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Abstract—Mobile data traffic has been steadily rising in the past
years. This has generated a significant interest in the deployment
of incentivemechanisms to reduce peak-time congestion. Typically,
the design of these mechanisms requires information about user
demand and sensitivity to prices. Such information is naturally
imperfect. In this paper, we propose a fixed-budget rebate mech-
anism that gives each user a reward proportional to his percentage
contribution to the aggregate reduction in peak-time demand. For
comparison, we also study a time-of-day pricing mechanism that
gives each user a fixed reward per unit reduction of his peak-time
demand. To evaluate the two mechanisms, we introduce a game-
theoretic model that captures the public good nature of deconges-
tion. For eachmechanism,we demonstrate that the socially optimal
level of decongestion is achievable for a specific choice of the mech-
anism’s parameter.We then investigate how imperfect information
about user demand affects the mechanisms’ effectiveness. From
our results, the fixed-budget rebate pricing ismore robust when the
users’ sensitivity to congestion is “sufficiently” convex. This feature
of the fixed-budget rebate mechanism is attractive for many situ-
ations of interest and is driven by its closed-loop property, i.e., the
unit reward decreases as the peak-time demand decreases.

Index Terms—Congestion pricing, lottery-based incentive
mechanisms, probabilistic pricing, public good provisioning.

I. INTRODUCTION

T HE CONSUMER demand for network bandwidth is
steadily growing. For instance, mobile data traffic nearly

tripled during each of the past three years due to increasing
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penetration of mobile devices such as smartphones [1]. Nu-
merous studies indicate that this growth will continue as
bandwidth-intensive applications like video streaming continue
to gain popularity [2]. The growing demand for bandwidth
forces the Internet service providers (ISPs) to adopt conges-
tion management schemes, including capacity expansion and
pricing mechanisms. Although the ISPs have historically used
flat-rate pricing, many ISPs are now interested in moving to
tiered pricing schemes [2], [3]. However, experiments have
shown that users prefer flat-rate pricing and will pay a premium
to avoid being metered [4], [5]. This makes the adoption of
real-time pricing particularly challenging. Thus, novel pricing
mechanisms that balance the conflict between the need for
network decongestion and the users’ preference for flat prices
are of great practical interest.
Network bandwidth (and hence the level of congestion) is

not uniform during the course of a day; it drops at night after
the prime-time evening hours. This variability in demand can
be exploited to design variable pricing mechanisms. For in-
stance, time-of-day pricing mechanisms have been designed to
incentivize users to shift a part of their demand to the off-peak
times [6], [7]. However, such mechanisms typically require in-
formation about user demand—in particular, the knowledge of
user preferences about shifting their demand from peak to off-
peak times. In practice, this information may be inaccurate or
just too difficult to obtain due to privacy concerns [7]. Thus, ro-
bustness to imperfect information about user preferences must
be taken into account in the design of any practically viable
mechanism.
Recently, a fixed-budget rebate mechanism (termed “raffle-

based scheme”) was proposed for decongestion of a shared re-
source [8]. Decongestion is viewed as a public good: When a
user reduces/shifts his demand away from peak times, his con-
tribution benefits all the users sharing the resource. The fixed-
budget rebate mechanism in [8] is inspired by economic ideas
on incentivizing contributions to provision of public goods [9].
In this mechanism, each user is entitled a reward proportional
to his percentage contribution to the total demand reduction. An
attractive feature of this mechanism is that, in practice, it can
be implemented via a lottery scheme, where each participating
user wins a prize with a probability equal to the fraction he con-
tributed to the total demand reduction.
In this paper, we investigate the fixed-budget rebate mecha-

nism and compare it to the more traditional time-of-day pricing
mechanism for reducing Internet congestion. In Section III,
we introduce a game-theoretic model with a continuum
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of nonatomic users. Each user chooses his peak-time and
off-peak-time demand to maximize his utility. The user utility
models both his benefit from peak-time decongestion and his
willingness to reduce/shift away from the peak-time period. The
model allows us to compute the user equilibrium welfare for
both mechanisms: fixed-budget rebate and time-of-day pricing.
We compare their sensitivity to information imperfections for
the case when an ISP with imperfect information about user
demand chooses the mechanism parameters. Our results in
Section IV can be summarized as follows.
1) For any given parameters, for each mechanism, a Nash
equilibrium exists, and it is unique.

