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Abstract—In this work we have analyzed the effects
of correlated failures of power lines on the total system
load shed. The total system load shed is determined by
solving the optimal load shedding problem, which is the
system operator’s best response to a system failure. We have
introduced a Monte Carlo based simulation framework for
estimating the statistics of the system load shed as a func-
tion of stochastic network parameters, and provide explicit
guarantees on the sampling accuracy. This framework has
been applied to a 470 bus model of the Nordic power system
and a correlated Bernoulli failure model. It has been found
that increased correlations between Bernoulli failures of
power lines can dramatically increase the expected value
as well as the variance of the system load shed.

I. INTRODUCTION

Power systems are among the largest and most com-
plex systems created by mankind. The complexity of
power grids keeps increasing as power grids are ex-
panded and new functionalities are added, as with the
current developments of the SmartGrid [1]. Since many
vital parts of today’s society require reliable supply of
electricity, the reliable and secure operation of power
systems is indisputably essential [2], [3]. We give a brief
overview of the research in the two distinctive areas
of security against adversarial attacks and reliability of
power systems against random failures. We conclude
that correlated failures in power systems represent a gap
between these two research areas.

In the area of security, research on characterizing opti-
mal attack and defense strategies has gained momentum
over the past years. In [4] the optimization problem of
maximizing the power outage, for a given number of
power transmission lines that an adversary is capable
of disconnecting, is considered. The system operator is
assumed to take the best action to minimize the damage
in form of compulsory load shedding. The problem is
game theoretic by nature and gives rise to a maximin
optimization problem, where the outer maximization
seeks the most disruptive attack for a given budget of
the adversary, and the inner minimization solves the
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optimal load shedding problem which minimizes the
consequences of an attack. Because of the non-convexity
and the existence of integer variables, the problem is in-
herently hard to solve for large systems. [5] approximates
the nonlinear mixed integer bi-level program by a mixed
integer linear program, and derives an upper bound on
the severity of adversarial attacks.

Traditionally, the reliability of power systems has
often been characterized by deterministic means, such
as the widely uses N − k criterion [6], and in almost
all cases k = 1 is used [7]. A power system satisfying
the N −k criterion is able to withstand any contingency
consisting of k outages. The main drawback of the N−k
criterion and other deterministic reliability criteria is that
they do not take into account the probabilities of the
contingencies. Furthermore, the number of events which
have to be considered when evaluating the N−k criterion
grows exponentially in k, making the reliability evalu-
ation computationally intractable. More recent research
on the reliability of power systems has emphasized that
many events governing the reliability of power systems
are by nature stochastic, e.g. demands and generation ca-
pacities. Various statistical and sampling based methods
for evaluating the reliability of power systems have been
developed to analyze stochastic phenomena in power
systems [8], [9]. In [10] a two state Markov model for the
failure of various power system elements is considered,
and the statistics of the power system are calculated
using Monte Carlo techniques. However, the model does
not take correlated failures into account. Other than
failure correlations due to cascading failures [11], we
found no model which attempts to model correlated
failures in power systems.

This work aims at studying the effects of correla-
tions between failures of power system components,
and in particular power lines. In contrast to previous
papers on the subject, we introduce a failure model
explicitly taking into account correlated system failures.
We evaluate the impact of correlations of failures by
the covariances between the failures. Our research is
motivated by the increased deployment of of-the-shelf
hardware and software in SCADA systems governing
the power systems. When similar or even identical



software is deployed in several system components,
software failures are likely to be correlated between
those components. Indeed, current literature suggests
that bugs present in one system component are likely
to also be present in a similar or identical components
[12]. From a cyber security point of view, this work is
motivated by the possibility of malicious code exploiting
identical software bugs and security flaws. A computer
virus spreading in the SCADA network is likely to affect
multiple of its target components, and thus causing cor-
relations between failures. The increased interconnection
of control and communication systems as well as their
connection to the Internet, facilitates the exploitation of
software bugs. There are indications that software bugs
caused failures leading to a blackout in the northeast
blackout of 2003 [13]. We believe that correlated failures
provides a good mean of understanding the affects of
failures caused by malicious software affecting multiple
system components. Correlated failures may also occur
due to natural disasters such as earthquakes or hurricanes
[14], [15]. Examples of major power system outages
caused by natural disasters include the New York city
blackout in 1977, where lightning struck a substation
and a power line almost simultaneously [16].

