
International Journal of Computer Vision manuscript No.
(will be inserted by the editor)

Segmentation of Natural Images by Texture and Boundary
Compression

Hossein Mobahi · Shankar R. Rao ·
Allen Y. Yang · Shankar S. Sastry · Yi Ma

the date of receipt and acceptance should be inserted later

Abstract We present a novel algorithm for segmentation of natural images that har-

nesses the principle of minimum description length (MDL). Our method is based on

observations that a homogeneously textured region of a natural image can be well

modeled by a Gaussian distribution and the region boundary can be effectively coded

by an adaptive chain code. The optimal segmentation of an image is the one that gives

the shortest coding length for encoding all textures and boundaries in the image, and

is obtained via an agglomerative clustering process applied to a hierarchy of decreasing

window sizes as multi-scale texture features. The optimal segmentation also provides

an accurate estimate of the overall coding length and hence the true entropy of the

image. We test our algorithm on the publicly available Berkeley Segmentation Dataset.

It achieves state-of-the-art segmentation results compared to other existing methods.

Research was supported in part by NSF IIS 07-03756, ONR N00014-09-1-0230, ARO MURI
W911NF-06-1-0076, and ARL MAST-CTA W911NF-08-2-0004. Hossein Mobahi was sup-
ported by Computational Science & Engineering (CSE) Ph.D fellowship of University of Illinois
at Urbana Champaign. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory, U.S. Government, or the CSE program. The U.S.
Government is authorized to reproduce and distribute for Government purposes notwithstand-
ing any copyright notation hereon.

H. Mobahi and Y. Ma
Coordinated Science Lab, University of Illinois, Urbana, IL 61801, USA.
E-mail: {hmobahi2,yima}@illinois.edu

S. Rao
HRL Laboratories, LLC, Malibu, CA 90265, USA.
E-mail: srrao@hrl.com

A. Yang and S. Sastry
Cory Hall, Department of EECS, University of California, Berkeley, CA 94720, USA.
E-mail: {yang,sastry}@eecs.berkeley.edu

Y. Ma
Visual Computing Group, Microsoft Research Asia, Beijing, China.



2

1 Introduction

The task of partitioning a natural image into regions with homogeneous texture, com-

monly referred to as image segmentation, is widely accepted as a crucial function for

high-level image understanding, significantly reducing the complexity of content analy-

sis of images. Image segmentation and its higher-level applications are largely designed

to emulate functionalities of human visual perception (e.g., in object recognition and

scene understanding). Dominant criteria for measuring segmentation performance are

based on qualitative and quantitative comparisons with human segmentation results.

In the literature, investigators have explored several important models and principles

that can lead to good image segmentation:

1. Different texture regions of a natural image admit a mixture model. For example,

Multiscale Normalized Cuts (MNC) by Cour et al. (2005), F&H by Felzenszwalb

& Huttenlocher (2004), Normalized Tree Partitioning by Wang et al. (2008), and

Multi-Layer Spectral Segmentation by Kim et al. (2010) formulate the segmentation

as a graph-cut problem, while Mean Shift (MS) by Comanicu & Meer (2002) seeks

a partition of a color image based on different modes within the estimated empirical

distribution.

2. Region contours/edges convey important information about the saliency of the ob-

jects in the image and their shapes (see Elder & Zucker (1996); Gevers & Smeulders

(1997); Arbelaez (2006); Zhu et al. (2007); Ren et al. (2008)). Several recent meth-

ods have been proposed to combine the cues of homogeneous color and texture with

the cue of contours in the segmentation process, including Malik et al. (2001); Tu

& Zhu (2002); Kim et al. (2005).

3. The properties of local features (including texture and edges) usually do not share

the same level of homogeneity at the same spatial scale. Thus, salient image regions

can only be extracted from a hierarchy of image features under multiple scales (see

Yu (2005); Ren et al. (2005); Yang et al. (2008); Donoser et al. (2009)).

Despite much work in this area, good image segmentation remains elusive to obtain

for practitioners, mainly for the following two reasons: First, there is little consensus

on what criteria should be used to evaluate the quality of image segmentations. It is

difficult to strike a good balance between objective measures that depend solely on

the intrinsic statistics of imagery data and subjective measures that try to empirically

mimic human perception. Second, in the search for objective measures, there has been

a lack of consensus on good models for a unified representation of image segments

including both their textures and contours.

Recently, an objective metric based on the notion of lossy minimum description

length (MDL) has been proposed for evaluating clustering of general mixed data (Ma

et al. (2007)). The basic idea is that, given a potentially mixed data set, the “optimal

segmentation” is the one that, over all possible segmentations, minimizes the coding

length of the data, subject to a given quantization error. For data drawn from a mixture

of Gaussians, the optimal segmentation can often be found efficiently using an agglom-

erative clustering approach. The MDL principle and the new clustering method have

later been applied to the segmentation of natural images, known as compression-based

texture merging (CTM) (Yang et al. (2008)). This approach has proven to be highly

effective for imitating human segmentation of natural images. Preliminary success of

this approach leads to the following important question: To what extent is segmentation

obtained by image compression consistent with human perception?



3

The CTM algorithm also has its drawbacks. In particular, although the CTM

method utilizes the idea of data compression, it does not exactly seek to compress

the image per se. First, it “compresses” feature vectors or windows extracted around

all pixels by grouping them into clusters as a mixture of Gaussian models. As a result,

the final coding length is highly redundant due to overlapping between windows of ad-

jacent pixels, and has no direct relation to the true entropy of the image. Second, the

segmentation result encodes the membership of pixels using a Huffman code, which

does not take into account the smoothness of boundaries nor the spatial relationship

of adjacent pixels that are more likely belong to one texture region. Thus, CTM does

not give a good estimate of the true entropy of the image, and it cannot be used to

justify a strong connection between image segmentation and image compression.

