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Abstract—We propose a raffle-based scheme for the decon-
gestion of a shared resource. Our scheme builds on ideas from
the economic literature on incentivizing contributions to a public
good. We formulate a game-theoretic model for the decongestion
problem in a setup with a finite number of users, as well as in a
setup with an infinite number of non-atomic users. We analyze
both setups, and show that the former converges toward the
latter when the number of users becomes large. We compare our
results to existing results for the public good provision problem.
Overall, our results establish that raffle-based schemes are useful
in addressing congestion problems.

Index Terms—congestion pricing; raffle-based incentive
schemes; public good; probabilistic pricing; demand management

I. INTRODUCTION

Congestion is becoming increasingly frequent in large in-
frastructures such as the Internet, transportation and power
networks. Congestion occurs when a large number of users
share a common resource, and user demand varies with time.
Environments with frequent congestion include access points
of the Internet (e.g., a base-station of a wireless 3G network
or a DSLAM for wired residential networks) or transportation
network (e.g., the Bay Bridge in California). In these cases,
congestion management becomes necessary when the ineffi-
ciencies increase and result in a substantial decrease of user
utility. In the case of power networks, high peak demand could
cause instability and an increase in the costs of provision.

In all these examples, congestion is driven by incentives
misalignment of individual users relative to social optimum.
Thus, decongestion can be cast as a public good. Indeed, when
a user reduces or moves part of his demand to another time, the
benefits of the reduced congestion are shared by all the users.
With that perspective, ideas from the economic literature on
incentivizing contributions to a public good can be brought to
bear on the decongestion problem.

In this paper, we propose a raffle-based scheme for the
decongestion of a shared resource. We start by formulating
the decongestion problem as a public good provision problem
using a game-theoretic model in a setup with a finite number
of atomic users. Next, we introduce a setup with an infinite
number of non-atomic users, and show that the former con-
verges toward the latter when the number of users goes to
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infinity (in the following, we will simply call these setup the
atomic setup and the non-atomic setup respectively).

Our raffle-based scheme builds on the ideas of Morgan
[1] who pioneered the economic analysis of public good
provision via lotteries. However, the specifics of the conges-
tion management problem require substantial changes from
Morgan’s model [1]. The idea of lotteries have also been
used in other contexts, e.g., for the raffle scheduling technique
applied in computer operating systems [2]. Recent interest
in application of lotteries to congestion management was
facilitated by Mergu, Prabhakar, and Rama who demonstrated
with a field study that lottery-based mechanisms can be used
to decongest transportation systems [3]. In contrast, our focus
is methodological. We approach lotteries as a technical tool of
congestion management. We compare our setup(s) to Morgan’s
scheme of using lotteries for funding public goods.

II. OVERVIEW OF MORGAN’S MODEL

Let N = {1, . . . , n} be a set of users (players). Each user
i ∈ N has a wealth wi, and chooses an amount xi ∈ [0, wi] to
contribute to a public good. With voluntary contributions, the
level of public good G =

∑n
i=1 xi is the sum of contributions,

and the objective of each user i ∈ N is to maximize his utility
Ui = wi + hi(G) − xi, where hi(·) is an increasing strictly
concave function which reflects user i’s valuation of the public
good.

The raffle-based scheme (fixed-price raffle in [1]) gives a
reward R > 0 to one or more users and user’s expected reward
is proportional to his fraction of the total contribution. The
scheme is financed by deducting the reward from the total
contribution. Then each user i ∈ N has expected utility

Ui(xi, x−i) = wi + hi(G)− xi +R · xi∑n
i=1 xi

, (1)

where the level of public good is now G =
∑n
i=1 xi − R,

and x−i denotes the vector of contributions of all users but
i. Finally, Morgan [1] assumes that if the total contribution is
insufficient to cover the prize up to an arbitrarily small amount
δ > 0 (i.e., if

∑n
i=1 xi < R − δ), then the raffle is canceled

and each user’s contribution is returned.
At a Nash equilibrium, each user maximizes his utility (1).

We denote with a superscript (eq) all quantities at Nash
equilibrium. The aggregate welfare W is

W =

n∑
i=1

Ui. (2)



We define social optimum as the point where the aggregate
welfare is maximized. All quantities at social optimum are
denoted with a superscript ∗.

Theorem 1 (Summary of Morgan’s results [1]).

(i) For any R > 0, there exists a unique Nash equilibrium,
whereas for R = 0 (voluntary contributions), there can exist
multiple equilibria, all with the same amount of public good.

(ii) There exists a unique level of public good G∗, which
maximizes the aggregate welfare, and for any R > 0, we have
G(eq)(0) < G(eq)(R) < G∗.

(iii) The equilibrium amount of public good with the raffle-
scheme G(eq)(R) can be made arbitrarily close to the socially
optimal level G∗ by choosing a sufficiently large reward R.

(iv) For any R > 0, G(eq)(R) > 0 if and only if G∗ > 0.

III. DECONGESTION OF A SHARED RESOURCE

To address the problem of decongestion, we first formulate
it as a public good provision problem using a game-theoretic
model in an atomic setup (with a finite number of users) as
in Morgan [1] (Sec. III-A). Then, we propose a non-atomic
setup (Sec. III-A), as it is often done in economics to model
games with a large number of players [4].