We measure the impact of a system failure by the
minimal system load shed required to restore the system
to a safe state. This formulation gives rise to an optimiza-
tion problem, which under simplified conditions can be
made linear. For different values of the correlations of the
failure distribution, we compute the sampled statistics of
the total system load shed by Monte Carlo techniques,
and provide guarantees on the convergence rate of the
sampled statistics. In particular, we use a weighted sum
of the mean and variance of the total system load
shed as a risk measure of the failure statistics. To
obtain statistical data from a realistic power system,
we apply our techniques to a 470 bus model of the
Nordic power system, acquired from publicly available
sources. We have found that increasing correlations be-
tween Bernoulli failures of power lines lead to increased
expected value and variance of the system load shed
under various topological structures of the correlations.

The rest of the paper is organized as follows. In
Section II the optimal load shedding problem is pre-
sented and the total system load shed is defined. In
section III a novel model of the Nordic power system
is presented and evaluated . In Section IV a Monte
Carlo sampling technique is presented and the effects
of correlated failures on the Nordic power system are
studied, followed by concluding remarks in Section V.

II. OPTIMAL LOAD SHEDDING

Optimal power flow (OPF) problems are in many
ways analogous to transportation problems, with the only
difference that the power flows obey the Kirchoff voltage
law, and are proportional to the relative phase angle

difference between the buses [17]. The optimal load
shedding problem is a special case of OPF problems,
where the load shed is minimized subject to physical
constraints [18], [19]. OPF problems have been solved
using a variety of optimization techniques, ranging from
linear programming [20], Newton methods [21] to in-
terior point methods [22]. While many techniques rely
on the linearized power flow equations, there are OPF
problems using the nonlinear power flow equations [23],
[24]. While showing promising results, these methods
suffer from general limitations of non-convex optimiza-
tion such as convergence and computational complexity.

We will only consider the linearized power flow equa-
tions in our work, thereby ensuring robust and fast con-
vergence. Since we will apply Monte Carlo techniques
solving the optimal load shedding problem, computation
speed is certainly of importance. By assuming that the
admittance in the shunt branch of the power lines is
negligible, and that the resistance-to-reactance ratio is
sufficiently small, reactive power flows can be neglected,
and the real power real power flows are described by the
DC-model [25]:

P line = V lineB sin (Aθ) (1)

where P line is a column vector of active power flows
in the transmission lines, V line = diag

(
ViVj

)
where

Vi is the voltage of bus i, B = diag(bij) where bij is
the admittance of the power line connecting bus i with
bus j, θ is the vector of bus phase angles and A is the
vertex-edge incidence matrix of the graph of the power
system, defined as Aij = 1 iff ei = (vj , u) ∈ E, Aij =
−1 iff ei = (u, vj) ∈ E and Aij = 0 otherwise. Here
sin(x) =

[
sin(xi), . . . , sin(xn)

]T
for a vector x. By only

considering sufficiently small phase angle differences,
i.e. ∆θmax = ‖Aθ‖∞ being sufficiently small, we may
linearize (1) around Aθ = 0;

P line = V lineBAθ (2)

By summing the power flows to each bus, we get the
linearized equation for the net power flows into the
buses;

P = ATV lineBAθ =: LBθ

where P is a vector of real power injections to the buses.
LB can be interpreted as a weighted Laplacian matrix
of the graph associated with the power system, with
weights corresponding to the line admittances times the
bus voltages. We may assume, wlog, that the buses of

the power system are partitioned as P =
[
P gT , P l

T
]T

,
where P g > 0 are generator buses and P l ≤ 0
are load buses. We consider the optimization problem
of minimizing the total load shed of the system. The
optimal load shedding problem can, for the linearized
power flow equations, be formulated as a linear Program