1.1 Contributions

In this paper, we contend that, much better segmentation results can be obtained if we

more closely adhere to the principle of image compression, by correctly counting only

the necessary bits needed to encode a natural image for both the texture and bound-

aries. The proposed algorithm precisely estimates the coding length needed to encode

the texture of each region based on the rate distortion of its probabilistic distribution

and the number of non-overlapping interior windows. In order to adapt to different

scales and shapes of texture regions in an image, a hierarchy of multiple window sizes

is incorporated in the segmentation process. The algorithm further encodes the bound-

ary information of each homogeneous texture region by carefully counting the number

of bits needed to encode the boundary with an adaptive chain code.

Based on the MDL principle, the optimal segmentation of an image is defined as

the one that minimizes its total coding length, in this case a close approximation to

the true entropy of the image. With any fixed quantization, the final coding length

gives a purely objective measure for how good the segmentation is in terms of the level

of image compression. Finally, we propose a simple yet effective regression method to

adaptively select a proper quantization level for each individual image to achieve the

optimal segmentation result.

We conduct extensive experiments to compare the results with human segmenta-

tion using the Berkeley Segmentation Dataset (BSD) (Martin et al. (2001)). Although

our method is conceptually simple and the measure used is purely objective, the seg-

mentation results match extremely well with those by humans, exceeding or competing

with the best segmentation algorithms.

2 Coding Length Functions for Texture and Boundary

2.1 Construction of Texture Features

We first discuss how to construct texture vectors that represent homogeneous textures

in image segments. In order to capture the variation of a local texton, one can directly

apply a w×w cut-off window around a pixel across the three color channels, and stack

the color values inside the window in a vector form as in Yang et al. (2008). 1

1 Another popular approach for constructing texture vectors is to use multivariate responses
of a fixed 2-D texture filter bank. A previous study by Varma & Zisserman (2003) has argued



4

Fig. 1 Texture features are constructed by stacking the w×w windows around all pixels of a
color image I into a data matrix X and then projected to a low-dimensional space via principal
component analysis (PCA).

Figure 1 illustrates the process of constructing texture features. Let the w-neighborhood

Ww(p) be the set of all pixels in a w × w window across three color channels (e.g.,

RGB or L∗a∗b∗) centered at pixel p. Define the set of features X by taking the w-

neighborhood around each pixel in I, and then stacking the window as a column vector:

X
.
= {xp ∈ R3w2

: xp =Ww(p)S for p ∈ I}. (1)

For ease of computation, we further reduce the dimensionality of these features by

projecting the set of all features X onto their first D principal components. We denote

the set of features with reduced dimensionality as X̂. We have observed that for many

natural images, the first eight principal components of X contain over 99% of the

energy. In this paper, we choose to assign D = 8.

Over the years, there have been many proposed methods to model the representa-

tion of image textures in natural images. One model that has been shown to be suc-

cessful in encoding textures both empirically and theoretically is the Gaussian Mesh

Markov Model (MMM) (Levina & Bickel, 2006). Particularly in texture synthesis, the

Gaussian MMM can provide consistent estimates of the joint distribution of the pixels

in a window, which then can be used to fill in missing texture patches via a simple

nonparametric scheme (Efros & Leung, 1999).

However, to determine the optimal compression rate for samples from a distri-

bution, one must know the rate-distortion function of that distribution (Yang et al.,

2008). Unfortunately, to our knowledge, the rate-distortion function for MMMs is not

known in closed form and difficult to estimate empirically. Over all distributions with

the same variance, it is known that the Gaussian distribution has the highest rate-

distortion, and is in this sense the worst case distribution for compression. Thus by

using the rate-distortion for a Gaussian distribution, we obtain an upper bound for the

true coding length of the MMM.

2.2 Texture Encoding

To describe encoding texture vectors, we first consider a single region R with N pixels.

Based on Yang et al. (2008), for a fixed quantization error ε, the expected number of

bits needed to code the set of N feature windows X̂ up to distortion ε2 is given by:

Lε(X̂)
.
= D

2 log2 det(I + D
ε2Σ)| {z }

codebook

+ N
2 log2 det(I + D

ε2Σ)| {z }
data

+ D
2 log2(1 +

‖µ‖2
ε2 )| {z }

mean

, (2)

that the difference in segmentation results between the two approaches is small, and yet it is
more expensive to compute 2-D filter bank responses.



5

where µ and Σ are the mean and covariance of the vectors in X̂. Equation (2) is the

sum of three coding-lengths for the D Gaussian principal vectors as the codebook, the

N vectors w.r.t. that codebook, and the mean of the Gaussian distribution.

The coding length function (2) is uniquely determined by the mean and covariance

(µ, Σ). To estimate them empirically, we need to exclude the windows that cross the

boundary of R (as shown in Figure 2(a)). Such windows contain textures from the

adjacent regions, which cannot be well modeled by a single Gaussian as the interior

windows. Hence, the empirical mean µ̂w and covariance Σ̂w of R are only estimated

from the interior of R:

Iw(R)
.
= {p ∈ R : ∀q ∈ Ww(p), q ∈ R}. (3)

�(µ̂ w, Σ̂ w)

w×w

RI

(a)

w×w

R
I

(b)

Fig. 2 (a) Only windows from the interior of a region are used to compute the empirical

mean µ̂w and covariance Σ̂w. (b) Only nonoverlapping windows that can tile R as a grid are
encoded.

Furthermore, in (2), encoding all texture vectors in X̂ to represent region R is

highly redundant because the N windows overlap with each other. Thus, to obtain an

efficient code of R that closely approximates its true entropy, we only need to code the

nonoverlapping windows that can tile R as a grid, as in Figure 2 (b).

Ideally, if R is a rectangular region of size mw × nw, where m and n are positive

integers, then clearly we can tile R with exactly mn = N
w2 windows. So for coding the

region R, (2) becomes:

Lw,ε(R)
.
= (D

2 + N
2w2 ) log2 det(I + D

ε2 Σ̂w) + D
2 log2(1 +

‖µ̂w‖
2

ε2 ). (4)

Real regions in natural images normally do not have such nice rectangular shapes.