A. Atomic setup

Let N = {1, . . . , n} be the set of users. For simplicity,
we assume that each user has identical demand d = D/n
for the shared resource, where D is the total demand. There
are two times of the day: peak and off-peak, and each user
decides how to divide their demand between them. Each user
i ∈ N is endowed with a type θi ∈ Θ that characterizes
the user’s preferences between the two times. Without any
incentive scheme, we assume that the utility of a user i ∈ N
who chooses to put a fraction xi of his demand in the off-peak
time is:

Ui(xi, x−i) = d
[
Pθi (1− xi) +Oθi (xi)− p−

(1− xi) · LP
(
D − d

∑
j

xj
)
− xi · LO

(
d
∑
j

xj
)]
,

where Pθ(·) and Oθ(·) are the utilities that the user gets for his
demand in the peak and off-peak periods respectively, while
LP (·) and LO(·) are the costs of delay in the peak and off-
peak periods respectively. These delay costs are per unit of
demand, hence they are multiplied by the fraction of demand
in each time. The whole expression is scaled by the user’s total
demand d since this form will later be useful for considering
the limit in which each user’s fraction of the total demand
diminishes. The quantity p is a fixed monthly subscription
price and x−i is the vector of choices of all users but i. Finally,
we assume that since there are many more off-peak hours
than peak hours, congestion at off-peak times never becomes
significant. Therefore, LO(·) ≈ 0.

We assume that, in the absence of latency, users always
prefer to use the service at peak-time, i.e., P ′θ(1−x) is larger
than O′θ(x) for all user types θ ∈ Θ and x ∈ [0, 1]. We may

therefore define the notion of the cost of shifting as the loss
of utility that a user of type θ ∈ Θ incurs when shifting a
fraction x of his demand from peak to off-peak time:

cθ(x) = ūθ − (Pθ (1− x) +Oθ (x)) , ∀θ ∈ Θ,

where
ūθ = Pθ(1) +Oθ(0)

is the maximal utility that a user could get without shifting any
of his demand if there was no congestion. We assume that cθ(·)
is increasing and strictly convex (this assumption may also be
derived from the assumption that Pθ(·) and Oθ(·) are strictly
concave). This assumption reflects the fact that for a given xi,
users will shift the most easily shiftable parts of their demand
before shifting demand that is more costly to shift. We also
assume that cθ(·) is twice differentiable, and that it has a slope
that is bounded away from zero by a constant independent of
θ. To simplify the proofs, we also assume that c′θ(·) is bounded
on [0, 1] by a constant independent of θ, but this assumption
can likely be relaxed.

We view each players choice of xi as a contribution to the
public good since it represents demand withheld from the peak
time. Thus we define

G =

n∑
i=1

xid. (3)

We may now recast the utility of each user as

Ui(xi, x−i) = d [ūθi + (1− xi)h(G)− cθi(xi)− p]

where h(G) = −LP (D − G). We assume that LP (·) is
increasing and strictly convex and twice differentiable. This
assumption results in h(·) being increasing strictly concave.

The raffle-based scheme introduces for each user a reward
proportional to his fraction of the total shifted demand dxi/G.
However, it is financed here by charging an extra price ∆p
(per unit of d) to each user. With the raffle-based scheme of
parameter R ≥ 0, the utility of user i ∈ N then becomes

Ui(xi, x−i) = d
[
ūθi + (1− xi)h(G)− cθi(xi)

− p+R · xi
G
−∆p

]
, (4)

where ∆p = R
D , so that

∑n
i=1 d ·

(
R · xiG −∆p

)
= 0. Finally,

we assume that if no user shifted any of his demand, i.e.,
xi = 0 for all i ∈ N (hence G = 0), then the reward is
not given. The raffle-based scheme could be implemented as
a conventional raffle in which the whole prize R is awarded
randomly to one player with a probability proportional to that
player’s contribution to the public good as in [1]. However
the scheme could also be implemented deterministically – i.e.,
each player i could be given a payment or rebate of the amount
R · dxiG .

The marginal utility of user i ∈ N is
∂Ui
∂xi

= d ·
{
− h(G) + (1− xi)dh′(G)− c′θi(xi)

+R · G− xid
G2

}
. (5)



At a Nash equilibrium, each user chooses his contribution xi
to maximize his utility (4). Since utility (4) is strictly concave,
for a vector of contributions x to be a pure Nash equilibrium,
it is necessary and sufficient that is satisfies the first-order
conditions (FOCs)

∂Ui
∂xi

(xi, G)

 ≤ 0, ∀i ∈ N : xi = 0,
= 0, ∀i ∈ N : xi ∈ (0, 1),
≥ 0, ∀i ∈ N : xi = 1,

(6)

and equation (3). In general, a Nash equilibrium does not
coincide with the social optimum in which (2) is maximized.

B. Non-atomic setup
When the number of users is large, the demand d of

each user becomes negligible w.r.t. to the total demand D
and a setup with an infinite number of non-atomic users
becomes more appropriate [4], [5]. We assume here that the
total demand D remains constant and the individual demand
tends to zero. We assume that user types are i.i.d. distributed
according to a measure µ on the set of types. Since the utilities
are strictly concave, two users of the same type have the
same contribution at equilibrium. Therefore, we work with
the distribution of types directly instead of working with the
distribution of users as in [4], [5].