(LP);

min
θ

cT θ (3)

s.t. Cθ � d (4)

where

C =



V lineBA
−V lineBA

LB
−LB
A
−A


d =



P linemax

P linemax

P gmax
0nl×1

0ng×1

−P ld
∆θmax · 1np×1

∆θmax · 1np×1


(5)

and
c =

[
01×ng 11×nl

]
LB (6)

and where ng , nl and np denotes the number of generator
buses, load buses and power lines respectively, and
0 < ∆θmax ≤ π

2 is a sufficiently small real number
for which the linearized power flow equation (2) is a
valid approximation. The matrix inequality in (4) com-
bines line capacity constraints

(
|P line| � P linemax

)
, power

generation constraints (0 � P g � P gmax), power load
constraints

(
P ld � P l � 0

)
and phase angle constraints(

‖Aθ‖∞ ≤ θmax
)
. The objective function cT θ is the sum

of the power injections to the demand buses, which is
a linearly affine function of the total system load shed.
It can be easily seen that the minimum total load shed
S∗(C, d), which is the difference between the total power
demand and total delivered power, is given by

S∗(C, d) = min
θ

{
cT θ|Cθ � d

}
− 11×nl · P ld (7)

III. MODEL OF THE NORDIC POWER SYSTEM

In this section, we construct a model of the Nordic
power system to demonstrate the previously discussed
sampling techniques. While IEEE standard power sys-
tems offer great transparency for research and can
function as benchmark systems, we believe that it is
important to demonstrate our concepts on real power
systems. We have built a model of the Nordic power
system, using only publicly available data. While there
have been similar efforts to model other interconnected
power systems, such as the main European power grid
[26], there are no known complete models of the Nordic
power system that are publicly available.

A. Obtaining the network topology

The topology of the power system. i.e. the geograph-
ical positions of the main 400, 300, 220 and 132 kV
power lines and HVDC links in the Nordic countries
were obtained from the respective TSOs websites. The
data obtained included the coordinates of the power
buses, the connectivity of the buses through power lines,
the voltage of the power lines and the number of parallel

power lines, if applicable. The complete model has a
total of 470 buses and 717 power lines. The power lines
and buses of the Nordic power grid are illustrated in
figure 1.

Production node

Demand node

400 kV power line

300 kV power line

220 kV power line

132 kV power line

Figure 1. Model of the Nordel high voltage power transmission
network. The circle area of the production and demand buses are
proportional to the production and demand respectively.

B. Estimating power generation capacities

Information about all power generation facilities with
capacities of at least 100 MW were also acquired from
public sources [27]. To compensate for the lack of
available data of power plants with generation capacity
less than 100 MW, we have made assumptions about the
remaining power plants. The remaining thermal power
plants are assumed to be located in populated areas, and
hence the thermal generation capacity is proportional to
the demands. As for the remaining wind power capacity,
we have assumed that the wind power generation is
uniformly distributed over the land surface, and hence
over the buses. These assumptions may appear crude, but
considering that these assumptions only apply to power
plants whose generation capacity is below 100 MW, the
net effect of possible errors on the whole model is of
minor importance.

C. Estimating power demand data

There is no available electricity demand data, other
than cumulative data for the Nordic countries. This data
is to rough to be useful for our 470 bus model. Following
[26] we have used population census data to estimate the



power demand. This methodology relies on the assump-
tions that household power demand is proportional to the
population connected to a substation, as well as industry
power demand, since the workforce will settle relatively
close to industries. This may however not necessarily be
the case for certain energy-intensive industries which are
usually co-located with energy sources, nor for certain
location-specific industries such as forestry or the oil
industry. Population statistics were collected from the
Bureau of Statistics of the respective countries. We have
collected cumulated population statistics for the major
administrative regions of each country, and assumed that
the population (and hence the demand) is distributed
uniformly over the load buses within each region. The
number of administrative regions in each country was
between 12 and 21. Using smaller regions would in-
troduce difficulties in assigning the right population to
each substation. To estimate the power demands, both
the yearly average and yearly maximum of the daily
maximum power consumption were used to create two
different load situations.