However, (4) remains a good approximation to the actual coding length of a region R

with relatively smooth boundaries.2

2.3 Boundary Encoding

To code windows from multiple regions in an image, one must know to which region

each window belongs, so that each window can be decoded w.r.t. the correct code-

book. For generic samples from multiple classes, one can estimate the distribution of

2 For a large region with a sufficiently smooth boundary, the number of boundary-crossing
windows is significantly smaller than the number of those in the interior. For boundary-crossing
windows, their average coding length is roughly proportional to the number of pixels inside
the region if the Gaussian distribution is sufficiently isotropic.



6

3 2 1
↖↑↗

4←•→ 0
↙↓↘

5 6 7

Fig. 3 Left: The Freeman chain code of an edge orientation along 8 possible directions.
Middle: Representation of the boundary of a region in an image w.r.t. the Freeman chain
code. Right: Representation w.r.t the difference chain code.

each class label and then code the membership of the samples using a scheme that is

asymptotically optimal for that class distribution (such as the Huffman code used in

Yang et al. (2008)). Such coding schemes are highly inefficient for natural image seg-

mentation, as they do not leverage the spatial correlation of pixels in the same region.

In fact, for our application, pixels from the same region form a connected component.

Thus, the most efficient way of coding group membership for regions in images is to

code the boundary of the region containing the pixels.

A well-known scheme for representing boundaries of image regions is the Freeman

chain code. In this coding scheme, the orientation of an edge element is quantized along

8 discrete directions, shown in Figure 3. Let {ot}Tt=1 denote the orientations of the T

boundary pixels of R. Since each chain code can be encoded using three bits, the coding

length of the boundary of R is

B(R) = 3

7X
i=0

#(ot = i). (5)

The coding length B(R) can be further improved by using an adaptive Huffman

code that leverages the prior distribution of the chain codes. Though the distribu-

tion of the chain codes is essentially uniform in most images, for regions with smooth

boundaries, we expect that the orientations of consecutive edges are similar, and so

consecutive chain codes will not differ by much. Given an initial orientation (expressed

in chain code) ot, the difference chain code of the following orientation ot+1 is ∆ot
.
=

mod (ot− ot+1, 8). Figure 3 compares the original Freeman chain code with the differ-

ence chain code for representing the boundary of a region. Notice for this region, the

difference encoding uses only half of the possible codes, with most being zeroes, while

the Freeman encoding uses all eight chain codes. Given the prior distribution P [∆o] of

difference chain codes, B(R) can be encoded more efficiently using a lossless Huffman

coding scheme:

B(R) = −
7X

i=0

#(∆ot = i) log2(P [∆o = i]). (6)

For natural images, we estimate P [∆o] using images from the BSD that were manually

segmented by humans. We compare our distribution with the one estimated by Liu &

Zalik (2005), which used 1000 images of curves, contour patterns, and shapes obtained

from the web. As the results in Table 1 show, the regions of natural images tend to

have more smooth boundaries when segmented by humans.



7

Table 1 The prior probability of the difference chain codes estimated from the BSD and by
Liu & Zalik (2005).

Difference Code 0 1 2 3 4 5 6 7
Angle change 0◦ 45◦ 90◦ 135◦ 180◦ −135◦ −90◦ −45◦

Probability (BSD) 0.585 0.190 0.020 0.000 0.002 0.003 0.031 0.169
Probability (Liu-Zalik) 0.453 0.244 0.022 0.006 0.003 0.006 0.022 0.244

3 Image Segmentation Algorithm

In this section, we discuss how to use the coding length functions to construct a better

compression-based image segmentation algorithm. We first describe a basic approach.

Then we propose a hierarchical scheme to deal with small regions using multi-scale

texture windows. Finally, we investigate a simple yet effective regression scheme to

adaptively choose a proper distortion parameter ε based on a set of manually labeled

segmentation examples.

3.1 Minimization of the Total Coding Length Function

Suppose an image I can be segmented into non-overlapping regions

R = {R1, . . . , Rk}, ∪k
i=1Ri = I. The total coding length of the image I is

LS
w,ε(R)

.
=

kX
i=1

Lw,ε(Ri) + 1
2B(Ri). (7)

Here, the boundary term is scaled by a half because we only need to represent the

boundary between any two regions once. The optimal segmentation of I is the one that

minimizes (7). Finding this optimal segmentation is, in general, a combinatorial task,

but we can often do so using an agglomerative approximation.

To initialize the optimization process, one can assume each image pixel (and its

windowed texture vector) belongs to an individual group of its own. However, this

presents a problem that the maximal size of the texture window can only be one

without intersecting with other adjacent regions (i.e., other neighboring pixels). In

our implementation, similar to Yang et al. (2008), we utilize an oversegmentation step

to initialize the optimization by superpixels. A superpixel is a small region in the

image that does not contain strong edges in its interior. Superpixels provide a coarser

quantization of an image than the underlying pixels, while respecting strong edges

between the adjacent homogeneous regions. There are several methods that can be used

to obtain a superpixel initialization, including those of Mori et al. (2004), Felzenszwalb

& Huttenlocher (2004), and Ren et al. (2005). We have found that Mori et al. (2004)3

works well for our purposes.
Given an oversegmentation of the image, at each iteration, we find the pair of

regions Ri and Rj that will maximally decrease (7) if merged:

(R∗i , R
∗
j ) = argmax

Ri,Rj∈R
∆Lw,ε(Ri, Rj), where

3 We use the publicly available code for this method available at http://www.cs.sfu.ca/

~mori/research/superpixels/ with parameter N sp = 200.