Let (Θ,F , µ) be a measured space; where Θ is the set
of user types, F is a σ−algebra and µ is a finite measure
accounting for the distribution of the user types. We assume
that users have identical demand and that each user of type
θ ∈ Θ chooses a fraction xθ of his demand to contribute to
the public good. This defines a measurable function x : Θ→
[0, 1] on (Θ,F , µ). In this framework, the total demand is
D =

∫
Θ

dµ(θ) and the level of public good is

G =

∫
Θ

xθdµ(θ). (7)

With the raffle-based scheme, a user of type θ ∈ Θ has
utility

uθ(xθ, x−θ) = ūθ + (1− xθ)h(G)− cθ(xθ)− p

+R · xθ
G
−∆p, (8)

which corresponds to utility (4) normalized by the demand d.
Since users are non-atomic, uθ may also be interpreted as a
“density of utility” at type θ ∈ Θ. We still assume that if no
user contributes, then the reward is not given. However, if a set
of users of measure zero contributes, then each contributing
user gets an infinite reward distributed so that the integral with
respect to the measure of users is R.

Marginal utility (5) becomes:
∂uθ
∂xθ

= −h(G)− c′θ(xθ) +
R

G
. (9)

A Nash equilibrium is defined as a function x(eq) such that
for all θ ∈ Θ, uθ(x

(eq)
θ , x

(eq)
−θ ) ≥ uθ(a, x

(eq)
−θ ),∀a ∈ [0, 1]. It is

equivalent to x(eq) satisfying the FOCs

∂uθ
∂xθ

(xθ, G)

 ≤ 0, ∀θ ∈ Θ : xθ = 0,
= 0, ∀θ ∈ Θ : xθ ∈ (0, 1),
≥ 0, ∀θ ∈ Θ : xθ = 1,

(10)

and equation (7). At social optimum, the aggregate welfare

W =

∫
Θ

uθdµ(θ) (11)

is maximized.

IV. ANALYSIS AND CONVERGENCE RESULTS

We first analyze the equilibrium and social optimum in
the non-atomic setup (Sec. IV-A). Then, in Sec. IV-B, we
analyze the equilibrium in the atomic setup and we show that
it converges toward equilibrium of the non-atomic setup when
the number of users tends to infinity.

A. Analysis of the non-atomic setup

Our first result establishes existence and uniqueness of the
Nash equilibrium in the non-atomic setup.

Theorem 2. For any R ≥ 0, there exists a unique Nash
equilibrium x(eq)(R) in the non-atomic setup.

Proof: See Appendix A.
The discontinuity in utilities at points where G = 0

necessitates some special treatment to prove the existence of a
Nash equilibrium. Moreover, the uniqueness property is non-
trivial and is derived from the specifics of our model.

The intuition behind the result of Theorem 2 is as follows.
For a given value of G, each user of type θ ∈ Θ chooses his
best-response contribution x(resp)

θ (G) ∈ [0, 1] to maximize his
utility, i.e., to solve the FOCs (10). Integrating the contribution
of each type gives the aggregate best-response G(resp)(G) =∫

Θ
x(resp)
θ (G)dµ(θ), i.e., the amount of public good that users

want to provide in response to a given G. At an equilibrium,
both quantities are equal, which corresponds to solving the
fixed-point equation

G(resp)(G) = G. (12)

A key feature of our model is that the marginal utilities (9)
are decreasing when G increases. Intuitively, if G is higher,
users are less willing to contribute, both because they want
to enjoy more the resource if it is less congested (the term
−h(G) in (9)) and because the reward per unit of contribution
is lower (the term R

G in (9)). Therefore, the aggregate best
response G(resp)(G) decreases when G increases. It is also a
continuous function of G, due to the strict convexity of the
cost functions. This leads to a unique fixed-point G(eq)(R) for
equation (12), and then to a unique Nash equilibrium x(eq)(R).

Our next result concerns the social optimum.

Theorem 3. There exists a function x∗, uniquely determined
almost-everywhere, maximizing (11).

Moreover, x(eq)(R) = x∗ almost-everywhere, and hence
G(eq)(R) = G∗, for R = R∗ where

R∗ = G∗h′(G∗)(D −G∗). (13)

Proof: See Appendix B.
Intuitively, the result holds because the externality faced by

a user (−h(G) + R
G ) is independent of his type θ. Therefore,

by fixing a reward that is also independent of the type θ, it is



possible to achieve social optimum by making users effectively
pay a Pigovian tax [6]. Then, Theorem 3 shows that by tuning
the reward parameter R, the raffle-based scheme is able to
enforce socially optimal contributions from every users at the
Nash equilibrium.

The next two propositions further characterize the variations
of the Nash equilibrium with the reward parameter R.

Proposition 1. For any R > 0, we have G(eq)(R) > 0.

Proof: If G = 0, each user wants to contribute positively
(the unit reward is infinite), hence it is not an equilibrium.

Note that this result is consistent with Theorem 3: if G∗ = 0,
then the only parameter value that permits to achieve social
optimum at Nash equilibrium is R∗ = 0.

Proposition 2. For any R′ > R, G(eq)(R′) ≥ G(eq)(R); and
the inequality is strict if G(eq)(R) ∈ (0, D).

Proof: See Appendix C.
Proposition 2 finally formalizes the intuition that contribu-

tions increase with the reward R, due to the increase of the
marginal utility.