D. Estimating power line parameters

The only known parameters of the power lines ob-
tained from public sources are the line voltages. To
solve the optimal load shedding problem, also the line
admittances as well as the maximum transmission ca-
pacities of each line need to be known. The admittance
of power lines can be estimated by the length of the
power line. Typically the reactance of high voltage power
transmission lines is approximately 0.20 Ω/km [28]. The
lengths of a power line from a bus with coordinates
x to a bus with coordinates y is estimated by the
euclidean 2-norm as l = dist(x, y) = ‖x− y‖2 =√

(x1 − y1)2 + (x2 − y2)2 which is always an under-
estimate of the actual line length. As for estimating
transmission capacities, only cross-border transmission
line capacity constraints are available from the Nordic
TSOs. The transmission capacity of each power line of
equal voltage is assumed to be the average transmission
capacity of the cross-border lines, which are shown in
Table I.

Table I
ESTIMATED TRANSMISSION LINE CAPACITIES.

Voltage Capacity
400 kV 1030 MW
300 kV 650 MW
220 kV 415 MW
132 kV 143 MW

E. Evaluating the model

The optimal load shedding problem was applied to
the previously derived model of the Nordic power trans-
mission grid. By using the YALMIP [29] interface with

the GLPK [30] LP solver in MATLAB [31], the optimal
load shedding problem was solved. When solving the
linear optimal load shedding problem with the yearly
maximum loads, the total system load shed was found
to be 2 % of the total power demand. When solving the
optimal load shedding problem with the yearly average
of the daily maximum loads, no system load shed was
necessary. This demonstrates that our model is indeed
usable for our study.

IV. STATISTICS OF POWER SYSTEM FAILURES

A. Monte Carlo methods

In this paper we will consider stochastic failures of
the power system, as in e.g. [8], [9]. To demonstrate the
generality of our methods, we will not yet make any
assumptions about these failures. Consider the matrices
C and d, associated with an arbitrary power system, as
random variables endowed with a probability measure
µC × µd. Since both the topology and load parameters
of the power system are determined by C and d, such a
probability measure can represent any type of failures
of the power system. It can be shown that for any
probability measure µC × µd, the minimum total load
shed S∗(C, d) is also a random variable. The total load
shed is a commonly used measure of the severeness of
a power system outage [32], [33].

We will consider the sampled probability distribution
of the minimum total system load shed S∗(C, d), and
in particular we will consider the mean and the vari-
ance of the sampled probability distribution. Because
0 ≤ S∗(C, d) ≤ −

∑
P ld, as seen from (4), the mean

S̄∗ and variance σ2
S∗ of S∗(C, d) always exist and are

finite. We will use S̄∗+α·σS∗ , α ∈ R+ as a risk measure
for the distribution µC ×µd. We show that S̄∗+α ·σS∗

is closely related to the commonly used risk measure
value at risk (VaR), which for a random variable S∗ is
defined as follows [34]:

VaRα(S∗) = inf{l ∈ R : Pr(S∗ > l) ≤ 1− α}

The intuition of the expression VaRα(S∗) is that the
maximum loss, in our case system load shed, is bounded
by VaRα(S∗) with probability 1−α. One serious compu-
tational drawback with using VaR on sampled probabil-
ity distributions, is that it requires knowledge of the full
probability distribution of the random variable S∗. When
dealing with samples of random variables, estimating
VaR becomes hard since it requires estimation of the tail
of the distribution S∗. The following proposition allows
us to obtain an upper bound VaRα(S∗) using a linear
combination of the mean and the variance of S∗, which
can be estimated more robustly:

Proposition 1. The risk measure value at risk (VaRα)
satisfies

VaRα(S∗) ≤ S̄∗ +
1√
α
· σS∗



The proof is given in the appendix. Since obtaining
analytical expressions for S̄∗ and σ2

