Classifier
(DSC).
Input: A set of stacked training samples A =
{v1, · · · ,vn} from sensors 1, · · · , L, test sample y of
action features measured from L active sensors, and
sparsity parameters τ1, τ2.

1: for all each sensor 1 ≤ j ≤ L do
2: Solve for sparse representation x∗ using Algo-

rithm 1with parameters A(j) and yj .
3: If SCI(x∗) > τ1, send feature vector ỹj to the

network station.
4: end for
5: Collect all valid features ỹ′, construct correspond-

ing projection matrix R′.
6: Solve x∗ = arg min ‖x‖1 subject to ỹ′ = R′Ax.
7: if SCI(x∗) > τ2 then
8: label(y) = arg mini=1,··· ,K ‖ỹ′−R′Aδi(x)‖2.
9: else

10: label(y) = −1 (outlier).
11: end if
Output: label(y).

Example 2 (Distributed Sparsity Classifier) Consider
Action 13 in the WARD database, i.e., PU (pushing a
wheelchair). While the upper body motion of this ac-
tion is quite distinct, the lower body motion often re-
sembles several other actions in the database, such as
WF and UP. Figure 5 illustrates the `1 solutions on the
five individual sensor nodes.

First, we observe that the local sparsity classi-
fier (LSC) returns five different labels w.r.t. to the lo-
cal measurement on the five sensors. It shows that
majority-voting type solutions mostly should fail to
correctly classify this motion. Second, using a thresh-
old τ1 against the SCI values of the representations,
we can reject certain number of the local motions as
invalid measurements.

Assume τ1 = 0.1 is selected for all five sensors, then
measurements from Sensors 1 and 2 will be rejected
and DSC solves for a sparse representation using the
three 40-D action features from Sensors 3, 4, and 5.
Figure 6 shows the global `1 solution of (19), and the
full-body motion is correctly classified as from Action
13.

Fig. 6. Top: DSC sparse representation of a sample from action 13
in Figure 5. Assume τ1 = 0.1 and τ2 = 0.08, and Sensors 1 and
2 are rejected. Bottom: Reconstruction residuals with respect to the
13 action categories. The test sample is correctly classified as Class
13.

Notice that at the node level, none of Sensors 3–5
correctly classifies the action based on the available
local observations, because they are also similar to
other actions such as UP, TR, and WR. However, when
the measurements from multiple sensors are combined
in (19) to represent the full-body motion, the incorrect
local decisions are rectified. Such ability is the main



A. Yang et al. / Distributed recognition of human actions using wearable motion sensor networks 9

(a) Sparse representation of the left wrist motion. Local
classification label is 13 (PU).

(b) Sparse representation of the right wrist motion. Local
classification label is 4 (WF).

(c) Sparse representation of the waist motion. Local clas-
sification label is 9 (UP).

(d) Sparse representation of the left ankle motion. Local
classification label is 8 (TR).

(e) Sparse representation of the right ankle motion. Lo-
cal classification label is 6 (WR).

Fig. 5. Illustration of a PU motion (action 13) classified on individual sensor nodes. Each LSC estimates a different action category that correlates
to the true action. Compared to Figure 4, these solutions have much lower SCI values.

reason that the proposed DSC framework can outper-
form other majority-voting type algorithms. We will ex-
amine the performance of DSC in more detail in Sec-
tion 4.

The DSC method compares favorably to other clas-
sical methods such as NN and decision trees, because
these methods need to train multiple thresholds and
outlier rejection rules when the number L′ and the set
of available sensors vary in the full-body action vector
ỹ′ = (ỹT1 , · · · , ỹTL′)T . Particularly, a global nearest-
neighbor (GNN) algorithm can be modeled as a special
case of sparse representation. Suppose in (19) there are
L′ active sensors and denote A′ = (v′1,v

′
2, · · · ,v′n).

Then GNN solves for the following sparse representa-
tion of y′:

x∗ = (0, · · · , 0, 1i, 0, · · · , 0)T

subject to i = arg minj ‖y′ − v′j‖2.
(20)

The optimal solution x∗ for GNN is clearly sparse with
only one nonzero coefficient corresponding to the clos-
est neighbor of y′ in the training set A′. The formula-
tion also generates to k-nearest-neighbors (kNN) and
other similar variations.

Finally, we consider how the change of active nodes
affects `1-minimization and the classification of the
actions. In compressive sensing, the efficacy of `1-
minimization in solving for the sparsest solution x in
(19) is characterized by the `0/`1 equivalence relation
[10,11]. A necessary and sufficient condition for the
equivalence to hold is the k-neighborliness of Ã′. As
a special case, one can show that if x is the sparsest
solution in (19) for L′ = L, x is also a solution for
L′ < L. Hence, the decrease of L′ leads to possible
sparser solutions of x.