8

∆Lw,ε(Ri, Rj)
.
= LS

w,ε(R)− LS
w,ε((R\{Ri, Rj}) ∪ {Ri ∪Rj})

= Lw,ε(Ri) + Lw,ε(Rj)− Lw,ε(Ri ∪Rj)

+ 1
2

(B(Ri) +B(Rj)−B(Ri ∪Rj)). (8)

∆Lw,ε(Ri, Rj) essentially captures the difference in the lossy coding lengths of the

texture regions Ri and Rj and their boundaries before and after the merging. If

∆L(R∗i , R
∗
j ) > 0, we merge R∗i and R∗j into one region, and repeat the process un-

til the coding length LS
w,ε(R) can not be further reduced.

To model the spatial locality of textures, we further construct a region adjacency

graph (RAG): G = (V, E). Each vertex vi ∈ V corresponds to region Ri ∈ R, and an

edge eij ∈ E indicates that regions Ri and Rj are adjacent in the image. To perform

image segmentation, we simply apply a constrained version of the above agglomera-

tive procedure – only merging regions that are adjacent in the image. The proposed

region-merging method has been widely used by other image segmentation algorithms

(Haralick & Shapiro (1985); Tremeau & Borel (1997); Deng & Manjunath (2001)).

In terms of the computational complexity, one can show that the agglomerative

clustering process that iteratively minimizes (7) is a polynomial time algorithm. More

specifically, let w be the window size, n be the image size, and k be the number of initial

superpixel segments. One can show that the computational complexity of agglomerative

clustering is bounded by O(kw6 + n2w2). Also note that the complexity bound has

ignored the cost to sort and maintain the ordering of the coding length difference (8),

as the algorithm can use a heap structure to efficiently implement the sorting and

re-sorting algorithms (Kurita (1995)).

3.2 Hierarchical Implementation

The above region-merging scheme is based on the assumption of a fixed texture window

size, and clearly cannot effectively deal with regions or superpixels that are very small.

In such cases, the majority of the texture windows will intersect with the boundary of

the regions. We say that a region R is degenerate w.r.t. window size w if Iw(R) = ∅. For

such regions, the w-neighborhoods of all pixels will contain pixels from other regions,

and so µ̂ and Σ̂ cannot be reliably estimated. These regions are degenerate precisely

because of the window size; for any w-degenerate region R, there is 1 ≤ w′ < w such

that Iw′(R) 6= ∅. We say that R is marginally nondegenerate w.r.t. window size w if

Iw(R) 6= ∅ and Iw+2(R) = ∅. To deal with these degenerate regions, we propose to

use a hierarchy of window sizes. Starting from the largest window size, we recursively

apply the above scheme with ever smaller window sizes till all degenerate regions have

been merged with their adjacent ones. In this paper, we start from 7 × 7 and reduce

to 5 × 5, 3 × 3, and 1 × 1. Please refer to Figure 4 for an example of our hierarchical

scheme.

Notice that at a fixed window size, the region-merging process is similar to the

CTM approach proposed in Yang et al. (2008). Nevertheless, the new coding length

function and the hierarchical implementation give much more accurate approximation

to the true image entropy and hence lead to much better segmentation results. We

summarize the overall algorithm for image segmentation in Algorithm 1, which we

refer to as Texture and Boundary Encoding-based Segmentation (TBES).



9

I

w×w

1 2

5

3
4

(a) Initial regions

I 1 2

5

34

(b) Stage 1

I 1 2

5

34

(c) Stage 2

I 1 2

5

34

(d) Stage 3

Fig. 4 An example of our scheme for hierarchical image segmentation (a) Initial set of regions.
Note that regions 3 and 4 are degenerate w.r.t. the window size w. (b) In the first stage,
only nondegenerate regions 1, 2, and 5 are considered for merging. (c) In the next stage, w
is reduced, causing region 4 to be marginally nondegenerate. We consider merging region 4
with it’s nondegenerate neighbors. (d) ln the last stage, w is reduced enough so that region
3 becomes nondegenerate. These stages are repeated until the overall coding length can no
longer be reduced.

3.3 Choosing the Distortion Level

Algorithm 1 requires a single parameter, the distortion level ε, that determines the

coarseness of the segmentation. The optimality of ε is measured by the segmentation

that best matches with human perception. As shown in Figure 5, since natural images

have different scales of resolution, no single choice of ε is optimal for all images. In

this section, we propose a solution to adaptively select a proper distortion parameter

such that the segmentation result better approximates human perception. The method

assumes that a set of training images I = {I1, · · · , IK} have been manually segmented

by human users as the ground truth set Sg = {Rg(I1), · · · ,Rg(IK)}.
To objectively quantify how well a given segmentation matches with human per-

ception, we first need a measure for the discrepancy between two segmentations R1

and R2, denoted as d(R1,R2). Intuitively, the discrepancy measure should be small

when R1 and R2 are similar in some specific sense.4 Given a measure d, the best ε for

Ii, denoted by ε∗i , can be obtained by:

ε∗i = arg min
ε
d(Rε(Ii),Rg(Ii)), for each Ii ∈ I. (9)

An example of the relationship between ε and a discrepancy measure d is shown in

Figure 6.

As ground truth segmentations are not available for non-training images, we shall

use the training images Sg = {Rg(Ii)} to infer ε for a test image. A classical technique

4 We will discuss several discrepancy measures in Section 4.2, such as the probabilistic Rand
index (PRI) and variation of information (VOI).



