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ABSTRACT
One of the oldest problems in the study of dynamical sys-
tems is the calculation of an optimal control. Though the
determination of a numerical solution for the general non-
convex optimal control problem for hybrid systems has been
pursued relentlessly to date, it has proven difficult, since it
demands nominal mode scheduling. In this paper, we cal-
culate a numerical solution to the optimal control problem
for a constrained switched nonlinear dynamical system with
a running and final cost. The control parameter has a dis-
crete component, the sequence of modes, and two continuous
components, the duration of each mode and the continu-
ous input while in each mode. To overcome the complexity
posed by the discrete optimization problem, we propose a bi-
level hierarchical optimization algorithm: at the higher level,
the algorithm updates the mode sequence by using a single-
mode variation technique, and at the lower level, the algo-
rithm considers a fixed mode sequence and minimizes the
cost functional over the continuous components. Numerical
examples detail the potential of our proposed methodology.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Constrained
optimization, Nonlinear programming

General Terms
Algorithms

Keywords
Constrained optimal control, Switched hybrid systems

1. INTRODUCTION
The determination of an optimal control is one of the old-

est problems in the study of dynamical systems. In partic-
ular, the calculation of a numerical solution to the general
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nonconvex optimal control problem for hybrid systems has
proven difficult for numerous reasons. Most importantly, hy-
brid systems comprise a far too general set of systems (i.e. a
system under consideration may not even satisfy the condi-
tions required for existence and uniqueness). In this paper,
we consider a subset of hybrid systems with great utility:
constrained nonlinear switched dynamical systems; that is,
systems which consist of a finite number of constrained non-
linear subsystems and a switching law that describes which
of these subsystems is active at a given time. The control
parameter for such systems has both a discrete component,
the sequence of modes, and two continuous components, the
duration of each mode and the continuous input. Switched
systems arise in a variety of applications including the mod-
eling of the dynamics of automobiles and locomotives in dif-
ferent gears [13, 21], the modeling of the dynamics of bio-
logical systems [10], situations where a control module has
to switch its attention among a number of subsystems [15,
20, 24], and situations where a control module has to collect
data sequentially from a number of sensory sources [6, 7].

Recently, there has been growing interest in the optimal
control of such hybrid systems, stemming from Branicky
et al.’s seminal work that established a necessary condition
for the optimal trajectory under a general cost function in
terms of quasi-variational inequalities [5]. Unfortunately,
they provide no method for the calculation of the desired
control. Several researchers have attempted to address the
special case of piecewise-linear or affine systems [2, 4, 11, 19,
27]. Most of these methods employ variants of dynamic pro-
gramming; however, since after each iteration of their algo-
rithm the number of possible switches grows exponentially,
the representation of the optimal value function becomes in-
creasingly complex. These papers focus on addressing this
particular shortcoming by considering a variety of possible
relaxations of the optimal value function.

More pertinently, Xu and Antsaklis consider the optimal
control of a nonlinear switched system under a fixed, pre-
specified modal sequence and develop a bi-level hierarchical
optimization algorithm: at the higher level, a conventional
optimal control algorithm finds the optimal continuous input
given the sequence of active subsystems and the switching
instants and at the lower level, a nonlinear optimization al-
gorithm finds the locally optimal switching instants [25, 26].
Though we employ a similar division of labor, our approach
also optimizes over switching sequences while considering
constraints. Shaikh and Caines consider the same problem
and utilize an identical bi-level hierarchical optimization al-



gorithm under a prespecified sequence [22]. However, rather
than maintain the same prespecified sequence, they search
through all possible sequences within a fixed distance (using
the Hamming distance) of the prespecified sequence to find a
sequence with a lower optimal cost after performing the orig-
inal optimization. Instead of resorting to this type of brute
force search, we employ a descent technique to find an opti-
mal switching sequence similar to Axelsson and Egerstedt et
al. who consider the special case of nonlinear, autonomous
switched systems (i.e. systems wherein the control input is
absent) [1, 8, 9]. They employ a similar bi-level hierarchi-
cal algorithm: at the higher level, the algorithm updates
the mode sequence by considering a single mode insertion
technique, and at the lower level, the algorithm considers a
fixed mode sequence and minimizes the cost functional over
the switching times. This method falls short since it only
considers a restrictive subclass of switched systems, but it
provides the starting point for the results presented in this
paper.

In this paper, we construct an optimal control algorithm
for constrained nonlinear switched dynamical systems. We
develop a bi-level hierarchical algorithm that divides the
problem into two nonlinear constrained optimization prob-
lems. At the lower level, we keep the modal sequence fixed
and determine the optimal mode duration and optimal con-
tinuous input. At the higher level, we employ a single mode
insertion technique to construct a new lower cost sequence.
The result of this approach is an algorithm that provides
a sufficient condition to guarantee the local optimality of
the mode duration and continuous input while decreasing
the overall cost via mode insertion, which is a powerful out-
come given the generality of the problem under considera-
tion. This paper is organized as follows: Section 2 provides
the mathematical formulation of the problem under consid-
eration, Section 3 describes the optimal control algorithm
which is the primary result of this paper, Section 4 details
how we prove the convergence of our algorithm, Section 5
considers an efficient numerical implementation of the op-
timal control scheme, Section 6 presents numerical experi-
ments, and Section 7 concludes the paper.

2. PROBLEM FORMULATION
In this section, we present the mathematical formalism

and define the problem wo solve in the remainder of this
paper. W begin by definining a space, X , by:

X = Σ × S × U , (1)

where Σ denotes the discrete mode sequence space, S de-
notes the transition time space, U denotes the continuous
input space. We consider each of these spaces in more detail
below.