On the other hand, the decrease in available action
features also makes ỹ′ less discriminant. For example,
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if we reduce L′ = 1 and only activate a wrist sen-
sor, then the `1-solution x may have nonzero coeffi-
cients associated to multiple actions with similar wrist
motions, albeit sparser. This is an inherent problem
for any method to classify human actions using a lim-
ited number of motion sensors. In theory, if two action
subspaces in a low-dimensional feature space have a
small subspace distance after the projection, the corre-
sponding sparse representation cannot distinguish the
test samples from the two classes. We will demonstrate
in Section 4 that indeed reducing the available mo-
tion sensors will reduce the discriminant power of the
sparse representation in a lower-dimensional space.

4. Experiment

In this section, we conduct extensive experiments to
examine the performance of the DSC framework us-
ing the WARD database. Two different scenarios are
considered. First, we calculate the classification accu-
racy with different subsets of motion sensors available
in the network. This experiment is intended to verify
that DSC is adaptive to the change of network config-
uration on-the-fly due to real-world conditions such as
sensor failure, battery failure, and network congestion.
Second, we consider the effect of the local outlier re-
jection threshold τ1 to the accuracy of the global clas-
sification: Higher rejection thresholds save power con-
sumption in communication at the expense of less lo-
cal information available to the global classifier, and
vice versa. It is important to note that to measure the
performance under the identity-independence assump-
tion, all training examples of a test subject should be
excluded from the training set during the experiment.
For each motion sequence in the WARD database, we
randomly sample 10 segments of length l = 45 as
training examples.

4.1. Classification with Different Network
Configurations

We first test the performance of DSC by manually
eliminating certain number of available sensors in the
network. Based on the total number L′ of LPP feature
vectors received, DSC is able to update the classifica-
tion criterion (19) on-the-fly and adapts to the poten-
tially adversary condition. Table 3 shows the perfor-
mance of the algorithm, which is quantified by false
positive rate (FPR), verification rate (VR), and active

sensor rate (ASR).7 For all the trials, the outlier rejec-
tion thresholds τ1 and τ2 are set to be 0.08, respec-
tively. The duration l of the test action length is set
to be 45, which corresponds to 1.5 seconds given the
30 Hz sampling rate. When all continuous action seg-
ments of length 45 are classified in the experiment, the
total number of test samples amounts to 500828.

Table 3
Performance of DSC measured by false positive rate (FPR), verifi-
cation rate (VR), and active sensor rate (ASR).

Sen # 1-5 1,3,4 1,4 1,3 3,4
FPR [%] 7.14 8 11.49 17.97 14.63
VR [%] 94.59 96.84 98.19 95.57 97.28

ASR [%] 91.85 54.82 37.66 35.58 36.76

We compare the performance of DSC to the conven-
tional solution of GNN (20). Since the WARD does
not purposely contain outliers, we did not use any out-
lier rejection rule in searching for nearest neighbors,
which could be difficult to tune when the available ac-
tion features change on-the-fly. Table 4 shows the per-
formance of the algorithm. Compared with Table 2,
we observe that there is no improvement w.r.t. classi-
fication using all five sensors. In fact, the accuracy in
Table 4 is lower than the accuracy of 90.5% in Table
2 using majority-voting. This result demonstrates the
dependency of NN-type algorithms toward the (dense)
distribution of training examples in a high-dimensional
data space. Compared with Table 3, GNN also under-
performs DSC. For example, DSC outperforms GNN
by about 6% using Sensors (1, 3, 4), and about 9% us-
ing Sensors (1, 3).

Table 4
Performance of GNN measured by false positive rate (FPR), verifi-
cation rate (VR), and active sensor rate (ASR).

Sen # 1-5 1,3,4 1,4 1,3 3,4
FPR [%] 10.64 14.54 13.93 26.88 18.27
ASR [%] 100 60 40 40 40

We further analyze the classification between differ-
ent action categories. Table 5 shows a confusion table
of the DSC results using all the five sensors in accu-

7FPR is the percentage of samples that are either true outliers
falsely classified as inliers or true inliers assigned to the wrong
classes. VR is the percentage of samples that are correctly classified
as inliers. Note that the WARD database does not purposely con-
tain outlying actions, hence FPR is equal to one minus the accuracy
percentage.
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racy percentage. The confusion table clearly indicates
several action categories mostly contribute to the false
positive rate.

1. We observe that three action categories, i.e., ST,
SI, and LI, have the highest misclassification.
Particularly, it is difficult to differentiate between
standing and sitting in the WARD database using
both DSC and NN (whose confusion table is not
shown in this paper). We argue that the problem
is mainly contributed by the choice of the loca-
tions of the two lower-body sensors at the ankle
locations, because human subjects do not have
to move the ankles to perform both standing and
sitting actions, and inherently the change of the
orientation of the waist sensor is also small be-
tween standing and sitting. To improve the clas-
sification of the three action categories, one so-
lution could be to introduce new sensor locations
around the knees and the thighs.8

2. Between the actions WF, WL, and WR, the al-
gorithm in fact performs better than we have ex-
pected, because the difference of the three ac-
tions is small. For example, 2.5% of the WF ac-
tion is misclassified as WL, 1.6% misclassified as
WR, and furthermore 2.3% misclassified as PU.
These are the actions that are all similar in nature.