S∗ is in general not
possible, we will use Monte Carlo techniques [35] to
estimate the mean and the variance of the load shed. By
drawing N samples from the distribution µC × µd, we
obtain the following approximations of S̄∗ and σ2

S∗ ;

S̄∗ ≈ Ŝ∗ =
1

N

N∑
i=1

S∗(Ci, di) (8)

σ2
S∗ ≈ σ̂2

S∗ =
1

N − 1

N∑
i=1

(
S∗(Ci, di)− Ŝ∗

)2

(9)

Due to S∗(C, d) being bounded, Ŝ∗ and σ̂S∗ are guar-
anteed to converge to S∗ and σS∗ respectively.

Proposition 2. Given ε > 0, δ > 0, the number of
samples N1 and N2 which assure that

Pr

[∣∣∣Ŝ∗,N1 − S̄∗
∣∣∣ ≥ ε] ≤ δ

Pr
[
|σ̂S∗,N2 − σS∗ | ≥ ε

]
≤ δ

are

N1 ≥

⌈
Ŝ2

4δε2

⌉
N2 ≥

⌈
Ŝ4

8δε4

⌉
Proof: Follows by lemma 3 and lemma 5 in the

appendix, and the fact that 0 ≤ S∗(C, d) ≤ −
∑
P ld.

With proposition 2 we have guaranteed bounds of the
estimation error of both the sampled expected value and
the sampled variance of the load shed. The proposition
can of course be used in the reverse direction. For given
N1 and N2, we can obtain bounds on δ and ε. With these
explicit bounds on the error of the estimated mean and
variance of the load shed, the number of samples can be
chosen according to given accuracy requirements, and
trade-offs between accuracy and the number of samples
can be made a priory.

B. Sampling of correlated system failures
In this section we examine the effects of correlated

system faults on the statistics of the minimum total
system load shed. As discussed in the introduction, the
study of correlated faults in power systems is motivated
by the increased deployment of of-the-shelf hardware
and software in SCADA systems governing the power
systems. When identical software is deployed in several
system components, software faults between these iden-
tical components are likely to experience correlation. In
the following empirical study we will consider failures
on the form of power line disconnections. We model the
disconnection of power line i as a binary random variable
Xi ∈ {0, 1} where Xi = 0 corresponds to line i being
fully functional with all parameters set to default, and
Xi = 1 corresponds to line i being disconnected. Thus,
the failure statistics of the power system are given by

P (X1 = Y1, . . . , Xnp = Ynp) ∀ Yi ∈ {0, 1}

Since parameterizing the full joint Bernoulli distribution
would require nnp ≈ 10216 variables, we will consider
the Bernoulli distribution with the first two central mo-
ments given explicitly, i.e.

X̄i = E[Xi] ∀i ∈ {1, . . . , np}
σij = E

[
(Xi − X̄i)(Xj − X̄j)

]
∀ (i, j) ∈ {1, . . . , np}2

To consider the effects of increasing correlations X̄i =
0.02 is kept constant, while the covariances σij are
increased. We consider two different scenarios where
the correlation between a subset of the power lines is
increased.

1) Correlations between incident power lines: We
first consider the case where σij is increased equally
for all incident power lines, from 0 to 0.016 in steps
of 0.004. For each step, 1000 Monte Carlo simulations
are performed with the Bernoulli sampling algorithm
described in [36] to acquire sampled statistics S∗. By
proposition 2 the relative error of Ŝ∗ is guaranteed to
be less than 7 % with certainty 95 %. In figure 2,
the histograms of the sampling processes are shown for
different σij , together with fitted Weibull distributions.
The mean and the variance of the load shed for different
correlations are shown in figure 4. Clearly both S̄∗ and
σX∗ are strongly increasing in σij .