First, we define the discrete mode sequence space. The
continuous dynamics for each discrete mode q in
Q = {1, 2, . . . , R} is given by the vector field fq : R

n×R
m →

R
n. We also include an additional mode, NF, for notational

convenience, which denotes the discrete mode in which the
trajectories stop evolving (i.e. the dynamics of mode NF

is defined as fNF : R
n × R

m → R
n, fNF(x, u) = 0). Since

at each iteration our optimization algorithm, which we de-
scribe in the next section, may provide a mode sequence
with a varying number of total modes, the mode sequence
space is an infinite dimensional space; however, in order to
avoid pathological examples (i.e. Zeno behavior), we only

allow a finite number of non-zero vector fields:

Σ =

∞
[

N=1

ΣN ,

ΣN =
n

σ ∈ Q̃N
˛

˛σ(j) ∈ Q j ≤ N, σ(j) = NF j > N
o

,

where Q̃ = Q ∪ {NF}.
Second, we define the amount of time spent in each dis-

crete mode, using an absolutely summable sequence s in S:

S =
∞
[

N=1

SN ,

SN =
˘

s ∈ l1
˛

˛ s(j) ≥ 0 ∀j ≤ N, s(j) = 0 ∀j > N
¯

,

where l1 denotes the space of absolutely summable sequen-
ces. Observe that though we require this mode duration
sequence to only have a finite number of non-zero values, it
may have zero entries interspersed between non-zero entries.
Also note that this notion of relative times stands in contrast
to the conventional notion in the hybrid system literature of
the absolute time at which a certain discrete mode begins.
However, maintaining the notion of absolute times, which we
call the jump time sequence, is also convenient. We define
the jump time sequence µ : N × S → [0,∞) by:

µ(i; s) =

(

0 if i = 0
Pi

k=1 s(k) if i 6= 0.
(2)

We also define µf (s) = ‖s‖l1 =
P∞

k=1 s(k) which is well
defined for each s ∈ S . We can also take a time t in [0,∞)
and determine to which index t belongs by considering κ :
[0,∞) × S → (N ∪∞):

κ(t; s) =

(

1 if t = 0

max{i ∈ N ∪∞ : µ(i, s) < t} + 1 if t 6= 0.
(3)

Finally we define, π : [0,∞) × S → {NF, 1, . . . , R} as a
function that returns the mode at a time t:

π(t; s) =

(

σ(κ(t; s)) if κ(t; s) <∞

NF if κ(t; s) = ∞.
(4)

Since we allow zero entries to be interspersed between non-
zero entries for elements in S , we may have µ(i, s) = µ(i +
1, s). Capturing these zeros is critical in the definition of
our optimization algorithm. Therefore, we define functions
m,n : N × S → N as follows:

m(i; s) = min{m ≤ i : µ(i; s) = µ(m; s)} (5)

n(i; s) = max{n ≥ i : µ(i; s) = µ(n; s)}. (6)

Since the choice of s ∈ S is clear in context, we supress the
dependence on it in µf and Equations (2), (3), (4), (5), and
(6). We illustrate these various definitions by considering
the example presented in Figure 1 and Table 1 for a σ and
s defined as follows:

σ = {1, 2, 3, 4, 5, 3, 4,NF, . . .} ∈ Σ7 (7)

s = {1, 0, 0, 0, 1, 0, 1, 0, . . .} ∈ S7. (8)

Third, we require the continuous input space, U , to be
bounded for all time:

U =
˘

u ∈ L2([0,∞),Rm)
˛

˛ ‖u(t)‖ ≤M, ∀t ∈ [0,∞)
¯

. (9)



An element of our space X = Σ×S×U is then denoted by a
3−tuple ξ = (σ, s, u), where σ ∈ Σ, s ∈ S , u ∈ U . We define
a metric on our space d : X ×X → [0,∞):

d(x, y) = 1{σx 6= σy} + ‖sx − sy‖l1 + ‖ux − uy‖2, (10)

which is quickly verified as a well-defined metric.

µ(1), . . . , µ(4)

0

µ(0)

1 2

µ(5), µ(6)

3

µ(7)

s(1) = 1

σ(1) = 1 σ(7) = 4

s(7) = 1s(5) = 1

σ(5) = 5

time

Figure 1: Given σ and s as defined in equations (7)
and (8), the diagram illustrates the modes assigned

to each interval via σ(i) and their time length via

s(i).

i µ m n
0 0 0 0
1 1 1 4
2 1 1 4
3 1 1 4
4 1 1 4
5 2 5 6
6 2 5 6
7 3 7 7

t κ π
0 1 1

0.5 1 1
1 1 1

1.5 5 5
2 5 5

2.5 7 4
3 7 4

3.5 ∞ NF

Table 1: Given σ and s as defined in equations (7)
and (8), the values of the functions µ, m, and n is

illustrated in the table on the left and the values of

the functions κ and π at various instants is illustrated

in the table on the right.

Finally, given a ξ ∈ X and an initial condition, x0, the
corresponding trajectory, x(ξ)(t), is defined by:

ẋ(t) = fπ(t)

`

x(t), u(t)
´

∀t ∈ (0, µf ]

x(0) = x0.
(11)

Note, that zero entries interspersed between nonzero entries
in s have no affect on the solution of the differential equation.

We define the cost J : X → R on the state trajectory and
the continuous input as:

J(ξ) =

Z µf

0

L
`

x(ξ)(t), u(t)
´

dt+ φ
`

x(ξ)(µf )
´

. (12)

We also require that for all time the state is constrained to
a set described as:

x(t) ∈
˘

x ∈ R
n

˛

˛ hj(x) ≤ 0, j = 1, . . . , Nc

¯

. (13)

Let J = {1, . . . , Nc} denote the set of constraints. Using a
standard reduction technique, we compactly describe all the
constraints by defining a new function ψ:

ψ(ξ) = max
j∈J

max
t∈[0,µf ]

hj

`

x(ξ)(t)
´

. (14)

Note that ψ(ξ) ≤ 0 if and only if for all time t, the constraint,
equation (13), is satisfied. With these definitions, we can
state the hybrid optimal control problem.