3. Despite the similarity of local motions between
PU and several other motions, the recognition
of PU is quite accurate. The last row of Table
5 shows that about 0.1% to 0.3% test samples
are misclassified as 10 of the other 12 categories.
Nevertheless, the true positive rate of PU is above
98%.

4.2. Classification with Different Rejection
Thresholds

In this experiment, we test the effect of different lo-
cal rejection threshold τ1 on the global classification.
During the experiment, the global rejection threshold
τ2 is fixed at 0.08. Table 6 shows the performance
of the DSC algorithm. First, naturally ASR decreases
as τ1 increases. Particularly, compared to ASR =
91.85% when τ1 = 0.08, the rate is reduced to 45.58%
when τ1 = 0.18, which means in average less than half
of the sensors transmit action features during the ex-

8In a previous study [29], we have also suggested that the sensors
placed at the ankle locations tend to provide less action information
than the other conventional locations such as the knees and the waist.

periment. With more than half of the sensors inactive
in the network to conserve power consumption, the ex-
periment shows that DSC still achieves below 8% FPR
globally, and VR is above 88%. The result corrobo-
rates the design principle of the DSC algorithm that the
distributed classification framework via sparse repre-
sentation is capable of effectively reducing the power
consumption on communication yet at the same time
perserving highly accurate recognition accuracy.

Table 6
Recognition accuracy of DSC with different local rejection thresholds.

τ1 0.08 0.12 0.18
ASR [%] 91.85 72.19 45.58
FPR [%] 7.14 7.58 7.96
VR [%] 94.59 91.03 88.33

5. Conclusion and Discussion

Inspired by the emerging compressive sensing the-
ory, we have proposed a distributed algorithm, i.e.,
distributed sparsity classifier (DSC), to classify hu-
man actions on a wearable motion sensor network.
The framework provides a unified solution based on
`1-minimization to classify valid action segments and
reject outlying actions on the sensor nodes and the
base station. We have shown through our experiment
that a set of 13 action classes can be accurately repre-
sented and classified using a set of 40-D LPP features
measured at multiple body locations. The proposed
global classifier can adaptively adjust the global opti-
mization to boost the recognition upon available local
measurements. To corroborate the validity of the algo-
rithm, and to safeguard the reproducibility of the sys-
tem performance, we have published an open bench-
mark database called WARD with this paper. The high
recognition accuracy on the WARD database indicates
that DSC should be able to classify other action cat-
egories such as falling, bicycling, and hand motions
with similar high accuracy.

One important observation w.r.t. to the choice of
sensor locations on the human body is that the mo-
tion measurements from the ankle locations may not
discriminate certain categories of upper-body motions
and even lower-body motions. We have suggested to
replace the ankle locations with other locations around
the knees and thighs in order to improve the classi-
fication. Another limitation in the current system and
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Table 5
Confusion table of the 13 action classes for DSC using sensors 1–5 (in percentage).

1 2 3 4 5 6 7 8 9 10 11 12 13

1 (ST) 87.2 10.2 0.7 0 0 0 0.1 1.8 0 0 0 0 0
2 (SI) 25.2 66.8 6.8 0 0 0 0.1 0.1 0 0.1 0 0.1 0.7
3 (LI) 2.6 5.1 91.8 0 0 0 0 0 0 0 0 0.1 0.3

4 (WF) 0 0 0 92 2.5 1.6 0.2 0.2 0.4 0.7 0 0.2 2.3
5 (WL) 0.1 0 0 0.2 97.3 0 0.6 0.3 0.3 0.1 0.1 0.2 1
6 (WR) 0 0 0 0.1 0.1 95.7 0.2 0.4 0.4 0.4 0.5 0.2 2
7 (TL) 0 0 0 0 0.6 0 97 2.3 0 0 0 0 0.1
8 (TR) 0 0 0 0 0 1.6 3.1 95.2 0 0 0 0 0
9 (UP) 0 0 0 0 0 0 0 0 98 0.1 1.6 0.1 0.2

10 (DO) 0 0 0 0.2 0.1 0 0 0 0.1 98.3 0 0.5 0.8
11 (JO) 0 0 0 0 0 0 0 0 0.5 0 99.3 0.1 0.1
12 (JU) 0.1 0 0 0 0 0 0 0 0.3 0.6 0.5 97.9 0.5
13 (PU) 0.3 0.1 0 0.1 0.2 0.1 0.1 0.1 0 0.2 0.2 0.1 98.6

most other body sensor systems is that the wearable
sensors need to be firmly positioned at the designated
locations. However, a more practical system/algorithm
should tolerate certain degrees of shift without sacri-
ficing the accuracy. In this case, the variation of the
measurement for different action classes would in-
crease substantially. One open question is what low-
dimensional linear/nonlinear models one may use to
model such more complex data, and whether the sparse
representation framework can still apply to approxi-
mate such structures with limited numbers of training
examples. A potential solution to this question will be
a meaningful step forward both in theory and in prac-
tice.
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