0 5000 10000
0

0.2

0.4

0.6

0.8

1
x 10

−3 σ=0

Load shed (MW)

R
e
la

ti
v
e
 p

ro
b
a
b
ili

ty

0 5000 10000
0

0.2

0.4

0.6

0.8

1
x 10

−3 σ=0.004

Load shed (MW)

R
e
la

ti
v
e
 p

ro
b
a
b
ili

ty

0 5000 10000
0

0.2

0.4

0.6

0.8

1
x 10

−3 σ=0.008

Load shed (MW)

R
e
la

ti
v
e
 p

ro
b
a
b
ili

ty

0 5000 10000
0

0.2

0.4

0.6

0.8

1
x 10

−3 σ=0.012

Load shed (MW)

R
e
la

ti
v
e
 p

ro
b
a
b
ili

ty

0 5000 10000
0

0.2

0.4

0.6

0.8

1
x 10

−3 σ=0.016

Load shed (MW)

R
e
la

ti
v
e
 p

ro
b
a
b
ili

ty

Figure 2. Histograms of the sampled load shed distributions for
different σij between 0 to 0.016 when the covariance between
neighboring lines is increased, with fitted Weibull distributions.
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Figure 3. Fitted Weibull distributions of the sampled load shed
distribution for σij from 0 to 0.016, when the covariance between
neighboring lines is increased.
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Figure 4. Expected value and standard deviation (MW) of the total
load shed for different covariances for power lines connected to the
same bus.

2) Correlations between power lines incident to
PMUs: We here consider the scenario of failures being
correlated only between lines incident to nodes with
phasor measurement units (PMUs). This scenario is mo-
tivated by the use of identical software and hardware in
PMUs, which could cause correlations between failures
of these nodes, and hence the incident lines. In figure 5,
the histograms of the sampling processes are shown for
different σij , together with fitted Weibull distributions.
The mean and the variance of the load shed for different
covariances are shown in figure 7. While σX∗ is not
increasing in σij , S̄∗ is increasing by a factor 15 with
increasing σij .

3) Remarks: Although simulations indicate that cor-
relations increase the expected value of the system load
shed, it is easy to find counterexamples where increased
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Figure 5. Histograms of the sampled load shed distributions for
different σij between 0 to 0.016 when the covariance between
power lines incident to PMU nodes is increased, with fitted Weibull
distributions.
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Figure 6. Fitted Weibull distributions of the sampled load shed
distribution for σij from 0 to 0.016, when the covariance between
power lines incident to PMU nodes is increased.

correlation between power line failures decreases the
expected load shed. The simplest possible counterex-
ample is a 3-bus and 2-line power network shown in
figure 8. Let the demand bus have demand −1, and
the generation bus a capacity ḡ ≥ 1, and the line
parameters be such that the demand is satisfied under
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Figure 7. Expected value and standard deviation (MW) of the total
load shed for σij from 0 to 0.016, when correlations are increased
for power lines incident to PMU nodes.

normal operation. It can be shown that the expected load
shed of the system is E[X1] + E[X2]− σ12, where σ12

is the covariance between the failures of power lines
l1 and l2. The intuition behind this counterexample is
that while the probability of both lines failing increases,
the probability of each failing individually decreases,
with the result that the total probability of any line
failing decreases. We here state sufficient conditions

g n dl1 l2

Figure 8. Topology of a 3-bus, 2-line power network where increased
correlations between power line failures result in decreased system load
shed. g is a generation bus, d a demand bus and n a demand with power
demand 0.

under which increased correlations of power line failures
imply increased expected load shed.

Proposition 3. Let the power system satisfy the n − k
criterion, i.e. the disconnection of any k power lines does
not induce any necessary load shedding. Furthermore,
assume that all contingencies with at least k + 1 line
failures induce a total system load shed c̄. Assume, wlog,
that the moment φ1,...,k+1 = E[X1 · . . . ·Xk+1] increases
by ∆φ, but all other moments E[Xi1 · . . . · Xil ] are
constant. Then

1) The central moment σ1,...,k+1 =
E
[
(X1 − X̄1) · . . . · (Xk+1 − X̄k+1)

]
also

increases by ∆φ.
2) All other central moments of order less than or

equal to k + 1 remain constant.
3) The expected load shed S̄∗ increases by c̄ ·∆φ.
4) If E[Xi] < 1/2 ∀φ, the variance of the load shed,

σS∗ , increases by ĉ2 ·∆φ, where 0 < ĉ ≤ c̄.