Switched Hybrid Optimal Control Problem:

min
ξ∈X

J(ξ)

s.t. ψ(ξ) ≤ 0
(15)

We make the following assumptions on the dynamics, cost,
and constraints:

Assumption 1. The functions L and fq are Lipschitz and
differentiable in x and u for all q in Q. In addition, the
derivatives of these functions with respective to x and u are
also Lipschitz. Since this set of functions is finite, we define
K1 ∈ (0,∞) large enough to be the Lipschitz constant for
these functions and their derivatives.

Assumption 2. The functions φ and hj are Lipschitz and
differentiable in x for all j in J . In addition, the derivatives
of these functions with respect to x are also Lipschitz. Since
this set of functions is finite, we define K2 ∈ (0,∞) large
enough to be the Lipschitz constant for these functions and
their derivatives.

Assumption 3. The input u ∈ U is continuous from the
right.

Observe that the cost function defined in equation (12)
is general enough to capture both a running and a final
cost. This definition captures most interesting cost func-
tions. Assumption 1 is sufficient to ensure the existence,
uniqueness, and boundedness of the solution to our differen-
tial equation (11). Assumption 2 is a standard assumption
on the final cost and constraints and is used to prove the
convergence properties of the algorithm defined in the next
section. Though Assumption 3 may seem exacting, under
reasonable conditions on the cost function one can in fact
guarantee that the optimal input is Lipschitz continuous for
all time [23]. Next, we develop an algorithm to calculate a
hybrid optimal control.

3. OPTIMIZATION ALGORITHM
In this section, we present our optimization algorithm to

determine a numerical solution to the Switched Hybrid Opti-
mal Control Problem. We leave the calculations and proof of
the convergence of our algorithm to the next section. Before
we consider the algorithm explicitly, we describe a property
that any optimization algorithm should satisfy.

An algorithm a : X → X takes an initial point ξ0 ∈ X
and generates a sequence of feasible points by letting ξj+1 =
a(ξj) for j = 0, 1, . . . . We want to find suitable conditions
under which the sequence of points generated by algorithm
a converge to a local minimum of our optimization prob-
lem. It is important to note that simply requiring that an
algorithm a has a descent property, i.e. J(a(ξ)) < J(ξ), is
not sufficient to ensure the convergence of the sequence to a
local minimum. However, if the algorithm has the sufficient
descent property, important convergence properties follow.

Before we define the sufficient descent property, we must
first define a non-positive function, θ : X → (−∞, 0], called
the optimality function. Also denote the set of points at
which θ vanishes by:

QS =
˘

ξ ∈ X
˛

˛ θ(ξ) = 0
¯

. (16)

The elements of QS, which we refer to as points that satisfy
our optimality condition, are points of interest.



Definition 1 (Sufficient Descent). An algorithm
a : X → X is said to have the sufficient descent property
with respect to θ if for all ξ in X with θ(ξ) < 0, there ex-
ists a δξ > 0 and a neighborhood of ξ, Uξ ⊂ X , such that
given the cost function J and the feasible set F the following
inequality is satisfied:

J
`

a(ξ′)
´

− J(ξ′) ≤ −δξ, ∀ξ′ ∈ Uξ ∩ F .

To make the utility of this property explicit, suppose we
defined θ(ξ) to be zero whenever J(ξ) was at a local min-
imum. If we used the function θ as a stopping criteria for
an algorithm, a, that satisfies the sufficient descent property
with respect to θ, then we generate a sequence of points that
progressively approach an element of QS, or a local minima
of J , as follows: given j = 0 and ξj in X , if θ(ξj) = 0 stop,
or else let ξj+1 = a(ξj), and repeat. In fact, we can prove
that this sequence approaches an element of QS.

Theorem 1 (Polak [17] Theorem 1.2.8). Suppose
J : X → R is continuous and the constraint set is closed. If
an algorithm a satisfies the sufficient descent property with
respect to an optimality function θ, then, either the sequence
{ξj} constructed by algorithm a is finite and its last element
belongs to QS and is feasible or else it is infinite and every
accumulation point of {ξj}

∞
j=1 belongs to QS and is feasible.

Remark: Theorem 1 as originally stated is for an upper
semi-continuous θ and a convex constraint set. However,
the result as stated here can be proved without requiring
either of these properties.

Returning from this digression, observe that our cost func-
tion is continuous (proved in Proposition 3 below) and our
constraint set is closed since ψ is continuous (proved in
Proposition 4 below). Our goal is to apply this previous the-
orem to show the convergence of our soon to be constructed
algorithm. In particular, we must design an algorithm with
the sufficient descent property with respect to an optimal-
ity function whose vanishing points include solutions to our
desired optimal control problem.

We propose a bi-level hierarchical algorithm that divides
the problem into two nonlinear constrained optimization
problems one continuous and the other discrete:
Bi-Level Optimization Scheme

Stage 1: Given a jump sequence, σ, calculate the optimal
jump time sequence, s, and the optimal continuous
control u.

Stage 2: Calculate a new sequence, σ̃, that is the result
of the insertion of a new jump into the original
sequence σ. Repeat Stage 1 using σ̃.

Given this procedure, a point ξ = (σ, s, u) ∈ X is considered
optimal if (s, u) is a locally optimal solution for Stage 1
and if there exists no feasible mode insertion which reduces
the cost. Observe that Stage 1 can be transformed into a
standard optimal control problem where both the control
and initial condition are optimization variables (Section 5.1
describes this transformation and see Section 4.1.2 of [17],
for more details). Let â : S×U → S×U be an algorithm that
solves Stage 1. We make an additional assumption about â
which we justify in the next section:

Assumption 4. The algorithm, â has the sufficient de-
scent property with respect to θ, for a fixed σ, as described
in Definition 1.

This assumption states that our inner algorithm has the suf-
ficient descent property with respect to the same optimality
function which we define for our entire algorithm, a. Though
this may seem like a rigid assumption, we describe its ne-
cessity and reasonableness in the next section.