10

Algorithm 1 Texture and Boundary Encoding-based Segmentation (TBES)

Given image I, distortion ε, max window size wM , superpixels R =
{R1, . . . , Rk},
1: for w = 1 : 2 : wM do
2: Construct X̂w by stacking the w×w windows around each p ∈ I as column vectors and

applying PCA.
3: Construct RAG G = (V, E), where V ' R and eij ∈ E only if Ri and Rj are adjacent in I.
4: w = wM

5: repeat
6: if w = wM then
7: Find Ri and Rj such that eij ∈ E, Iw(Ri) 6= ∅, Iw(Rj) 6= ∅, and ∆Lw,ε(Ri, Rj) is

maximal.
8: else
9: Find Ri and Rj such that eij ∈ E, Iw(Ri) 6= ∅, Iw(Rj) 6= ∅ , Iw+2(Ri) = ∅ or

Iw+2(Rj) = ∅ and ∆Lw,ε(Ri, Rj) is maximal.
10: if ∆Lw,ε(Ri, Rj) > 0 then
11: R := (R \ {Ri, Rj}) ∪ {Ri ∪Rj}.
12: Update G based on the newly merged region.
13: w = wM

14: else if w 6= 1 then
15: w = w − 2
16: until IwM (R) 6= ∅, ∀R ∈ R and ∆LwM ,ε(Ri, Rj) ≤ 0, ∀Ri, Rj ∈ R
17: Output: The set of regions R.

(a) Original images.

(b) Segmentation results with distortion (ε = 25)

(c) Segmentation results with distortion (ε = 400)

Fig. 5 A comparison of segmentation results w.r.t. different distortion levels. The low distor-
tion generates better segmentations for the left two images, while the high distortion generates
better results for the right two images.

for estimating a continuous parameter, such as ε, from training data is linear regression

(Duda et al. (2001)). The method requires a pair (εi,f i) per training image Ii, where

εi is the “optimal” distortion for image Ii and f i is a set of features extracted from Ii.

Then the regression parameters w can be estimated by solving the following objective

function:

w∗ = argmin
w

X
i

(wTf i − ε
∗
i )2. (10)



11

(a) Input Image (b) Distortion vs Discrepancy of Segmentation

Fig. 6 The effect of distortion ε on the discrepancy d(Rε(Ii),Rg(Ii)) on an example image.
The discrepancy shown in the plot is the probability that an arbitrary pair of pixels do not
have consistent labels in Rε(Ii) and Rg(Ii), namely, PRIC (please refer to Section 4.2).

The distortion level ε w.r.t. a new test image I with its feature vector f is given by

ε(f)
.
= w∗Tf .

The features f i in (10) should be chosen to effectively model the statistics of the

image, so that the relationship between ε and f i is well approximated by the linear

function εi ≈ wTf i. A simple idea to define f i could consider how contrastive the

regions in Ii are. Intuitively, when the textures in Ii are similar, such as in camouflage

images, stronger sensitivity to contrast in patterns is required. Since computing the

standard deviation of pixel intensities gives a measure of pattern contrast, we resize

each Ii with multiple scales, and define the features f i as the standard deviations of

the pixel intensities at the multiple image resolutions.

Another issue in linear regression is that the classical model (10) is insufficient to

accurately predict the distortion level for Algorithm 1. In particular, the discrepancy

measure d is only used to determine the optimal ε∗ for a training image. Segmentation

results for other choices of ε are not used in the regression. However, it is possible to

better estimate the distortion ε by taking into account the segmentation results around

a neighborhood of the optimal distortion ε∗ in the training set.

For agglomerative image segmentation, the discrepancy measures that we use in

this paper exhibit a simple behavior. Specifically, as ε deviates from ε∗ in either direc-

tion, the discrepancy between the segmentation and the ground truth almost increases

monotonically. This is because as ε deviates from ε∗, it leads to over-segmentation or

under-segmentation, both of which have larger discrepancies from the ground truth (see

Figure 6). Motivated by this observation, we approximate the discrepancy function d

by a convex quadratic form:

d(Rε(Ii),Rg(Ii)) ≈ aiε
2 + biε+ ci, where ai > 0. (11)

The parameters (ai, bi, ci) are then estimated by least squares fitting w.r.t. the pairs

(di, ε). The latter is attained by sampling the function d(Sε(Ii), Sg(Ii)) at different ε’s.



12

Once we substitute (11) in (9) in combination with the linear model ε = wTf i,

the objective function to recover the linear regression parameter w∗ is given by

w∗ = argmin
w

X
i

ai(w
T fi)

2 + bi(w
T fi) + ci. (12)

Since ai > 0 for all training images Ik, (12) is an unconstrained convex program. Thus

it has a closed-form solution:

w∗ = −1

2
(
X

i

aif if
T
i )−1(

X
i

bif i). (13)

Once w∗ is learned from the training data, the optimal distortion of the test image

I with its feature vector f is predicted by ε(f) = w∗Tf . We caution that, based on

w∗, the prediction of the distortion parameter ε(f i) for each training image Ii may

not necessarily be the same as ε∗i selected from the ground truth Sg(Ii). Nevertheless,

the proposed solution ensures that the linear model minimizes the average discrepancy

over the training data.

4 Experiments

In this section, we conduct extensive evaluation to validate the performance of the

TBES algorithm. The experiment is based on the publicly available Berkeley Segmen-

tation Dataset (BSD) (Martin et al. (2001)). BSD is comprised of 300 natural images,

which covers a variety of natural scene categories, such as portraits, animals, landscape,

and beaches. The database is partitioned into a training set of 200 images and a testing

set of 100 images. It also provides ground-truth segmentation results of all the images

obtained by several human subjects. On average, five segmentation maps are available

per image. Multiple ground truth allows us to investigate how human subjects agree

with each other. The average run time of our implementation in MATLAB for seg-

menting an image in BSD is 164.59 s for feature construction, 0.49 s for vicinity map

construction, and 412.51 s for segmentation. The numbers were obtained on a 3Ghz

Intel processor with 1GB of RAM.

The implementation of the TBES algorithm and the benchmark scripts are available

online at: http://perception.csl.illinois.edu/coding/image_segmentation/.