A proof is given in the appendix. The following

corollary follows directly from proposition 3.

Corollary 1. Assume that all conditions of proposition
3 still hold, except that all contingencies with at least
k+ 1 line failures induce a system load shed of at least
c̄. In this case the results of proposition 3 hold instead
for the lower bound S∗ ≤ S∗ of the system load shed,
which is the total system load shed assuming all line
failures result in the same system load shed c̄.

V. CONCLUSIONS AND FUTURE RESEARCH

In this work we have demonstrated that increased
correlations between power line failures can dramatically
increase the expected costs in terms of system load shed,
although the expected value of the failure probabilities
is kept constant. Furthermore we have demonstrated that
increased correlations between power line failures can
also increase the variance of the system load shed, thus
increasing the risk of large system load sheds. We have
demonstrated our results by the sampling of correlated
power line failures, using a model of the Nordic power
grid. We have furthermore provided sufficient conditions
under which the mean and the variance of the total
system load shed increase with increasing correlation
between line failures.

The framework presented in this paper should be
seen as a general framework for reliability evaluation of
power systems where correlations are known a priory,
either by empirical data or by improved failure models
of power systems.

It should be clarified that the failures we consider do
not correspond to cascading failures, but that they could
represent potential causes of cascading failures. In many
situations, cascading failures further aggravate the state
of a partially failing power system, leading to even larger
losses in terms of system load sheds. In future work, it
would be of interest to consider the impact of correlated
failures under power system on cascading failures. Also,
it would be interesting to study if the conditions under
which the expected value and the variance of the load
shed are increasing in the correlations, can be relaxed.
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APPENDIX

Proof: (of proposition 1) Note that

VaRα(X) ≤ X̄ +
1√
α
σ ⇔

Pr

(
X < X̄ +

1√
α
· σ
)
≥ 1− α

which is easily shown using Chebyshev’s inequality

Pr

(
X < X̄ +

1√
α
· σ
)
≥

Pr

(∣∣X − X̄∣∣ < 1√
α
· σ
)

=

1− Pr

(∣∣X − X̄∣∣ ≥ 1√
α
· σ
)
≥ 1− α

Lemma 2. The variance of a random variable X with
compact support [a, b] is bounded by:

Var[X] ≤ (b− a)2

4
Proof: Consider the random variable defined by

Y = X − a+b
2 . By basic probability theory we have

Var[X] = Var[Y ] = E[Y 2]−
(
E[Y ]

)2
≤
(
b− a

2

)2

=
(b− a)2

4

Lemma 3. Let X̂N = 1
N

∑N
i=1Xi be the sampled mean

of the random variable X with N samples. Let X have
compact support on [a, b], then for any given ε > 0, δ >
0

Pr

[∣∣∣X̂N − X̄
∣∣∣ ≥ ε] ≤ δ

for

N ≥

⌈
(b− a)2

4δε2

⌉
Proof: Since the samples are iid, we have

Var[X̂N ] = Var

 1

N

N∑
i=1

Xi

 =
1

N2
Var

 N∑
i=1

Xi


=
Nσ2(X)

N2
≤ (b− a)2

4N



By Chebyshev’s inequality we have

Pr

{∣∣∣X̂N − X̄
∣∣∣ ≥ ε} ≤ Var[X̂N ]

ε2
≤ (b− a)2

4Nε2
≤ δ

Lemma 4. Let σ̂XN
= 1

N

∑N
i=1

(
Xi − X̂N

)2

be the
sampled variance of the random variable X with N
samples. Let X have compact support on [a, b], then for
any given ε > 0, δ > 0

Pr

[∣∣∣σ̂2
XN
− σ2

X

∣∣∣ ≥ ε] ≤ δ
for

N ≥

⌈
(b− a)4

8δε2

⌉
Proof: By [37], the variance of the sampled variance

is given by

Var
[
σ̂2
XN

]
=

2σ4
X

N

By lemma 2, the variance Var[X] = σ2
X is bounded by

σ2
X ≤

(b− a)2

4

Thus, by Chebyshev’s inequality

Pr

[∣∣∣σ̂2
XN
− σ2

X

∣∣∣ ≥ ε] ≤ Var[σ2
XN

]