Finally, we can construct our optimality function θ : X →
(−∞, 0]. Since we would like the vanishing points of our
optimality functions to include solutions to our desired op-
timal control problem, we require that if there are no feasible
mode insertions which lower the cost then θ(ξ) = 0. To de-
fine this function explicitly, we must describe how a feasible
mode insertion looks. Given ξ ∈ X , consider the insertion of
a mode, α̂ and control, û, at time t̂. This insertion is char-
acterized by η = (α̂, t̂, û) ∈ Q × [0, µf ] × Bm(0,M), where
Bm(0,M) = {u ∈ R

m | ‖u‖ ≤ M}. Suppose that the inser-
tion is for a duration of length λ ≥ 0 as illustrated in Figure
2.

Let ρ(η) : [0,∞) → X denote the function that describes

this type of insertion (ρ(η) is defined more explicitly in Def-
inition 2 and its argument denotes the length of the inser-
tion). In order to determine if the cost decreases due to this
type of insertion, we want to evaluate a first order approxi-
mation of J with respect to the variation ρ:

dJ
`

ρ(η)(λ)
´

dλ

˛

˛

˛

˛

˛

λ=0

= lim
λ↓0

J
`

ρ(η)(λ)
´

− J(ξ)

λ
(17)

Observe that if this derivative is negative and the mode in-
sertion leaves the trajectory feasible, then it is possible to
decrease the overall cost (this is proved in Theorem 2). In
order to ensure that the mode insertion results in a feasible
trajectory, we must also consider:

dψ
`

ρ(η)(λ)
´

dλ

˛

˛

˛

˛

˛

λ=0

= lim
λ↓0

ψ
`

ρ(η)(λ)
´

− ψ(ξ)

λ
(18)

Using these results, we define the optimality function:

θ(ξ) = min
η∈Q×[0,µf ]×Bm(0,M)

max



dJ(ρ(η)(λ))

dλ

˛

˛

˛

˛

λ=0

, ψ(ξ) +
dψ(ρ(η)(λ))

dλ

˛

˛

˛

˛

λ=0

ff

. (19)

Note that θ(ξ) ≤ 0 since at any time t ∈ [0, µf ] inserting
the same mode and the same continuous input is a feasible
solution and the derivatives of the cost and constraint are
zero for this choice. Observe that as required if there are no
feasible mode insertions which reduce the cost then θ(ξ) = 0
(this is proved in Theorem 2). We construct an algorithm,
a : X → X , to solve the Switched Hybrid Optimal Control
Problem:
The main result of our paper is that Algorithm 1 converges
to a point that satisfies our optimality condition, which is
proved in Theorem 3.

4. ALGORITHM ANALYSIS
In this section, we describe in detail the pieces that are

required to show that Algorithm 1 converges to a point that
satisfies our optimality condition. The section is divided
into a piece where we prove the continuity of the cost and
constraint and a piece which proves the convergence of our
algorithm. The proofs of these various propositions and the-
orems can be found in the technical report [12] due to lack
of space.
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µ(0) µ(i)

σ(i+ 1)

s(i+ 1)

σ(1)

s(1)

µ(1)

σ(i− 1)

s(i− 1)

µ(i− 1)

α̂

λ

σ(i)

t̂− µ(i− 1) − λ
2

σ(i)

µ(i) − t̂− λ
2

σ(N)

s(N)

µft̂− λ
2

t̂+ λ
2

ρ
(η)
σ (λ):

ρ
(η)
s (λ):

µ(0)

σ(1)

s(1)

µ(1)

s(i− 1)

µ(i− 1)

σ(i− 1)

µ(i)

s(i+ 1)

σ(i+ 1)

s(N)

σ(N)

µft̂

σ(i)

s(i)

σ:

Figure 2: Diagram illustrating the transition from σ to ρ
(η)
σ (λ) and s to ρ

(η)
s (λ). The top line is the original

definition of σ and s, and the bottom line shows the result for λ > 0.

Algorithm 1 Optimization Algorithm for the Switched Hy-
brid Optimal Control Problem

Data: ξ0 ∈ X
Step 0. Let (s1, u1) = â(s0, u0), σ1 = σ0,

define ξ1 = (σ1, s1, u1).
Step 1. Set j = 1.
Step 2. If θ(ξj) = 0 stop.
Step 3. ξj+1 = a(ξj) where a is defined as follows:

a. η̂ = (α̂, t̂, û) is the argument that minimizes θ(ξj).
Let σ̃j be the modal sequence obtained by the inser-
tion of α̂ at t̂.

b. Using the new mode sequence, σ̃, let (sj+1, uj+1) =
â(sj+1, uj+1) be the solution to Stage 1.

c. Define σj+1 = σ̃j , ξj+1 = a(ξj) = (σj+1, sj+1, uj+1).

Step 4. Replace j by j + 1 and go to step 2.

4.1 Continuity of the Cost and Constraints
In order to apply Theorem 1, we must first check that the

cost function, equation (12), under Assumptions 1 and 2 is
continuous. We prove the continuity of the cost function
by taking a sequence, (ξj)

∞
j=1 converging to limit ξ, in our

optimization space, and proving that the corresponding se-
quence of trajectories (xj(t))

∞
j=1 converge to trajectory x(t)

corresponding to ξ. This result proves the sequential conti-
nuity of our cost function, which implies continuity since X
is a metric space.

Throughout this subsection we simplify the notation used
for the functions µ, κ, π, and µf . Given ξj = (σj , sj , uj) ∈
X , we define µj(i) = µ(i; sj), κj(i) = κ(i; sj), πj(i) =
π(i; sj), and µf,j = µf (sj). As usual, when the choice of
s ∈ S is clear in context we use our standard notation.

Proposition 1. Let (ξj := (σj , sj , uj))
∞
j=1 be a conver-

gent sequence in the optimization space, X , and let ξ :=
(σ, s, u) be its limit. Let (xj(t))

∞
j=1 be the corresponding tra-

jectories (defined using Equation 11) associated with each ξj,
with common initial condition x0. The sequence (xj(t))

∞
j=1

converges pointwise to the trajectory x(t) associated with ξ,
for all t in [0,∞) with initial condition x0.