B. Analysis of the atomic setup and convergence

In the previous section, we established existence and
uniqueness of Nash equilibrium in the non-atomic setup of
the decongestion problem model. We now show that there is
also a unique Nash equilibrium in the atomic setup, which
converges toward the equilibrium of the non-atomic setup.

We start with the existence and uniqueness of the Nash
equilibrium for the atomic setup.

Theorem 4. For any number of users n ≥ 2, any sequence
of types (θi)i∈N and any R ≥ 0, there exists a unique Nash
equilibrium x(eq,n)(R) in the atomic setup.

Proof: See Appendix D.
As for the non-atomic setup, the existence of a Nash

equilibrium cannot be derived from continuity and concavity
conditions (see e.g., [7]) due to the discontinuity at the point
x = (0, · · · , 0) where no user contributes. However, with our
assumptions, as long as n ≥ 2 (at least two users), this point
cannot be a Nash equilibrium. Indeed if no user contributes,
each user has a positive incentive to contribute a small fraction
of his demand so as to get the entire reward R. Then, our proof
goes through the formal steps to show the existence of a unique
Nash equilibrium. The discontinuity at the origin created by
the presence of the sum of contribution at the denominator
also appears in different contexts, e.g., [8], [9], where it is
handled through different means such as the introduction of a
reservation price in [9].

When the number of users is large, it becomes more
appropriate to represent the population as a continuum of non-
atomic users whose types follow distribution µ. To establish
a link between the atomic and non-atomic setups, we assume
that in the atomic setup, users have types that are random
variables distributed according to µ and let the number of users
n go to infinity. Formally, let (Ω,F ′,P) be a probability space.

Let (θi)i≥1 be a sequence of i.i.d. random variables defined
on this probability space, taking values in Θ and distributed
according to the probability measure µ(·)/D. For any integer
n, the atomic setup corresponds to n users whose types are
the first n values of the random sequence (θi)i≥1. Then we
have the following result.

Theorem 5. For any R, as n goes to infinity, we have P-almost
surely:

(i) The equilibrium level of public good in the atomic setup
converges toward the equilibrium level of public good in the
non-atomic setup:

G(eq,n) =
∑
i∈N

x
(eq,n)
i · d P−a.s.−−−−→

n→∞
G(eq);

(ii) The equilibrium contribution of each user in the atomic
setup converges toward the equilibrium contribution of the
corresponding user type in the non-atomic setup:

x
(eq,n)
i

P−a.s.−−−−→
n→∞

x
(eq)
θi

.

Proof: See Appendix E.
Theorem 5 establishes a link between the atomic and non-

atomic setups: as n goes to infinity and the demand of
each user becomes negligible compared to the total demand,
the fraction that user i contributes to the public good at
equilibrium in the atomic setup approaches the equilibrium
contribution of the type θ = θi in the non-atomic setup.
This justifies the use in practical cases of the non-atomic
setup which permits easier analyzes and simulations. Our
convergence result is closely related to the results of Bodoh-
Creed [10] for Bayesian-Nash equilibrium in games with semi-
anonymous utilities (our model is a particular case of such
games). Although it is different in spirit, our result is also
related to [11], [12] in the context of routing games, where
the number of user classes remains fixed and each user is
replaced by a growing number of identical copies.

V. COMPARISON WITH MORGAN’S MODEL

Finally, let us compare our results with Morgan’s results [1].
The heterogeneity in our model is due to cost heterogeneity
(cθi(·)) rather than heterogeneity of user valuation of the
public good (h(·)), as in [1]. Also, our cost of contribution
is strictly convex rather than linear as in [1]. However, the
most important difference is that in our model, user valuation
of the public good (h(·)) is reduced by (1 − xi), reflective
of reduced demand for the resource. Another modification
of [1] is the financing of the incentive scheme. In [1], the
reward is subtracted from the total user contribution, that is
the amount available for public good financing is equal to total
user contribution net of the reward R. In contrast, our raffle-
based scheme is financed by an increase ∆p of the subscription
price.

The result of Theorem 2 partially contrasts with the Mor-
gan’s results ((i) of Theorem 1). In our model, the case
R = 0 leads to a unique equilibrium whereas the case of
voluntary contributions can lead to multiple equilibria in [1].



Indeed, in Morgan’s model, the equilibrium level of public
good could be achievable at multiple combinations of user
contributions (when the sum of user contributions remains
equal to equilibrium level). This multiplicity of equilibria is
driven by the linear cost in [1] and does not occur in our model
due the convexity of the cost of shifting.

The result of Theorem 3 differs from Morgan’s result ((ii)
and (iii) of Theorem 1) in two respects. First, in [1], only
the level of public good is uniquely determined at social
optimum, but it may be induced by multiple combinations
of contributions. This is again due to the linear costs in [1].
Second, the socially optimal level of public good in our model
is exactly achievable, whereas in [1], it can only be achieved
in the limit of infinitely large reward. This difference is driven
by the difference in the scheme’s financing. The difference
between the result of Proposition 1 and Morgan’s result ((iv)
of Theorem 1) is also driven by the difference in the scheme’s
financing.

Proposition 2 implies that our raffle-based scheme can lead
to overprovision of the public good. Indeed, the equilibrium
level of public good exceeds G∗ (hence welfare is suboptimal)
if the reward exceeds R∗. However, in reality, this is unlikely
to occur because the same welfare could always be achieved
with a reward lower than R∗ (and public good level lower than
G∗).