4.1 Color Spaces and Compressibility

The optimal coding length of textured regions of an image depends in part on the

color space. We seek to determine the color space in which natural images are most

compressible based on the proposed lossy compression scheme (7). It has been noted in

the literature that the Lab color space (also known as L∗a∗b∗) better approximates the

perceptually uniform color metric (Jain, 1989). This has motivated some of the previous

works (Yang et al., 2008; Rao et al., 2009) to utilize such representation in methods

for natural image segmentation. In order to check the validity of this assumption,

particularly for our segmentation scheme by compressing texture, we perform a study

on five color spaces that have been widely used in the literature, namely, Lab, Y UV ,

RGB, XY Z, and HSV .



13

We use the manually segmented training images in the Berkeley dataset to rank

the compressibility of the 5 color spaces. Given a color space, for any image and cor-

responding segmentation, the number of bits required to encode texture information

is computed by (2), with features constructed as in Section 2.1. The average coding

length of an image is computed as the one over all ground-truth segmentation maps

for that image. Finally, the average coding length of the dataset is computed over the

entire images in the dataset.

We note that the volume of the pixel distribution (and thus the coding length)

can change if the pixel values are rescaled. This means one color space can look more

compressible by merely producing numbers in a smaller range, say [0, 1] as opposed to

another which is in range [0, 255]. In order to achieve a fair comparison, we normalize

the feature vectors by scale factor c, which is constant across features from the same

color space:

c = 1/
p
λ̄max (14)

where λ̄max is the average of the maximum eigenvalues of the feature covariance matrix

over all regions and all images in the dataset.

The average (normalized) coding lengths of five representative color spaces are

shown in Figure 7. Among all the 5 color spaces examined, Lab has the shortest coding

length. Therefore, in the rest of our experiments, input images are first converted to

the Lab color space.

Fig. 7 Average coding length of an image in five representative color spaces.

4.2 Experimental Setup

To quantitatively evaluate the performance of our method, we use four metrics for com-

paring pairs of image segmentation: the probabilistic Rand index (PRI) (Rand (1971)),

variation of information (VOI) (Meila (2005)), boundary displacement error (BDE)

(Freixenet et al. (2002)), and the global F-measure (Arbelaez (2006)):

1. The probabilistic Rand index (PRI) is a classical metric that measures the proba-

bility that an arbitrary pair of samples have consistent labels in the two partitions.

The PRI metric is in the range [0, 1], with higher values indicating greater similarity

between two partitions. When used to adaptively choose ε as described in Section

3.3, we use PRIC
.
= (1− PRI).



14

2. The variation of information (VOI) measures the sum of information loss and

information gain between the two clusterings, and thus it roughly measures the

extent to which one clustering can explain the other. The VOI metric is nonnegative,

with lower values indicating greater similarity.

3. The boundary displacement error (BDE) measures the average displacement error

of boundary pixels between two segmented images. Particularly, it defines the error

of one boundary pixel as the distance between the pixel and the closest pixel in the

other boundary image.

4. The global F-measure (GFM) is the harmonic mean of precision and recall, a pair

of complimentary metrics for measuring the accuracy of the boundaries in an image

segmentation given the ground truth boundaries. Precision measures the fraction

of true boundary pixels in the test segmentation. Recall measures the fraction of

ground-truth boundary pixels in the test segmentation. When used to adaptively

choose ε, we use GFMC .
= (1−GFM).

In cases where we have multiple ground-truth segmentations, to compute the PRI, VOI,

or BDE measure for a test segmentation, we simply average the results of the metric

between the test segmentation and each ground-truth segmentation. To compute the

GFM measure from multiple ground-truth segmentations, we apply the same tech-

niques used in Arbelaez et al. (2009), which roughly aggregate the boundary precision

and recall over all ground-truth images as an ensemble. With multiple ground-truth

segmentations for an image, we can also estimate the human performance w.r.t. these

metrics by treating each ground-truth segmentation as a test segmentation and com-

puting the metrics w.r.t. the other ground-truth segmentations.

The adaptive ε scheme in our method relies on the feature vector f used in (12) as

follows. The image I is converted to grayscale and its size is rescaled by a set of specific

factors. The standard deviation of pixel intensity of each rescaled image constitutes a

component of the feature vector. Empirically, we have observed that using four scale

factors , i.e., f ∈ R4, produces good segmentation results for our algorithm on the

BSD database.

The parameters (ak, bk, ck) in the quadratic form in (11) are estimated as follows.

We sample 25 ≤ ε ≤ 400 uniformly, in steps of 25 and compute the corresponding

d(Sε(Ik), Sg(Ik)) for each sample. This gives a set {(dk,n, εk,n)}16n=1 for an image Ik.

We use this set to estimate (ak, bk, ck) by least squares method.

4.3 Results

We quantitatively compare the performance of our method TBES with seven pub-

licly available image segmentation methods, namely, Mean-Shift (MS) by Comanicu

& Meer (2002), Markov Chain Monte Carlo (MCMC) by Tu & Zhu (2002), F&H by

Felzenszwalb & Huttenlocher (2004), Multiscale NCut (MNC) by Cour et al. (2005),

Compression-based Texture Merging (CTM) by Yang et al. (2008), Ultrametric Con-

tour Maps (UCM) by Arbelaez et al. (2009), and Saliency Driven Total Variation

(SDTV) by Donoser et al. (2009), respectively. The user-defined parameters of these

methods have been tuned by the training subset of each dataset to achieve the best

performance w.r.t. each segmentation index. Then, the performance of each method is

evaluated based on the test subset.



15

Table 2 shows the segmentation accuracy of TBES compared to the human ground

truth and the other seven algorithms.5 In addition to the evaluation of the algorithms,

multiple ground truth segmentations in BSD allow us to estimate the human perfor-

mance w.r.t. these metrics. This was achieved by treating each ground-truth segmen-

tation as a test segmentation and computing the metrics w.r.t. the other ground-truth

segmentations. To qualitatively inspect the segmentation, Figure 8 illustrates some

representative results.

(a) Animals (b) Buildings (c) Landscape (d) People (e) Water

Fig. 8 Representative segmentation results (in color) of the TBES algorithm on various image
categories from BSD. For each image pair, the top is the original input image, and the bottom is
the segmentation result where each texture region is rendered by its mean color. The distortion
ε was chosen adaptively to optimize PRI.