In fact, we have a stronger condition on the convergence.

Proposition 2. Let (ξj := (σj , sj , uj))
∞
j=1 be a conver-

gent sequence in our optimization space, X , and let ξ :=

(σ, s, u) be its limit. Let (xj(t))
∞
j=1 be the corresponding tra-

jectories (defined using Equation 11) associated with each
ξj, with common initial condition x0. The sequence (xj)

∞
j=1

converges uniformly to the trajectory x associated with ξ, on
[0,

P∞
i=1 s(i)] with initial condition x0.

Given Proposition 2, we can now check the continuity of
the cost function.

Proposition 3. The function J as defined in equation
(12) is continuous.

Finally, we must check that {ξ ∈ X | ψ(ξ) ≤ 0} is a closed
set in order to apply Theorem 1. Since we are employing
inequality constraints, showing that ψ is continuous gives
us the required result.

Proposition 4. The function ψ as defined in equation
(14) is continuous.

4.2 Optimality Function
In this section, we prove the convergence of Algorithm 1.

Our algorithm works by inserting a new mode, α̂, in a small
interval of length λ ≥ 0 centered at a time, t̂, with input û.
We begin by defining this type of insertion.

Definition 2. Given ξ = (σ, s, u) ∈ X and η = (α̂, t̂, û) ∈

Q×[0, µf ]×Bm(0,M), we define the function ρ(η) : [0,∞) →
X as the perturbation of ξ after the insertion of mode α̂, at
time t̂ using û as the control, for a time interval of length λ.
Let λ̄ = min{i:|µ(i)−t̂|>0}

1
2

˛

˛µ(i) − t̂
˛

˛, then we write ρ(η)(λ) =
“

ρ
(η)
σ (λ), ρ

(η)
s (λ), ρ

(η)
u (λ)

”

, whenever λ ∈ [0, λ̄],

ρ(η)
σ (λ) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(α̂, σ(1), σ(2), . . .) if t̂ = 0

(σ(1), . . . , π(t̂− λ̄
2
), α̂, . . .) if t̂ = µf

(σ(1), . . . , π(t̂− λ̄
2
), α̂,

π(t̂+ λ̄
2
), . . .) if t̂ 6= µ(i)

(σ(1), . . . , π(t̂− λ̄
2
),

m(κ(t̂)) + 1, . . . , n(κ(t̂)),

α̂, π(t̂+ λ̄
2
), . . .) if t̂ = µ(i)

(20)



ρ(η)
s (λ) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(λ, s(1) − λ, s(2), . . .) if t̂ = 0

(s(1), . . . , s(κ(µf )) − λ, λ, 0, . . . ) if t̂ = µf

(s(1), . . . , t̂− λ
2
− µ(κ(t̂− λ̄

2
) − 1),

λ, µ(κ(t̂+ λ̄
2
)) − t̂− λ

2
, . . .) if t̂ 6= µ(i)

(s(1), . . . , t̂− λ
2
− µ(κ(t̂− λ̄

2
) − 1),

s(m(i) + 1), . . . , s(n(i)),

λ, µ(κ(t̂+ λ̄
2
)) − t̂− λ

2
, . . .) if t̂ = µ(i)

(21)

ρ(η)
u (λ) =

8

>

<

>

:

u(t) +
`

û− u(t)
´1[0,λ](t) if t̂ = 0

u(t) +
`

û− u(t)
´1[µf−λ,µf ](t) if t̂ = µf

u(t) +
`

û− u(t)
´1[t̂− λ

2
,t̂+ λ

2
](t) otherwise

,

(22)

and ρ(η)(λ) = ρ(η)(λ̄) whenever λ > λ̄.

Note that ρ, in addition to being a function of λ and η, is
also a function of ξ, but we do not make this dependence
explicit for notational convenience. If the dependence of ρ
with respect to ξ is not clear, then we make the declaration

explicit. Importantly, observe that ρ
(η)
u is a needle variation

(or strong variation) of the control u(t) (as defined in Chap-
ter 2, Section 13 of [18]). Figure 2 illustrates a pair (σ, s)

after they are modified by the function ρ(η).

Proposition 5. Given η ∈ Q × [0, µf ] × Bm(0,M), the

function ρ(η) is continuous.

We need this property in order to understand the varia-
tion of the cost with respect to this insertion. We begin by
studying the variation of the trajectory, x(ρ(λ)), as λ changes.
Note that x(ξ)(t) = x(ρ(0))(t) for each t ≥ 0, so a first or-
der approximation of the trajectory is characterized by the
directional derivative of x(ρ(λ)) at λ = 0. To reduce the num-
ber of cases we need to consider in the future propositions,
we define for a given x : [0,∞) → R

n, u : [0,∞) → R
m, and

η = (α̂, t̂, û):

∆f(x, u, η) =

8

>

>

>

>

>

<

>

>

>

>

>

:

fα̂(x(t̂), û) − fπ(t̂+λ̄)(x(t̂), u(t̂)) if t̂ = 0

fα̂(x(t̂), û) − fπ(t̂−λ̄)(x(t̂), u(t̂)) if t̂ = µf

fα̂(x(t̂), û)+

− 1
2
fπ(t̂+λ̄)(x(t̂), u(t̂))+

− 1
2
fπ(t̂−λ̄)(x(t̂), u(t̂)) otherwise

(23)
where λ̄ = min{i:|µ(i)−t̂|>0}

1
2

˛

˛µ(i) − t̂
˛

˛. Observe that π(t̂+

λ̄) = π(t̂ − λ̄) whenever t̂ /∈ {µ(i)}i∈N. With an abuse of

notation, we denote x(ρ(λ)) by x(λ).