VI. CONCLUDING REMARKS

In this paper, we developed a raffle-based scheme for
congestion management, building on the economic literature
on public good provision by means of lotteries. Our scheme
can be viewed as probabilistic pricing: a user’s reward depends
not only on his contribution but also on the contribution of the
other users. It is implementable via lottery-like mechanism.

The design of our scheme by a provider requires estimations
of the user utilities to set the parameter to its optimal value.
Imperfect information on user utilities may lead to overshoot-
ing of the parameter. However, the effect of this overshooting
will be limited due to the close-loop mechanism inherent in
our raffle-based scheme: the more users contribute, the smaller
the incentive to contribute.

Our analysis is valid only if the price increase required by
our scheme does not affect user participation. This clearly
holds if each user has a sufficiently high utility before the
price increase, so that even with an increased monthly price
all users continue to buy the service. This also holds if we
assume that users are heterogeneous on the timescale of a
day but homogeneous on the timescale of a month; e.g., each
day, users have their types drawn independently according to a
common stationary distribution. Then, for any R for which the
raffle-based scheme is welfare improving (around R∗), each
user utility over the timescale of a month is larger than it was
before the imposition of the scheme.

Our scheme can be applied in various settings for demand
management. An application to decongestion of peak-time in
broadband access networks is proposed in [13]. A similar
scheme could be applied to manage residential demand for

electricity. In that case, privacy and security considerations
make our scheme advantageous relative to real-time pric-
ing. Indeed, our scheme requires no real-time user-dispatcher
communication. In addition, unlike currently suggested real-
time pricing schemes (e.g., [14]), our scheme requires only
aggregate data. Overall, this makes our raffle-based scheme an
attractive tool to improve the allocation of a shared resource.
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APPENDIX A
PROOF OF THEOREM 2

Let R be fixed. For any given demand G ∈ [0, D] shifted
by the population, the best response (solving the FOCs (10))
defines a measurable function x(resp)(G) : Θ→ [0, 1] given for
all θ ∈ Θ by

x(resp)
θ (G)=


0 if R

G − h(G)− c′θ(0) ≤ 0,
1 if R

G − h(G)− c′θ(1) ≥ 0,
(c′θ)

−1
(
R
G − h(G)

)
otherwise.

(14)

Due to the convexity assumption of cθ(·), c′θ(·) is strictly
increasing, hence invertible and with an increasing inverse
function. Therefore, (14) uniquely defines x(resp)(G). Let

G(resp)(G) =

∫
Θ

x(resp)
θ (G)dµ(θ) (15)



be the aggregate best response, i.e., the total demand that
the population wants to shift in response to G. By definition
and by strict concavity of the utility functions, a measurable
function x : Θ → [0, 1] is a Nash equilibrium if and only if
there exists G ∈ [0, D] satisfying the fixed-point equation (12)
such that x = x(resp)(G).

To conclude the proof of Theorem 2, we show that (12)
admits a unique fixed-point.

Lemma 1. There exists a unique solution of (12).

Proof: The r.h.s. of (12) (G) is clearly a strictly increasing
continuous function of G. It goes from 0 to D as G increases
from 0 to D.

For the l.h.s. (G(resp)(G)), first note that it is a continuous
function of G. Indeed, due to the convexity assumption of
cθ(·), (c′θ(·))−1(·) is strictly increasing continuous, hence
x(resp)
θ (G) is continuous in G for all θ ∈ Θ. Moreover, the

function x(resp)(G) : Θ → [0, 1] is dominated by the constant
function equal to 1 (i.e., |x(resp)(G)| ≤ 1) which is integrable
w.r.t. µ. Therefore, for any G ∈ [0, D] and for any sequence
(Gn)n≥0 which converges to G, we have x(resp)(Gn) −−−−→

n→∞
x(resp)(G) pointwise (by continuity of x(resp)

θ (G) w.r.t to G for
all θ ∈ Θ) and by Lebesgue dominated convergence theorem,

lim
n→∞

G(resp)(Gn) = lim
n→∞

∫
Θ

x(resp)
θ (Gn)µ(dθ)

=

∫
Θ

[
lim
n→∞

x(resp)
θ (Gn)

]
µ(dθ)

= G(resp)(G).

Clearly, the l.h.s. (G(resp)(G)) is also a non-increasing func-
tion of G taking values in [0, D]. Therefore, there is a unique
fixed-point of (12).

APPENDIX B
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A. Proof of existence and uniqueness of x∗

Let X be the set of functions x : Θ → R such that∫
Θ
|xθ|µ(dθ) < ∞ and let X0 ⊂ X be the set of functions

x : Θ → [0, 1]. Consider the aggregate welfare (11) as a
functional on X0 taking values in R:

W (x) =

[
h

(∫
Θ

xθµ(dθ)
)]
·
(
D −

∫
Θ

xθµ(dθ)
)

−
∫

Θ

cθ(xθ)µ(dθ) +

∫
Θ

ūθµ(dθ)− pD.

Since X0 is compact and the functional W is continuous,
it has a maximum (see Corollary 38.10 of [15, p. 152]). Let
x∗ ∈ X0 be such that W is maximal and let

G∗ =

∫
Θ

x∗θµ(dθ).

Define the three subsets of Θ: Θ1, Θ2 and Θ3 where x∗ = 0,
x∗ ∈ (0, 1) and x∗ = 1 respectively. We now derive necessary
conditions for x∗ to maximize W in each subset.