Among all the algorithms in Table 2, TBES achieves the best performance w.r.t.

PRI and VOI. It is also worth noting that there seems to be a large gap in terms of VOI

between all the algorithm indices and the human index (e.g., 1.705 for TBES versus

1.163 for human). With respect to BDE and GFM, UCM achieves the best performance,

which is mainly due to the fact that UCM was designed to construct texture regions

from the hierarchies of (strong) image contours and edges. In this category, TBES still

achieves the second best performance, largely exceeding the indices posted by the rest

of the algorithms in the literature.

5 The quantitative performance of several existing algorithms was also evaluated in a recent
work (Arbelaez et al. (2009)), which was published roughly at the same time as this paper.
The reported results therein generally agree with our findings.



16

Table 2 Comparison on the BSD using the PRI, VOI, BDE, and GFM indices. For PRI and
GFM, higher values indicate better segmentation; for VOI and BDE, lower values indicate
better segmentation.

Method PRI VOI BDE GFM

Human 0.868 1.163 7.983 0.787

TBES 0.807 1.705 12.681 0.647
MS 0.772 2.004 13.976 0.600

MCMC 0.768 2.261 13.897 0.467
F&H 0.770 2.188 14.057 0.579
MNC 0.742 2.651 13.461 0.590
CTM 0.755 1.897 14.066 0.595
UCM 0.796 1.715 10.954 0.706
SDTV 0.801 1.790 15.513 0.593

Table 3 A comparison of the efficacy of the individual components of the TBES algorithm.
The first row shows the performance of TBES, and each following row corresponds to disabling
one component of TBES. TBES(ε), TBSE(w), TBSE(h), and TBSE(b) correspond to disabling
the code for adaptive choice of epsilon, discounting overlapping windows, hierarchical window
sizes, and boundary coding, respectively. For TBES(ε), a fixed ε = 150 is chosen. For TBES(h),
a fixed window size w = 7 is chosen. The best performance values are highlighted in bold face.

Method Omitted Component PRI VOI BDE GFM

TBES None 0.807 1.705 12.681 0.647
TBES(ε) Adaptive ε 0.793 1.792 15.020 0.545

TBES(w) Nonoverlapping Windows 0.790 1.788 13.972 0.597

TBES(h) Hierarchical Resolutions 0.794 1.743 13.335 0.613

TBES(b) Boundary Code 0.796 1.775 13.659 0.638

Note that in Table 2, TBES consistently outperforms CTM, on which the funda-

mental lossy-coding framework of TBES is based. To clarify the contribution of each

new TBES component, we further provide an analysis of the efficacy of the components

of TBES in a “leave-one-out” comparison. In Table 3, the performance of TBES with

certain functions individually disabled is shown. The variations of the code include dis-

abling adaptive choice of epsilon, discounting overlapping windows, hierarchical window

sizes, and boundary coding, respectively.

Clearly, as TBES retains the best performance over all four segmentation met-

rics in Table 3, disabling any segmentation criterion degrades its performance. Since

TBES(ε) gives the overall worst performance in Table 3, one can conclude that adap-

tively choosing the distortion level ε is the singular most important heuristic in TBES,

which justifies our argument in Section 3.3 that since natural images represent different

scene categories with different scales of resolution, no single choice of ε is optimal for

all images. Furthermore, it is interesting to observe that all the variations of TBES in

Table 3 still achieve better segmentation metrics than the original CTM algorithm in

Table 2.

Finally, we briefly discuss a few images on which our method fails to achieve a good

segmentation. The examples are shown in Figure 9. The main causes for visually inferior

segmentation are camouflage, shadows, non-Gaussian textures, and thin regions:

1. It is easy to see that the texture of animal camouflages is deliberately chosen to

be similar to the background texture. The algorithm falls behind humans in this

situation, arguably, because human vision can recognize the holistic shape and

texture of the animals based on experiences.



17

2. As shades of the same texture may appear very different in images, TBES may

break up the regions into more or less the same level of shade.

3. Some patterns in natural images do not follow the Gaussian texture assumption.

Examples include geometric patterns such as lines or curves.

4. Thin regions, such as spider’s legs, are problematic for TBES for two reasons. First,

it has trouble to properly form low-level superpixels used as the initialization of our

method. Second, large enough windows which can better capture the statistics of

the texture can barely fit into such thin regions. Consequently, texture estimation

at these regions is ill-conditioned and unstable.

(a) Camouflage (b) Shadows (c) Non-Gaussian (d) Thin Regions

Fig. 9 Examples from BSD (in color) where TBES algorithm failed obtaining a reasonable
segmentation. Top: Original input images. Middle: Segmentation w.r.t PRI. Bottom: Seg-
mentation w.r.t VOI.

To realize whether these problems are unique to our method or are more universal,

we have investigated similar problematic cases with the other methods reported here

(Comanicu & Meer (2002); Tu & Zhu (2002); Felzenszwalb & Huttenlocher (2004);

Cour et al. (2005); Yang et al. (2008); Arbelaez et al. (2009); Donoser et al. (2009)).

None of the methods were able to handle camouflage very well. Shadows are challenging

for these methods as well. However, we observe that UCM performs relatively better in

this case. For geometric patterns, CTM seems to be slightly better than others, but still

is an over-segmentation. In the category of thin regions, all algorithms performed very

poorly, but mean-shift is better by, for example, roughly picking up some of the spider’s

legs. It is further worth pointing out an interesting observation about PRI versus VOI

that the former prefers over-segmentation and the latter prefers under-segmentation

(as shown in Figure 9).