Proposition 6. The directional derivative of x(λ) for λ
positive, evaluated at zero, is:

dx(λ)

dλ

˛

˛

˛

˛

λ=0

(t) =

(

Φ(t, t̂)∆f(x(ξ), u, η) if t ∈ [t̂, µf ]

0 otherwise
, (24)

where Φ : [0,∞) × [0,∞) → R
n×n is the solution of the

matrix differential equation:

dX(t, t̂)

dt
=
∂fπ(t)

∂x

`

x(ξ)(t), u(t)
´

X(t, t̂), X(t̂, t̂) = I. (25)

Given this variation of the state trajectory, we can now
consider variations of the cost and constraint functions,
which allows us to define our optimality function θ in a man-
ner that guarantees if there are no feasible mode insertions
which lower the cost then θ(ξ) = 0.

Proposition 7. Let J be the cost function as defined in
equation (12). Then the directional derivative of J(ρ(η)(λ))
evaluated at λ = 0 is

dJ(ρ(η)(λ))

dλ

˛

˛

˛

˛

λ=0

=
“

p(ξ)(t̂)
”T

∆f(x(ξ), u, η) +

+
ˆ

û− u(t̂)
˜T ∂L

∂u

`

x(ξ)(t̂), u(t̂)
´

(26)

where p(ξ), can be identified with the costate, and is the so-
lution to the following differential equation

ṗ(t) = −
∂fπ(t)

∂x

T
`

x(ξ)(t), u(t)
´

p(t) −
∂L

∂x

`

x(ξ)(t), u(t)
´

p(µf ) =
∂φ

∂x

`

x(ξ)(µf )
´

.

(27)

In order to define our optimality function, we must also con-
sider variations of the constraint function after the mode
insertion procedure.

Proposition 8. Let ψ be the constraint function defined
in (14). The directional derivative of ψ(ρ(η)(λ)) evaluated
at λ = 0 is

dψ(ρ(η)(λ))

dλ

˛

˛

˛

˛

λ=0

= max
j∈Ĵ (ξ)

max
t∈T̂j(ξ)

∂hj

∂x

`

x(ξ)(t)
´ dx(λ)

dλ

˛

˛

˛

˛

λ=0

(t)

(28)
where

Ĵ (ξ) =



j ∈ {1, . . . , R}
˛

˛ max
t∈Tj

hj

`

x(ξ)(t)
´

= ψ(ξ)

ff

(29)

T̂j(ξ) =



t ∈ [0, µf ]
˛

˛ hj

`

x(ξ)(t)
´

= max
t̄∈[0,µf ]

hj

`

x(ξ)(t̄)
´

ff

(30)

Now we can prove that if θ(ξ) as defined in equation (19)
is less than zero, then there exists a feasible mode insertion
which reduces the overall cost (i.e. our optimality function
captures the points of interest).

Theorem 2. Consider the function θ defined in equation
(19). Let ξ ∈ X and η = (α̂, t̂, û) ∈ Q×[0, µf ]×Bm(0,M) be
the argument which minimizes θ(ξ). If θ(ξ) < 0, then there

exists λ̂ > 0 such that, for each λ ∈ (0, λ̂], J(ρ(η)(λ)) ≤ J(ξ)

and ψ(ρ(η)(λ)) ≤ 0.

This result proves that the vanishing points of our op-
timality function for Algorithm 1 contain solutions to our
optimal control problem. We now address the validity of As-
sumption 4. First, recall that ρ is a needle variation; there-
fore, as a result of the previous theorem, if θ(ξ) < 0 then
we are not at a minimum in the sense of Pontryagin [16].
Unfortunately, numerical methods for optimization cannot
implement these types of variations since that task would re-
quire the approximation of arbitrarily narrow discontinuous
functions. This means that any practical algorithm using a
numerical method would find minima that do not necessar-
ily coincide with the minima prescribed by our θ function. If
we were uninterested in constructing a practical algorithm,
then Assumption 4 would be trivially satisfied by any of the
theoretical algorithms proposed by Pontryagin.

Fortunately, we can construct a practical algorithm using
the following proposition.



Proposition 9. If the vector fields {fq}q∈Q are affine
with respect to the control and the running cost L is convex
with respect to the control, then the optimality condition cal-
culated via vector-space variations (variations that take the
form of directional derivatives) and the optimality condition
calculated via needle variations are equivalent.

Under the hypotheses of the proposition above, there are nu-
merous algorithms that satisfy Assumption 4, among them
the algorithms described in Section 4.5 in [17]. Importantly,
we can transform any nonlinear vector field into a new vec-
tor field that is affine with respect to its control using the
following transformation:

„

ẋ(t)
ż(t)

«

=

„

fπ(t)(x(t), z(t))
v(t)

«

, (31)

where (x(t), z(t))T in R
m+n become the new state variables,

and v(t) ∈ R
m becomes the new control input. After the

transformation those same algorithms would guarantee the
validity of Assumption 4.

Finally, we can show that Algorithm 1 has the sufficient
descent property with respect to our optimality function.

Theorem 3. Algorithm a : X → X , as defined in Algo-
rithm 1 has the sufficient descent property with respect to
the function θ : X → R.

Using this fact and Theorem 1, we have that our algorithm
converges to points that satisfy our optimality condition as
desired.

5. IMPLEMENTATION
In this section, we describe the numerical implementation

of Algorithm 1. First, we describe how to reformulate Stage
1 in the Bi-Level Optimization Scheme via a transformation
into a canonical optimal control problem. Second, we discuss
the implementation of our optimality function.

5.1 Transcription into Canonical Form
Given a ξ in X , we discuss how to solve Stage 1 in the

Bi-Level Optimization Scheme by transforming our problem
into one where the optimization over the switching instances
and continuous control becomes an optimization over the
initial condition and the continuous control. There exist al-
gorithms to perform optimization directly over the switching
times, but we consider optimization over the initial condi-
tion and continuous control since it has been studied more
extensively in the literature [3, 17].