2) For the case when an ISP has perfect information about
user demand, for each mechanism, the ISP can choose the
mechanism parameter to achieve the socially optimal level
of decongestion.

3) For the case when an ISP has imperfect information about
user preferences, the fixed-budget rebate mechanism is
more robust to the time-of-day pricing mechanism a under
mild condition on the users’ sensitivity to congestion.

Our analysis reveals several desirable features of
fixed-budget rebate mechanism. First, the condition under
which it is more robust than the time-of-day-pricing can be in-
terpreted as “convex” user sensitivity to congestion (or delay).
This condition is expected to be predominant, especially for
today’s Internet, which supports highly delay-sensitive appli-
cations. This robustness of the fixed-budget rebate mechanism
is driven by its closed-loop property: As the aggregate demand
shifts away from peak-time period, the user reward for his
per unit contribution decreases. Finally, if an ISP decides to
implement the fixed budget rebate mechanism, he knows the
total reward (or rebate) that he owes to the users even when
the information about user demand characteristics is imperfect.
In contrast, under the time-of-day pricing mechanism, the ISP
will have to design the mechanism based on an estimate of the
total expected reward that he will owe to the users.
The rest of the paper is organized as follows. Section II

discusses the related literature. We introduce the model in
Section III. In Section IV, we analyze the two incentive mech-
anisms (Nash equilibrium and social optimum) and compare
them in terms of robustness to imperfect information. We
conclude in Section V. Proofs are relegated to the Appendixes.

II. RELATED WORK

Many pricing mechanisms have been proposed to manage
quality of services (QoS) in networks; see, e.g., sur-
veys [10]–[12]. For instance, in [13], Honig and Steiglitz
propose a usage-based pricing mechanism and analyze it using
a model with delay-sensitive users. Their results show how to
find the price that maximizes the provider’s revenue by solving
a fixed-point equation. A similar model is used in [14], where
Başar and Srikant analyze the many-users limit. They show
that, as the number of users increases, the provider’s revenue
per unit of bandwidth increases and conclude that this gives
providers an incentive to increase their network capacity. In a
number of papers, e.g., [15]–[17], pricing mechanisms based
on multiple classes of customers with different priorities are
proposed and analyzed in terms of equilibrium achieved and
optimal price per class. In [18], [19], Shen and Başar investi-
gate the performance of nonlinear pricing in a model similar

to [14] and find an improvement of up to 38% over linear
pricing in some cases. However, in all the aforementioned
papers, the demand is assumed stationary, and the price is fixed
independently of the instantaneous network congestion or of
the time of the day. In contrast, in this paper, we investigate
linear pricing mechanisms that leverage the time variability of
user demand using a single priority class.
A few papers have proposed mechanisms with prices depen-

dent on congestion levels. In [20], Paschalidis and Tsitsiklis pro-
pose a congestion-based pricing mechanism in the context of
loss networks (i.e., phone). They provide a dynamic program-
ming formulation of the revenue maximization problem and of
the welfare maximization problem. Then, they show that this
dynamic congestion pricing mechanism can be well approxi-
mated by a simpler static time-of-day pricing. An alternative
mechanism called “Trade & Cap” was recently proposed by
Londoño et al. [21]. It works in two phases. First, users en-
gage in a trading gamewhere they choose an amount of reserved
bandwidth slots to buy for hard-constraints traffic. In the second
phase, the remaining bandwidth is allocated to users as fluid
bandwidth, in proportion of their remaining “buying power.”
They show that this mechanism smooths the aggregate demand
to a certain level. In their model, users have a cost function that
increases linearly with the total demand in a given slot. In this
paper, we consider simpler one-phase pricing mechanisms with
fixed parameters. Our model also differ from these papers in that
users have elastic demand and their utility is an arbitrary func-
tion of the congestion level.
Two recent papers analyze time-of-day pricing mechanisms