5 Conclusion

We have proposed a novel method for natural image segmentation. The algorithm

uses a principled information-theoretic approach to combine cues of image texture and

boundaries. In particular, the texture and boundary information of each texture region

is encoded using a Gaussian distribution and adaptive chain code, respectively. The



18

partitioning of an image is achieved by an agglomerative clustering process applied to a

hierarchy of decreasing window sizes. Based on the MDL principle, the optimal segmen-

tation of the image is defined as the one that minimizes its total coding length. As the

lossy coding length function also depends on a distortion parameter that determines

the coarseness of the segmentation, we have further proposed an efficient linear regres-

sion method to learn the optimal distortion parameter from a set of training images

when provided by the user. Our experiments have validated that the new algorithm

outperforms other existing methods in terms of region-based segmentation indices (i.e.,

PRI and VOI), and is among the top solutions in terms of contour-based segmenta-

tion indices (i.e., BDE and GFM). To aid peer evaluation, the implementation of the

algorithm and the benchmark scripts have been made available on our website.

References

Arbelaez, P. 2006. Boundary extraction in natural images using ultrametric contour

maps. In Workshop on Perceptual Organization in Computer Vision.

Arbelaez, P., M. Maire, C. Fowlkes, & J. Malik 2009. From contours to regions: an

empirical evaluation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition.

Comanicu, D., & P. Meer 2002. Mean shift: a robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:603–

619.

Cour, T., F. Benezit, & J. Shi 2005. Spectral segmentation with multiscale graph

decomposition. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition.

Deng, Y., & B. Manjunath 2001. Unsupervised segmentation of color-texture regions in

images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(8):800–810.

Donoser, M., M. Urschler, M. Hirzer, & H. Bischof 2009. Saliency driven total variation

segmentation. in Proceedings of the International Conference on Computer Vision.

Duda, R., P. Hart, & D. Stork 2001. Pattern Classification. Wiley, 2 edition.

Efros, A., & T. Leung 1999. Texture synthesis by non-parametric sampling. In Pro-

ceedings of the International Conference on Computer Vision.

Elder, J., & S. Zucker 1996. Computing contour closures. In Proceedings of the

European Conference on Computer Vision.

Felzenszwalb, P., & D. Huttenlocher 2004. Efficient graph-based image segmentation.

International Journal of Computer Vision, 59(2):167–181.

Freixenet, J., X. Munoz, D. Raba, J. Marti, & X. Cuff 2002. Yet another survey on

image segmentation. in Proceedings of European Conference on Computer Vision,

408–422.

Gevers, T., & A. Smeulders 1997. Combining region splitting and edge detection

through guided Delaunay image subdivision. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition.

Haralick, R., & L. Shapiro 1985. Image segmentation techniques. Computer Vision,

Graphics, and Image Processing, 29(1):100–132.

Jain, A. 1989. Fundamentals of Digital Image Processing. Prentice Hall.



19

Kim, J., J. Fisher, A. Yezzi, M. Cetin, & A. Willsky 2005. A nonparametric statistical

method for image segmentation using information theory and curve evolution. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(10):1486–1502.

Kim, T., K. Lee, & S. Lee 2010. Learning full pairwise affinities for spectral segmen-

tation. in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition.

Kurita, T. 1995. An efficient clustering algorithm for region merging. IEICE Transac-

tions of Information and Systems, E78-D(12):1546–1551.

Levina, E., & P. Bickel 2006. Texture synthesis and non-parametric resampling of

random fields. Annals of Statistics, 34(4):1751–1773.

Liu, Y., & B. Zalik 2005. Efficient chain code with Huffman coding. Pattern Recogni-

tion, 38(4):553–557.

Ma, Y., H. Derksen, W. Hong, & J. Wright 2007. Segmentation of multivariate mixed

data via lossy coding and compression. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(9):1546–1562.

Malik, J., S. Belongie, T. Leung, & J. Shi 2001. Contour and texture analysis for image

segmentation. International Journal of Computer Vision, 43(1):7–27.

Martin, D., C. Fowlkes, D. Tal, & J. Malik 2001. A database of human segmented natu-

ral images and its application to evaluating segmentation algorithms and measuring

ecological statistics. In Proceedings of the International Conference on Computer

Vision.

Meila, M. 2005. Comparing clusterings: an axiomatic view. In Proceedings of the

International Conference on Machine Learning.

Mori, G., X. Ren, A. Efros, & J. Malik 2004. Recovering human body configurations:

combining segmentation and recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition.

Rand, W. 1971. Objective criteria for the evaluation of clustering methods. Journal of

the American Statistical Association, 66(336):846–850.

Rao, S., H. Mobahi, A. Yang, S. Sastry, & Y. Ma 2009. Natural image segmenta-

tion with adaptive texture and boundary encoding. In Proceedings of the Asian

Conference on Computer Vision, volume 1, pages 135–146.

Ren, X., C. Fowlkes, & J. Malik 2005. Scale-invariant contour completion using con-

dition random fields. In Proceedings of the International Conference on Computer

Vision.

Ren, X., C. Fowlkes, & J. Malik 2008. Learning probabilistic models for contour

completion in natural images. International Journal of Computer Vision, 77:47–63.

Tremeau, A., & N. Borel 1997. A region growing and merging algorithm to color

segmentation. Pattern Recognition 30(7):1191–1204.

Tu, Z., & S. Zhu 2002. Image segmentation by data-driven Markov Chain Monte Carlo.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):657–673.

Varma, M., & A. Zisserman 2003. Texture classification: are filter banks necessary? In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Wang, J. Y. Jia, X. Hua, C. Zhang, & L. Quan 2008. Normalized tree partitioning for

image segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition.

Yang, A., J. Wright, Y. Ma, & S. Sastry 2008. Unsupervised segmentation of natural

images via lossy data compression. Computer Vision and Image Understanding,

110(2):212–225.



20

Yu, S. 2005. Segmentation induced by scale invariance. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition.

Zhu, Q., G. Song, & J. Shi 2007. Untangling cycles for contour grouping. In Proceedings

of the International Conference on Computer Vision.