Recall by assumption that for any ξ in X , there exists a
finite N such that for all i > N , σ(i) = NF. We introduce
functions γk : [0, 1] → R and zk : [0, 1] → R

n for k =
1, . . . , N such that:

γ̇k(t) = s(k)L(zk(t), ūk(t)) (32)

γk(0) = 0 (33)

and

żk(t) = s(k)fσ(k)(zk(t), ūk(t)) (34)

zk(0) = zk−1(1) (35)

where, with an abuse of notation, we assume z0(1) = x0

and ūk(t) = u
`

t · s(k) + µ(k − 1)
´

for all t in [0, 1] and

k = 1, . . . , N . It is clear from these definitions that zk(t) =

x(ξ)
`

t · s(k) + µ(k − 1)
´

for k = 1, . . . , N , and

N
X

k=1

γk(1) =

Z µf

0

L
`

x(ξ)(t), u(t)
´

dt. (36)

Given these definitions, we construct new state variables,
ωk : [0, 1] → R

n+2 and new flow fields, βk : R
n+2 × R

m →
R

n+2 for k = 1, . . . , N such that:

ωk(t) =

0

@

zk(t)
s(k)
γk(t)

1

A (37)

βk(ωk(t), ūk(t)) =

0

@

s(k)fσ(k)

`

zk(t), ūk(t)
´

0
s(k)L

`

zk(t), ūk(t)
´

1

A . (38)

Then we define a new optimal control problem whose so-
lution is a transformed version of the solution to the problem
we are interested in solving

min
{s(k)∈[0,∞)|k=1,...,N}

{ūk∈U|k=1,...,N}

“

N
X

k=1

γk(1) + φ(zN(1))
”

(39)

subject to:

ω̇k(t) = βk

`

ωk(t), ūk(t)
´

, ∀k = 1, . . . , N (40)

ωk(0) =

0

@

zk−1(1)
s(k)
0

1

A , ∀k = 1, . . . , N (41)

hj

`

zk(t)
´

≤ 0, ∀ j ∈ J , ∀ t ∈ [0, 1], ∀k = 1, . . . , N (42)

where k = 1, . . . , N , z0(1) = x0, and J denotes our in-
dex over the set of constraints. As desired, this problem
minimizes over the initial conditions and continuous con-
trols, rather than switching times and continuous controls.
Importantly, the solution to this problem is tractable and
equivalent to the solution of Stage 1.

5.2 Implementing the Optimality Function
In Algorithm 1, given a ξ in X , we check to see if θ(ξ) = 0.

If θ(ξ) < 0, we require the argument, η, which minimizes it.
Unfortunately, since θ(ξ) is a nonconvex function calculat-
ing the minimum may be difficult. Fortunately, finding any
value of η that makes θ(ξ) less than zero, provides us with a
feasible mode insertion which reduces the overall cost. Thus
Theorem 2 remains valid.

The reader may be concerned that determining any η re-
quires solving a min-max problem. However, there exist two
viable approaches to solving this type of problem. First, one
can apply any min-max optimization algorithm presented in
Section 2.6 of [17]. Second, one can transform any min-max
problem into a constrained minimization problem by using
the epigraph form transformation of the problem. In our
implementation, we employ the Polak-He Algorithm from
Section 2.6 of [17].

6. EXAMPLES
In this section, we apply Algorithm 1 to calculate an op-

timal control for two examples.
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Figure 3: The top row indicates trajectories and the

bottom row indicates control inputs, velocity, and

steering wheel angle. Each iteration of the algo-

rithm is drawn in a column and the iterations in-

crease from left to right. Black lines represent the

road in which the vehicle is constrained to move,

and the red rectangle is a parked vehicle. The green

circle represents the waypoint ŵ. In each plot, blue

is associated with the Forward mode and magenta

is associated with the Turn mode.

6.1 Switched System Vehicle Model following
Waypoints

Consider a vehicle under the front wheel bicycle model
with the equation of motion given as:

ẋ1(t) = x4(t) cos
`

x3(t) + x5(t)
´

ẋ2(t) = x4(t) sin
`

x3(t) + x5(t)
´

ẋ3(t) =
1

b
x4(t) sin

`

x5(t)
´

ẋ4(t) = u1(t)

ẋ5(t) = u2(t)

(43)

where x1, x2 are the x, y Cartesian coordinates of the car, x3

is the angular orientation of the car with respect to the x-
axis, x4 is the velocity of the car, and x5 is the steering wheel
angle. Also, u1(t) ∈ [−0.3, 0.5] corresponds to acceleration
and u2(t) ∈ [−π/6, π/6] is the steering wheel rate of change.
b is a fixed parameter describing the distance between the
front and back wheels of the car. Though we assume nonzero
length to describe the dynamics of car motion, we treat the
car as a point in space.

The objective is to move from an initial position to a way-
point ŵ ∈ R

2 (drawn in green in Figure 3) while avoiding
obstacles and satisfying constraints. We constrain the po-
sition, x1, x2, to not hit other cars or sidewalks (drawn in
red and black in Figure 3, respectively). We also constrain
the velocity x4(t) ∈ [−4, 16] and the steering wheel angle

x5(t) ∈ [−π/3, π/3]. We consider a hybrid model with two
modes: Forward mode, in which u2(t) = 0, and Turn mode
in which u1(t) = 0. We define our cost function J as:

J(ξ) =

Z µf

0

γ u(t)Tu(t)dt+

‚

‚

‚

‚

„

x1(µf )
x2(µf )

«

− ŵ

‚

‚

‚

‚

2

, (44)

where γ ∈ R+.
Figure 3 illustrates the trajectory and the control inputs

of the car after each iteration of our algorithm. The car tra-
jectory is initialized in Forward mode with only one nonzero
modal sequence element. The inner optimization algorithm,
â, calculates an optimal control and final time. The trajec-
tory is drawn in blue in the top-left plot in Figure 3, and the
two controls are plotted in the bottom-left plot in Figure 3.
Observe that the car arrives at a point where its x1 state
is the same as that of the waypoint (at time µf = 18.26
seconds), which is the best the optimal control can do given
the limited ability of the Forward mode. Next, θ is checked
and found to be nonzero. Therefore a Turn mode is inserted
at the end of the previous run, which results in a new modal
sequence: first drive straight and then turn.