ε2
≤ (b− a)4

8Nε2
≤ δ

Lemma 5. Given ε > 0, δ > 0, we have for a random
variable X with compact support on [a, b]

Pr
[∣∣σ̂XN

− σX
∣∣ ≥ ε] ≤ δ

for

N ≥

⌈
(b− a)4

8δε4

⌉
Proof: By concavity of

√
·, Chebyshev’s inequality

and lemma 4

Pr
[∣∣σ̂XN

− σX
∣∣ ≥ ε] ≤ Pr

[∣∣∣σ̂2
XN
− σ2

X

∣∣∣ ≥ ε2]
≤

Var[σ2
XN

]

ε4
=

2σ4
XN

Nε4
≤ (b− a)4

8Nε4
≤ δ

Proof: (of proposition 3) The first part follows
directly, since:

σ1,...,k+1 = E
[
(X1 − X̄1) · . . . · (Xk+1 − X̄k+1)

]
=

E [X1 · . . . ·Xk+1]− X̄1 · E [X2 · . . . ·Xk+1] +

. . .+ (−1)k+1 · X̄1 · . . . · X̄k+1

The second part also follows directly by calculation.
Wlog, consider

σ1,...,l = E
[
(X1 − X̄1) · . . . · (Xl − X̄l)

]
=

E [X1 · . . . ·Xl]− X̄1 · E [X2 · . . . ·Xl] +

. . .+ (−1)l · X̄1 · . . . · X̄l

which is constant for all l ≤ k by the assumption that
all other moments E[Xi1 · . . . ·Xil ] are constant.

As for the third part, let k = 1 and consider a network
with 3 power lines. The expected value of the system
load shed is:

c̄ · (Pr[X1 = 1, X2 = 1] + Pr[X1 = 1, X3 = 1] +

Pr[X2 = 1, X3 = 1]− Pr[X1 = 1, X2 = 1, X3 = 1]) =

c̄ · (E[X1X2] + E[X1X3] + Pr[X2X3]− Pr[X1X2X3])

which increases by c̄ ·∆φ as E[X1X2] increases by ∆φ.
One can generalize this and show that for arbitrary k and
network size, the expected system load shed will still be
proportional to c̄ ·E[X1 · . . . ·Xk+1]. By the assumption
that all other moments E[Xi1 · . . . ·Xil ] are constant.

To prove the last claim, we denote ps = Pr[S∗ = c̄],
and pn = 1− ps = Pr[S∗ = 0]. By assumption ps < 1

2 .
For this case, the variance of the load shed is simply:

σS∗ = pn(0− S̄∗)2 + ps(c̄− S̄∗)2 = psc̄
2(1− ps)

The latter expression is increasing since

∂

∂ps
psc̄

2(1− ps) = c̄2(1− 2ps) > 0

for ps < 1
2 . Since 0 < ∂σS∗

∂ps
≤ c̄2, S̄∗ = c̄ps, S̄∗ =

constant+ c̄∆φ and

∆σS∗ =

∫ φ0+∆Φ

φ0

dσS∗

dφ1,...,k+1
dφ1,...,k+1

=

∫ φ0+∆Φ

φ0

∂σS∗

∂ps

∂ps
∂φ1,...,k+1

dφ1,...,k+1

=

∫ φ0+∆Φ

φ0

∂σS∗

∂ps
dφ1,...,k+1

it holds that

∆σS∗ =

∫ φ0+∆Φ

φ0

∂σS∗

∂ps
dφ1,...,k+1 > 0

∆σS∗ =

∫ φ0+∆Φ

φ0

∂σS∗

∂ps
dφ1,...,k+1

≤
∫ φ0+∆Φ

φ0

c̄2 dφ1,...,k+1 = c̄2∆φ
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