We start with the subset Θ2 corresponding to interior points.
Let y ∈ X be such that yθ = 0 for all θ ∈ Θ\Θ2. We define

the directional derivative (also called Gâteaux derivative) of
W around x∗ in the direction y as

dW (x∗, y) = lim
t→0

W (x∗ + ty)−W (x∗)

t
.

Then, we have

dW (x∗, y)=

∫
Θ2

yθ ·[h′(G∗)(D −G∗)−h(G∗)−c′θ(x∗θ)] dµ(θ),

where the exchange between limit and integration in the last
term (giving −yθc′θ(xθ)) is justified by Lebesgue’s dominated
convergence theorem whenever

∫
Θ
|yθ · c′θ(xθ)|µ(dθ) < ∞.

This holds here due to the assumption that cθ(·) has a bounded
slope.
For x∗ to be optimal, it is necessary that dW (x∗, y) = 0, i.e.,∫

Θ2

yθ ·[h′(G∗)(D −G∗)− h(G∗)− c′θ(x∗θ)] dµ(θ) = 0.

For this to hold for any function y such that yθ = 0 for all
θ ∈ Θ\Θ2, it is necessary that we have

h′(G∗)(D −G∗)− h(G∗)− c′θ(x∗θ) = 0, (16)

for almost-all θ ∈ Θ2, i.e., for almost-all θ such that x∗θ ∈
(0, 1).

We now treat the case of subset Θ1, which corresponds to
the points of the lower boundary. Let y ∈ X be such that
yθ ≥ 0 for all θ ∈ Θ1 and yθ = 0 for all θ ∈ Θ\Θ1; that is y
is a direction that “pushes up” the values of x∗ that are at zero.
The directional derivative of W around x∗ in the direction y
is defined similarly to the previous case but with a limit t > 0:

dW (x∗, y) = lim
t→0+

W (x∗ + ty)−W (x∗)

t
,

which gives

dW (x∗, y)=

∫
Θ1

yθ ·[h′(G∗)(D −G∗)−h(G∗)−c′θ(x∗θ)] dµ(θ).

Here, for x∗ to be optimal, it is necessary that dW (x∗, y) ≤ 0,
that is∫

Θ1

yθ ·[h′(G∗)(D −G∗)− h(G∗)− c′θ(x∗θ)] dµ(θ) ≤ 0.

For this to hold for any function y such that yθ ≥ 0 for all
θ ∈ Θ1 and yθ = 0 for all θ ∈ Θ\Θ1, it is necessary that

h′(G∗)(D −G∗)− h(G∗)− c′θ(x∗θ) ≤ 0, (17)

for almost-all θ ∈ Θ1, that is for almost all θ such that x∗θ = 0.
The case of subset Θ3 is handled similarly and yields the

necessary condition:

h′(G∗)(D −G∗)− h(G∗)− c′θ(x∗θ) ≥ 0, (18)

for almost all θ such that x∗θ = 1.
In summary, (16)-(18) show that for function x∗ to max-

imize W , it is necessary that x∗ is solution for almost all
θ ∈ Θ of the FOCs (10) where the unit reward R

G is replaced
by h′(G)(D − G). By the assumption on h(·), this is a
decreasing function of G. Therefore the same proof as for
Theorem 2 applies to show that x∗ is uniquely determined
almost everywhere.



B. Proof of coincidence with Nash equilibrium

From the previous proof (App. B-A), it is clear that if R =
R∗, then the FOCs (10) at a Nash equilibrium coincide with
the optimality condition, which immediately brings the desired
conclusion.

APPENDIX C
PROOF OF PROPOSITION 2

Case 1: If G(eq)(R) = 0, then the result is obvious.
Case 2: If G(eq)(R) = D, then we have R

D − c
′
θ(1) ≥ 0

for almost all θ ∈ Θ, which implies R′

D − c
′
θ(1) ≥ 0. Hence

G(eq)(R′) = D.
Case 3: If G(eq)(R) ∈ (0, D), for a given G, x(resp)(G) of

(14) is non-decreasing when R increases to R′, and strictly
increasing for θ’s s.t. x(resp)(G(eq)(R)) ∈ (0, D). Since the set
of such θ’s is of positive measure, the new fixed-point has
G(eq)(R′) > G(eq)(R).

APPENDIX D
PROOF OF THEOREM 4

A. Existence

For n = 1, a Nash equilibrium may not exist. For example,
if the user’s utility without the raffle-based scheme is decreas-
ing in his contribution, there is no equilibrium. Indeed, if the
user has a positive contribution, he wants to reduce it (and still
get the entire reward); whereas if he has a null contribution
he wants to increase it to get the reward. Note however that
the one-user case is not of interest to us since G is simply the
user’s contribution which is not a public good.

For n ≥ 2, the utility is discontinuous at x = (0, · · · , 0),
so that existence of an equilibrium cannot be derived from a
standard existence theorem based on continuity assumptions
(see e.g., [7]). Clearly, x = (0, · · · , 0) is not a Nash equilib-
rium because any user can improve his utility by removing a
small fraction of his demand. We now show that there exists
a Nash equilibrium where at least one user shifts a positive
fraction of his demand.