The optimal control and switching instants are then recal-
culated, with this new modal sequence held fixed. The opti-
mal switching times are found to be (µ(i))2i=1 = (22.9120[s] ,
33.0082[s]). The trajectory while in the Forward mode is
drawn in blue in the top-right plot in Figure 3, and the Turn
mode trajectory is drawn in magenta. The controls are plot-
ted in similar colors in the bottom-right plot in Figure 3. Ob-
serve that the car is able to arrive at the waypoint. Finally,
θ is checked again and falls within a predefined threshold,
and the algorithm stops.

6.2 Quadrotor Helicopter Control
Next, we consider the optimal control of a quadrotor heli-

copter using a two dimensional simplified model. Letting x
denote the position along the horizontal axes, z the height
above the ground, and θ the roll angle of the helicopter, the
equations of motion is given as:

ẍ(t) =
1

M
sin

`

θ(t)
´

3
X

k=1

Tk

z̈(t) =
1

M
cos

`

θ(t)
´

3
X

k=1

Tk − g

θ̈(t) =
L

Iy

(T1 − T3)

(45)

In the above T1 and T3 are the thrusts applied at the op-
posite ends of the quadrotor along the x axis, and T2 is the
sum of the thrusts of the other two rotors at the center of
mass of the quadrotor. The parameters M , L, and Iy denote
the mass, distance from center of mass of each of the rotors
T1 and T3, and moment of inertia about y axis, respectively.
The values of the parameters for this example are taken from
the STARMAC experimental platform [14]. We hybridize
the dynamics by introducing three modes: Left, Right, and
Up. For the Left mode we set T1 = 0, T2 = Mg, and let
T3 ∈ [0, 2]. In the Right mode, we set T3 = 0, T2 = Mg, and
let T1 ∈ [0, 2], and in the Up mode we set T1 = T3 = 0, and
let T2 ∈ [0, 16]. The objective is to reach a waypoint ŵ ∈ R

2

(drawn in green in Figure 4) while avoiding obstacles (drawn
in red in Figure 4), staying above the ground (z = 0) and
maintaining a speed between zero and two. We define the
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Figure 4: The top row indicates trajectories while the bottom row indicates control inputs and speed. Each

iteration of the algorithm is drawn in a column and the iterations increase from left to right. Constraints are

drawn in red, the STARMAC quadrotor is drawn in black and the normal direction to the quadrotor frame

is drawn in orange. The green circle represents the waypoint ŵ. In each plot, magenta is associated with the

Right mode and blue is associated with the Up mode.

cost function as

J(ξ) =

Z µf

0

γ ũ(t)T ũ(t)dt+

‚

‚

‚

‚

„

x(µf )
z(µf )

«

− ŵ

‚

‚

‚

‚

2

+

+

‚

‚

‚

‚

„

ẋ(µf )
ż(µf )

«‚

‚

‚

‚

2

(46)

where γ ∈ R+ and ũ(t) = u(t) − uss, with uss = [0 Mg 0]
being the steady-state input.

Figure 4 illustrates the trajectory and the control inputs
of the quadrotor after each iteration of our algorithm. The
algorithm is initialized in the Up mode and the optimal con-
trol and switching times for this initialization are calculated.
The optimal trajectory and control are drawn in the left col-
umn and the optimal final time is µf = 12.22[s]. Next, the
algorithm reduces the cost by inserting a Right mode be-
fore the Up mode and the optimal control and switching
times are calculated under this modal sequence. The opti-
mal trajectory and control are drawn in the middle column
and the optimal switching times are (µ(i))2i=1 = (5.48 ×
10−5[s] , 44.35[s]). Finally, the algorithm attempts to re-
duce the cost by inserting a Right mode during the Up mode
and the optimal control and switching times are calculated
under this modal sequence. The optimal trajectory and con-
trol are drawn in the right column and the optimal switch-
ing times are (µ(i))4i=1 = (1.06 × 10−5[s] , 3.04[s] , 1.58 ×
10−7[s] , 49.33[s]).

7. CONCLUSION
This paper presents an algorithm to numerically deter-

mine the optimal control for constrained nonlinear switched
hybrid systems. For such systems, the control parameter
has both a discrete component, the sequence of modes, and
two continuous components, the duration of each mode and
the continuous input. We develop a bi-level hierarchical al-
gorithm that divides the problem into two subproblems.

At the lower level, we keep the modal sequence fixed and
construct the optimal mode duration and optimal continu-
ous input. At the higher level, we employ a single mode in-
sertion technique to construct a new reduced cost sequence.
We prove the convergence of this algorithm, and illustrate its
utility of this algorithm on two numerical examples. In prac-
tice, the algorithm presented in this paper can be applied
to any constrained nonlinear switched dynamical system to
determine an optimal control.

8. ACKNOWLEDGMENTS
We would like to express our appreciation to Professor

Elijah Polak for his valuable insight and to Saurabh Amin for
providing his feedback. We would also like to thank Jeremy
Gillula, Haomiao Huang, and Michael Vitus for their help
with the STARMAC model.

This research work was sponsored by the Air Force Office
of Scientific Research (AFOSR) under Agreement Number



FA9550-06-1-0312 and PRET Grant 18796-S2, the National
Science Foundation (NSF) under grants 0703787 and
0724681, and the National Science and Engineering Research
Canada (NSERC). The views and conclusions contained in
this document are those of the authors and should not be
interpreted as representing the official policies, either ex-
pressed or implied, of the Air Force Office of Scientific Re-
search or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute for Government pur-
poses notwithstanding any copyright notation herein.

9. REFERENCES

[1] H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest.
Gradient Descent Approach to Optimal Mode
Scheduling in Hybrid Dynamical Systems. Journal of
Optimization Theory and Applications,
136(2):167–186, 2008.

[2] A. Bemporad, F. Borrelli, and M. Morari. Piecewise
Linear Optimal Controllers for Hybrid Systems. In
American Control Conference, 2000. Proceedings of
the 2000, volume 2, 2000.

[3] D. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific Belmont, MA, 1995.
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