over time-slots [6], [7]. In [6], Jiang et al. consider a model
where users have unit demand. Each user chooses one time-slot
in which he transmits its entire demand to maximize his utility.
The authors of [6] obtain a bound on the price of anarchy due
to users selfishness. In [7], Wong et al. consider a model with
users transmitting sessions of random length. Sessions arrive
as a Poisson process, and each session is characterized by a
waiting function that reflects the willingness of the user to delay
his entire session for a given time, in exchange for a reward
given by the provider. The authors show how to compute the
optimal reward levels in order to maximize the provider profit
by balancing the congestion cost due to demand exceeding ca-
pacity and the reward amount. Further analysis of this mecha-
nism called “TUBE” as well as implementation are provided
in [22]. However, in their model, users are only sensitive to
prices (the effect of congestion on the user utility is not con-
sidered), and the analysis is not game-theoretic. In this paper,
we consider a model with two time-slots (peak and off-peak).
We provide a game-theoretic analysis. In our model, user utility
functions are the closest to [6] where user cost due to latency is
an arbitrary (convex) function of the load. However, our setup
differs from [6], as each user in our model can shift an arbitrary
continuous fraction of his demand from peak time to off-peak
time.
In this paper, we show that the problem of decongesting the

peak time can be seen as a public good provision problem. Our
model is closely related to the “raffle-based” incentive mecha-
nism, which has been recently proposed by Loiseau et al. [8].
That work was inspired by Morgan, who in [9] pioneered the
investigation of using the lotteries for public good provision.
The public good perspective has been applied in recent works
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by Sharma and Teneketzis [23], [24] in the context of optimal
power allocation for wireless networks. The connection of lot-
tery-based mechanism with public good provision was origi-
nally noted in [9] and received extensive attention in economic
literature (see [25]). The idea of lotteries has also been used in
different contexts. For instance, lottery scheduling is a widely
applied technique in resource scheduling in computer operating
systems [26]. Recent interest in the application of lotteries to
congestion management was facilitated by Merugu et al., who
demonstrated with a field study that lottery-based mechanisms
can be effectively used to reduce congestion in transportation
systems [27]. In contrast, our contributions are methodological.
We use a game-theoretic model to analytically study the per-
formance of a lottery-like mechanism and compare it to a more
standard time-of-day pricing mechanism.

III. MODEL

Let us consider a shared Internet access point with capacity .
Based on the usage patterns, let the day be divided into two time
periods: a peak time of duration and an off-peak time of du-
ration . We assume that each time period corresponds to a sta-
tionary regimewith respective loads and .
An access point is typically shared by a finite number of users,

each having his own preference for time periods that we model
by user type (the type of a user will typically depend on the
applications that he uses). To account for a large number of
users, we model the set of users as a continuum of nonatomic
users; i.e., each user contributes a negligible fraction of the
total demand. We use the measure-theoretic framework similar
to [28] and [29]. Let be a measurable space where
is the set of user types. We assume that the user types are dis-
tributed according to a finite measure on .1 While sim-
pler modeling assumptions can be used (e.g., considering only
two types), using an arbitrary measure of types gives a higher
flexibility that can be interesting to fit real populations.
Note that for simplicity, we describe the population at the

granularity of types instead of users as in [28] and [29]. This is
justified by the strict concavity of the user utilities (see assump-
tions below), which implies that at Nash equilibrium, all users
of the same type choose the same action. As a consequence, al-
though we do require that the measure of users is nonatomic (as
for any nonatomic game), we do not require that the measure
of types itself is nonatomic. For instance, if all users have the
same type, measure is only constituted by one atom. Yet, each
user of each type remains infinitesimally small, which means
that the action of one user does not affect the aggregate outcome.

A. User Utility

Each user of type chooses his peak-time demand
and his off-peak-time demand to maximize his utility

(1)

1Throughout the paper, we assume that all functions of are measurable. In
[28], Aumann notes that “the measurability assumption is of technical signifi-
cance only and constitutes no real economic restriction.”

where the notation and is standard: It denotes peak-time
and off-peak-time demand choices for all user types but . In (1),

and are the utilities that a user of type gets
for his demand in the peak time and off-peak time, respectively.