Let ε > 0 and consider the convex closed bounded domain
Dε =

{
x ∈ [0, 1]n :

∑
i∈N xi ≥ ε

}
. In Dε, the utility (4) is

continuous in x and concave in xi for each fixed value of x−i.
Then, by Theorem 1 of Rosen [16], there exists an equilibrium
point x(eq,n) ∈ Dε such that for all i ∈ N :

Ui(x
(eq,n)
i , x

(eq,n)
−i ) = max

xi:(xi,x
(eq,n)
−i )∈Dε

Ui(xi, x
(eq,n)
−i ). (19)

If ε is small enough and n ≥ 2, this equilibrium point is not on
the corner of Dε, i.e., G(eq,n) =

∑
i∈N x

(eq,n)
i · d > ε. Indeed,

suppose that we had an equilibrium with G(eq,n) = ε. Then, for
at least one user i ∈ N (e.g., a user such that x(eq,n)

i ≤ ε/2),
the marginal utility of that user

∂Ui
∂xi

= d ·
{
− h(ε) + (1− x(eq,n)

i )dh′(ε)

− c′θi(x
(eq,n)
i ) +R

ε− x(eq,n)
i · d
ε2

}

is positive (for ε small enough); which contradicts the equi-
librium property.

To conclude, we show that an equilibrium x(eq,n) of the
concave n-person game defined by Dε for ε small enough
so that G(eq,n) > ε is also a Nash equilibrium of the
initial game corresponding to the raffle-based scheme (with
strategy space [0, 1] for each user). First for i ∈ N such that∑
j∈N\i x

(eq,n)
j ≥ ε, we have {xi : (xi, x

(eq,n)
−i ) ∈ Dε} = [0, 1]

so that (19) implies

Ui(x
(eq,n)
i , x

(eq,n)
−i ) = max

xi∈[0,1]
Ui(xi, x

(eq,n)
−i ). (20)

Second for i ∈ N such that
∑
j∈N\i x

(eq,n)
j < ε, since

G(eq,n) > ε, x(eq,n)
i is not on the lower boundary of the domain

{xi : (xi, x
(eq,n)
−i ) ∈ Dε}. Therefore, for (19) to be satisfied,

we must have ∂Ui
∂xi

(x
(eq,n)
i , x

(eq,n)
−i ) ≤ 0. Since for x(eq,n)

−i fixed,
Ui(xi, x

(eq,n)
−i ) is a strictly concave function of xi on [0, 1], this

implies that (20) is satisfied. In summary, (20) is satisfied for
all i ∈ N which means that x(eq,n) is a Nash equilibrium.

B. Uniqueness
First recall that, as for the non-atomic setup, for a fixed G,

the best responses are uniquely determined due to the strict
concavity of the the utility (4) in xi.

Contrarily to the non-atomic setup, the marginal utilities
may not be decreasing in G due to the“raffle term” of (5):
RG−xi·d

G2 , which is increasing for G ∈ [xi · d, 2xi · d] and
decreasing for G > 2xi · d. Suppose that two equilibria exist
with contributions x(1) and x(2) levels of public good G1 and
G2. Without loss of generality we assume that G1 < G2 and
we distinguish the two possibles cases (which are exhaustive).

Case 1. Suppose that for all users i ∈ N , x(1)
i ≤

G1

2 .
Then, for all users i ∈ N we have ∂Ui

∂xi
(x

(1)
i , G2) ≤

∂Ui
∂xi

(x
(1)
i , G1), so that at the second equilibrium, we must

have x(2)
i ≤ x

(1)
i for all i ∈ N , hence G2 ≤ G1; which is

a contradiction.
Case 2. Suppose that for one user i ∈ N , x(1)

i > G1

2 .
Then, for all other users k ∈ N\i, we have x(1)

k ≤
G1

2 and
therefore x(2)

k ≤ x
(1)
k . If x(1)

i = 1, then G2 ≤ G1 which is a
contradiction. If x(1)

i < 1, then we have

∂Ui
∂xi

(x
(1)
i , G1) = d·

{
− h(G1) + (1− x(1)

i )h′(G1)

− c′θi(x
(1)
i ) +R

∑
k∈N\i x

(1)
k · d

G2
1

}
≤0,

which implies ∂Ui
∂xi

(x
(1)
i , G2) < ∂Ui

∂xi
(x

(1)
i , G1) ≤ 0. Therefore,

we must have x
(2)
i ≤ x

(1)
i which leads to G2 ≤ G1, a

contradiction.

APPENDIX E
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A. Proof of (i)
For a given G ∈ [0, D], the individual best response for the

non-atomic setup is defined by (14). For the atomic setup with



n players, it is defined by

x
(resp,n)
i (G) =


0, if g(n)

θi,G
(0) ≤ 0,

1, if g(n)
θi,G

(1) ≥ 0,(
g

(n)
θi,G

)−1

(0), otherwise;

where for all θ ∈ Θ, function g(n)
θ,G is defined for all x ∈ [0, 1]

by

g
(n)
θ,G(x) = −h(G) + (1− x)dh′(G)− c′θ(x) +R · G− x · d

G2
.