and are the disutilities due to congestion in the
peak time and off-peak time, respectively. These disutilities are
per unit of demand, hence they are multiplied by the demand in
each time. Finally, quantity is a fixed usage-based price
(which could be zero) and quantity is a fixed monthly
subscription price.
We assume that utilities and are twice differen-

tiable increasing strictly concave functions of the demand. We
assume that there is a fixed maximum peak-time demand
(per day) that could correspond for instance to a subscription
daily peak cap, that could be a maximum usable demand (deter-
mined by technology limitation), or that could be a maximum
daily demand determined from empirical data. For simplicity,
we assume that this maximum peak-time demand is the same for
each user, but more general cases could be handled easily2 (in
that case, user-dependent prices could also easily be handled).
Each user can choose to shift to off-peak time, or to simply not
use, part of his maximum peak-time demand. Additionally to
the shifted peak-time demand, each user could have an initial
off-peak-time demand. However, this additional demand does
not modify our analysis as long as the peak time remains more
congested than the off-peak time. For simplicity, we assume that
the initial off-peak-time demand is zero, i.e., the off-peak-time
demand only corresponds to shifted peak-time demand. Then,
we have the following constraint on the demands:

(2)

We assume that disutilities and are increasing
strictly convex functions of the aggregate demand in each time
(a similar assumption is made, e.g., by Jiang et al. [6]). This
assumption is realistic and quite general. As an example, let
us focus on the average delay as a measure of the network
quality, as in [13]. Our assumption holds if: 1) the disutility is
an increasing convex function of the average delay; and 2) the
average delay is an increasing strictly convex function of the ag-
gregate demand or equivalently of the load in the corresponding
time

Assumption 1) is natural: An increase of the delay from zero to
half a second creates no more disutility than from half a second
to 1 s. This assumption is also made in [13]. Assumption 2)
holds for the vast majority of queueing models considered in
the literature. For example, it holds for the processor sharing
queue (the most classical model for 3G and 4G networks [30]),
for which the average delay is

(3)

2If users differ by their maximum peak-time demand, each user could be
viewed as an appropriate number of users with identical maximum peak-time
demand. The proposed model still applies with measure defined for all subset

by , where is the set of maximum
peak-time demands and measure on represents the joint distribution
of types and demand.
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where is a constant. It also holds for commonmodels of wired
networks such as the M/D/1 model considered in [13] and the
M/M/1 model considered by Shen and Başar [18], [19]. Finally,
we assume that despite the effect of users shifting part of their
demand, the off-peak time remains relatively uncongested so
that

(4)

This assumption is not strictly necessary, but greatly simplifies
the presentation without affecting the important effects that we
consider in this model.3

For numerical illustrations of our model, we use the following
example of an Internet access point.
Example 1 (Internet Access Point): The capacity is
Gb/s. Peak time lasts h (e.g., 6:00–8:00 PM), hence

h. with a uniform distribution of types
, where Gb and

Gb (which corresponds to 1000 users with peak-time ca-
pacity 1 Mb/s). The latency disutility is ,
where is given by the PS model (3) and .
Peak-time utility is with

, and off-peak-time utility is . The
subscription price is , and the usage-based price is zero.

B. User Type Distribution

On the timescale of a day, the population is heterogeneous
with user types distributed according to measure . However,
we assume that each user has a type that varies randomly across
the days of a month, with the same distribution . Therefore,
the population is homogeneous in average on the timescale of a
month. In particular, with this assumption, the expected utility
of each user on the timescale of a month equals the daily aggre-
gate welfare

(5)

normalized by .
Each user will buy a monthly contract (with subscription

price ) to use the service if his expected utility over the month
is positive, i.e., here if

(6)

We assume that without any incentive mechanism, this condi-
tion is satisfied. Then, our assumption guarantees that with any
welfare-improving incentive, each user will continue to partic-
ipate, i.e., to buy the monthly contract.
Note that if the population cannot be assumed homogeneous

at the timescale of a month, it is possible to divide it into sub-
populations that can be assumed homogeneous and to apply our
incentive mechanisms to each of these subpopulations.