Note that for all G ∈ [0, D], x(resp,n)
i (G) is well defined

since by our assumptions on h(·) and cθ(·), g(n)
θ,G(·) is strictly

decreasing continuous.
Let G(eq) be the equilibrium level of public good in the non-

atomic setup. Recall that, by Proposition 1, we have G(eq) > 0.
Let η ∈ (0, G(eq)). Recall that d = D/n where D is a
constant. We now provide the proof of Theorem 5 in three
steps. In the first step, we prove the uniform convergence of
the atomic setup’s response function, x(resp,n)

i (·), to the non-
atomic setup’s response function, x(resp)

θi
(·). The second step

establishes the almost sure convergence of the aggregate best
responses G(resp,n)(·) =

∑
i∈N x

(resp,n)
i (·) of the population

of n users sampled from µ/D to the aggregate best response
G(resp)(·). Finally, in the third step, we prove that at equi-
librium, the level of public good for the sampled population,
G(eq,n), almost surely converges to G(eq) as n→∞.

Step 1. First we show that for any integer i, we have
x

(resp,n)
i (·) −−−−→

n→∞
x(resp)
θi

(·), uniformly on [η,D] and uniformly

in θ. From the definition of x(resp,n)
i and x(resp)

θi
, we have, for

all G ∈ [η,D],∣∣∣c′θi (x(resp,n)
i (G)

)
− c′θi

(
x(resp)
θi

(G)
)∣∣∣

≤

∣∣∣∣∣(1− x(resp,n)
i (G)

)
· h′(G)−R · x

(resp,n)
i (G)

G2

∣∣∣∣∣ · Dn ,
≤
∣∣∣∣h′(η) +

R

η2

∣∣∣∣ · Dn .
Due to strict convexity, c′θ(·) is invertible and due to the
assumption that cθ(·) has a slope bounded away from 0,
(c′θ)

−1
(·) is Lipschitz continuous with a factor independent

of θ. We conclude that for all G ∈ [η,D] and all type θi ∈ Θ,

∣∣∣x(resp,n)
i (G)− x(resp)

θi
(G)
∣∣∣ ≤ K · 1

n
, (21)

where K is a constant independent of G and θi.
Step 2. Next, we show that G(resp,n)(·) a.s.−−−−→

n→∞
G(resp)(·), uni-

formly on [η,D].

For all G ∈ [η,D], we have∣∣∣G(resp,n)(G)−G(resp)(G)
∣∣∣

≤D
n
·

∣∣∣∣∣∑
i∈N

(
x

(resp,n)
i (G)− x(resp)

θi
(G)
)∣∣∣∣∣

+
D

n
·

∣∣∣∣∣∑
i∈N

(
x(resp)
θi

(G)− E µ
D
x(resp)
θ (G)

)∣∣∣∣∣ . (22)

From (21), it is clear that the first part converges to-
wards zero, uniformly (in G) on [η,D]. For the second
part, consider the set of functions FU = {f : Θ →
[0, 1] s. t. f(·) = x(resp)

· (G) for some G ∈ [η,D]}. By appli-
cation of a Glivenko-Cantelli theorem (e.g., Theorem 1 in [17,
p. 837] whose conditions can be verified with the result (21)
of step 1), we obtain

sup
f∈FU

∣∣∣∣∣ 1n∑
i∈N

f(θi)− E µ
D
f(θ)

∣∣∣∣∣ a.s.−−−−→
n→∞

0.

This exactly means that the second part of (22) converges
almost surely towards zero, uniformly (in G) on [η,D].

Step 3. We finally show that G(eq,n) a.s.−−−−→
n→∞

G(eq).

We work on a set of P-measure 1 where G(resp,n)(·)
converges uniformly towards G(resp)(·) on [η,D] (see step
2). Recall that by Theorems 2 and 4, G(eq,n) and G(eq) are
uniquely determined if n ≥ 2. The uniform convergence
property implies that∣∣∣G(resp,n)(G(eq,n))−G(resp)(G(eq,n))

∣∣∣
+
∣∣∣G(resp,n)(G(eq))−G(resp)(G(eq))

∣∣∣ −−−−→
n→∞

0,

that is, by definition of G(eq,n) and G(eq),∣∣∣G(resp)(G(eq,n))−G(eq,n)
∣∣∣

+
∣∣∣G(resp,n)(G(eq))−G(eq)

∣∣∣ −−−−→
n→∞

0. (23)

Let φ : [η,D]→ R be the strictly decreasing function such
that for all G ∈ [η,D], φ(G) = G(resp)(G) − G. Suppose
that G(eq,n) does not converge toward G(eq). Then there exists
ε > 0 and subsequence {nj} such that

∣∣G(eq,nj) −G(eq)
∣∣ ≥

ε ∀j. Therefore,
∣∣φ(G(eq,nj))

∣∣ ≥ δ > 0 where δ =
min

{
φ
(
G(eq) + ε

)
, φ
(
G(eq) − ε

)}
if G(eq) ≤ D − ε and

δ = φ(D− ε) if G(eq) > D− ε. Hence, there exists ε > 0 and
subsequence {nj} such that

∣∣G(resp)(G(eq,nj))−G(eq,nj)
∣∣ ≥

δ > 0 ∀j which contradicts (23).

B. Proof of (ii)

We have∣∣∣x(eq,n)
i − x(eq)

θi

∣∣∣ ≤ ∣∣∣x(resp,n)
i (G(eq,n))− x(resp)

θi
(G(eq,n))

∣∣∣
+
∣∣∣x(resp)
θi

(G(eq,n))− x(resp)
θi

(G(eq))
∣∣∣ .

From (21), the first part goes to zero and from step 3 and the
continuity of x(resp)

θi
, the second part goes to zero.