C. Model Reduction to One-Dimensional Strategy Space

Before introducing the incentive mechanisms, we show that
our model can be reduced to a one-dimensional strategy space

3If one wants to consider a nonzero off-peak-time disutility, this assumption
could be replaced by the relaxed assumption that when the aggregate shifted
demand increases, the marginal peak-time disutility reduction is higher than the
marginal off-peak-time disutility increase.

focusing on the peak-time demand reduction. With assump-
tion (4), the utility (1) of a user of type can be rewritten
as

(7)

Since we are interested in the reduction of peak-time demand,
we define the difference between the maximum peak-time de-
mand and the chosen peak-time demand

(8)

This peak-time demand reduction includes both the unused
peak-time demand and the peak-time demand shifted to
off-peak time. For a given , we define the optimal
shifted demand

A user of type maximizing his utility (7) will choose a
couple such that .4 As we are interested in
the reduction of congestion at peak time, we restrict our atten-
tion to the choice of . Note that if , then .
Indeed, if there is no usage-based cost, off-peak-time demand
always gives higher utility than 0.
In the absence of latency, the maximal utility of a user is

(9)

for all , where

is the baseline peak-time demand reduction that maximizes the
latency-free utility. Latency and incentivemechanismswill only
result in users using less of their peak-time demand, i.e., in-
creasing their choice of beyond . Then, we define the cost
of shifting as the loss of utility incurred by a user when reducing
his peak-time demand

(10)

(Note that with a slight abuse of terminology, we call
the cost of shifting, whereas the peak-time demand reduction
can actually correspond to shifted demand and/or to unused de-
mand.) The definition of the baseline (9) guarantees that
is always positive.Moreover, with our assumptions on functions

and , the cost of shifting is differentiable and
strictly convex on , and increasing on (see details
in Appendix A). Finally, to simplify the proofs, we assume that
the marginal cost of shifting is bounded by a constant indepen-
dent of .
We view the aggregate peak-time demand reduction

(11)

4A function corresponding to social welfare maximization also sat-
isfies for all .
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as a public good to which each user contributes by his choice
of . Indeed, when a user reduces his peak-time demand, the
benefits of reduced peak-time congestion are shared by all the
users. We define the function

(12)

where is the aggregate maximum peak-time de-
mand. Function reflects the notion of howmuch users ben-
efit from the network decongestion at peak time. With our as-
sumptions on is an increasing concave function
of the public good level . The term

in (7) has the interpretation that the benefit a
user gets from the peak-time decongestion is the product of his
peak-time demand times the benefit per unit demand

. Notice that is negative, but its most important char-
acteristic is that it is increasing in , i.e., the disutility due to
congestion reduces when increases.
In summary, in view of (7)–(12), our peak-time decongestion

model reduces to a public good provision problem similar to [8]:
The utility of a user of type is

(13)

where corresponds to the (unit) benefit from the public
good and corresponds to the cost of contribution. From
our assumptions, these functions satisfy the following.
(A1) is twice differentiable, strictly concave, and in-

creasing on .
(A2) is positive, differentiable, and strictly convex on

and increasing on .
(A3) .
Notice that in our model, does not depend on the type.

All the type-dependency is carried by the cost of shifting. This
modeling choice ensures tractability of the equilibrium.

D. Incentive Mechanisms

Individual users maximize their own utility (13), which dif-
fers from maximizing (5). Thus, in general, the level of public
good and the aggregate user welfare achieved in the individual
maximization and in the social optimum differ.
To align Nash equilibrium and social optimum objectives, the

service provider can design mechanisms to incentivize users to
reduce their peak-time demand. In this paper, we compare two
different incentive mechanisms: a fixed-budget rebate mecha-
nism (denoted or FBR) and a time-of-day pricing mecha-
nism (denoted or TDP). Each mechanism introduces a re-
ward based on the peak-time demand reduction below the
maximum . For the service provider to finance the respec-
tive reward, each mechanism also introduces an increase in the
subscription price. However, as we will see (Corollary 1), each
user’s net utility can be improved even with this price increase.
With mechanism , the user utility becomes

(14)

The fixed-budget rebate mechanism consists in giving each
user a reward proportional to his fraction of the total contribu-
tion, i.e., of the functional form

fixed-budget rebate (15)

where is a parameter of the mechanism chosen ex-anti by
the provider. In practice, this mechanism could be implemented
via randomization. For example, with a finite number of users,
it could be implemented by the simplest type of lottery where
each user wins the prize with a probability equal to his per-
centage contribution to the total amount of peak-time demand
reduction. In this case, (14) and (15) would correspond to ex-
pected utilities. Other implementations (e.g., deterministic) are
also possible. To complete the definition of the fixed-budget re-
bate mechanism, we assume that if no user reduces his peak-
time demand, then the reward is not given. However, if the set
of users who reduce their peak-time demand is nonempty but
of measure zero, then each contributing user receives an infi-
nite reward given in such a way that the integral w.r.t. the mea-
sure of users is . This is a technical assumption for the mea-
sure-theoretic setting of the nonatomic game. In practice, it re-
flects the fact that if only a finite number of users contribute,
their expected reward relative to their fraction of the total de-
mand grows to infinity as the total number of users goes to
infinity.
We notice here that the fixed-budget rebate mechanism intro-

duces uncertainty in the users bill as the reward depends on the
amount shifted by the other users. However, this uncertainty is
only one-sided: The maximum bill is known and only the re-
ward amount is uncertain. This asymmetry is crucial to ensure
good adoption of the mechanism.
The time-of-day pricing mechanism corresponds to a fixed

reward per unit of shifted demand

time-of-day pricing (16)

where is a parameter of the mechanism chosen ex-anti by
the provider. This mechanism is a variation of a conventional
time-of-day pricing mechanism, with an off-peak price subsidy.
Its implementation is straightforward.
In (15) and (16), denotes the increase in the subscription

price that the service provider imposes to finance the reward
mechanism. Let be the equilibrium level of public good
(in Section IV, we show that the Nash equilibrium is unique
for both mechanism). We assume that the price is fixed in
advance by the service provider to compensate the reward, i.e.,
such that (note that the expression
of the aggregate welfare (5) is thus not directly modified by the
mechanisms, but only through the chosen contributions ).5

Then

and (17)

From (17), we immediately see that the service provider has
to know the equilibrium to determine the price for the
time-of-day pricing mechanism. An error in the estimation of

could have important consequences. In contrast, such
knowledge is not necessary for the fixed-budget rebate mecha-
nism where only depends on the parameter chosen by
the service provider.

5If users have different maximum peak-time demand for which they are
charged different subscription prices, it is also possible to impose a type-de-
pendent price increase that compensates the reward, i.e., such that

is still satisfied.
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The marginal utility with mechanism is

(18)

where

and (19)

Notice that in (18), there is no term corresponding to the
variation of the aggregate due to the variation of a user’s deci-
sion. This is because, in the nonatomic game, users are negli-
gible and do not account for the variation of induced by their
action when taking their decision. In (18) and in all future oc-
casions, we abuse notation by denoting with a partial derivative
w.r.t. the marginal quantities corresponding to variations fol-
lowing the variation of a user’s action.
For both mechanisms, the marginal reward is indepen-

dent of the individual contribution . Due to the term
in (18), the marginal utility decreases when increases. Intu-
itively, if the congestion is lower at peak time, a user would
want to use it more. Hence, he would want to reduce less his
peak-time demand. This decrease of the marginal utility is ac-
centuated by the term in the case of the
fixed-budget reward mechanism.

IV. ANALYSIS

In this section,6 we show that, for each mechanism, there ex-
ists a unique Nash equilibrium. Then, we show that for appro-
priate values of the mechanisms parameters, they achieve so-
cial optimum, and that for a wide range of parameters, both
mechanisms are welfare-improving. Finally, we compare the
two mechanisms based on their sensitivity to imperfect infor-
mation about the user utilities.
For clarity, we will use the following notation:

and are the
nonatomic games where users selfishly optimize their own
utility (14) in the fixed-budget rebate mechanism and in the
time-of-day pricing mechanism, respectively. We denote with
the superscript the quantities at equilibrium in both games,
and we explicitly write their dependence on and or on other
parameters whenever necessary to avoid ambiguity. Similarly,
we denote with the superscript the social optimum quantities
corresponding to the maximization of (5), and denote explicitly
their dependence on parameters whenever necessary.

A. Nash Equilibrium Existence and Uniqueness

We define a Nash equilibrium of the nonatomic game
as a function such that for all

. Due
to the strict concavity of the utility , it is equivalent to
satisfying the first-order conditions (FOCs)

(20)

where is given by (18), and satisfying (11).

6Some of the first results of this section appeared in [8] for the fixed-budget
rebate mechanism. They are extended here to handle both mechanisms.

Fig. 1. Illustration of the fixed-point equation (21) for Example 1. The dash-
dotted line corresponds to the amount that users shift [right-hand side (r.h.s.)
of (21)]. The dashed and solid lines correspond to the aggregate amount
that users would want to shift [left-hand side (l.h.s.) of (21)] given has been
shifted for the fixed-budget rebate and time-of-day pricing mechanisms, respec-
tively. To obtain , parameters were set to
and /Gb. The corresponding subscription price increase is $5.50.

The first theorem establishes existence and uniqueness of the
Nash equilibrium for both incentive mechanisms.
Theorem 1: For the fixed-budget rebate mechanism, for any

, there exists a unique Nash equilibrium .
The same result holds for the time-of-day pricingmechanism,

for any .
Intuitively, for a given level of public good , each user of

type chooses his best response contribution
tomaximize his utility. Then, integrating the contribution

of each type gives the amount of public good that
users want to provide in response to a given . An equilibrium
occurs when both quantities are equal, which corresponds to
solving the fixed-point equation

(21)

Fig. 1 illustrates the two terms of the fixed-point equation for
both mechanisms. As we mentioned, a key feature of our model
is that the higher the level of public good is (i.e., the lower
peak-time congestion is), the fewer users are willing to reduce
their peak-time demand (the marginal utility (18) is decreasing
in ). Therefore the aggregate best response de-
creases when increases, and this decrease is faster for the
fixed-budget rebate mechanism for which the marginal utility
decreases faster. Moreover, is continuous, which
leads to a unique fixed point. The continuity of is
due to assumption (A2) (a linear cost of shifting could induce
discontinuities where a slight modification of would make
some users switch from not reducing their peak-time demand to
reducing it by ).

B. Social Optimum

We now show that the social optimum is unique and coincides
with the Nash equilibrium of both mechanisms for parameters
and given in the next theorem.
Theorem 2: The following characterizes the social optimum.
i) There exists a function , uniquely determined almost-
everywhere, that maximizes the aggregate welfare (5).

ii) For the fixed-budget rebate mechanism, we have
almost everywhere (and hence

) for , where

(22a)
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TABLE I
EFFECT OF THE INCENTIVE MECHANISMS ON CONGESTION FOR EXAMPLE 1

(CF. FIG. 1). THE RIGHT COLUMN CORRESPONDS TO ANY OF THE
TWO MECHANISMS WITH ITS OPTIMAL PARAMETERS

AND /Gb (I.E., TO SOCIAL OPTIMUM)

The same result holds for the time-of-day pricing mech-
anism for , where

(22b)

Intuitively, this result holds because the externality faced by
a user in the game corresponding to any mech-
anism is independent of his type. Therefore, by fixing a reward
that is also independent of the type, it is possible to achieve so-
cial optimum (similarly to a Pigovian tax [31]).
For Example 1, Table I illustrates the effect of the incen-

tive mechanisms with the optimal parameters of Theorem 2:
They permit a 180% increase of the aggregate welfare that, in
our model, also corresponds to a 180% increase of the average
utility of each user over the timescale of a month. Peak-time
congestion is significantly decreased: The load is decreased by
7%, but the average delay drops by 90%. On the other hand,
off-peak-time decongestion is hardly increased.

C. Nash Equilibrium Variation With the Mechanism
Parameters

In this section, we investigate the variation of the equilibrium
quantities when the mechanism parameters and vary. For
ease of exposition, we first assume that the participation con-
straint (6) is not imposed (we will come back to the effect of
the participation constraint later in this section; see Proposition
4). Then, we have the following results on the variations of the
equilibrium contributions.
Proposition 1: If the participation constraint (6) is not

imposed, for the fixed-budget rebate mechanism, we have the
following.
i) For any ; the
inequality is strict if .

ii) For any ; the inequality
is strict if .

iii) There exists a threshold such that, for any
for all and .7

The same results hold for the time-of-day pricing mechanism
by changing to everywhere.
Intuitively, since the marginal utility (18) increases with the

reward parameters, the equilibrium contributions of each user
increase [result (i)], and similarly for the equilibrium level of

7To avoid ambiguity on the definition of the thresholds , we assume that
they are the smallest possible such thresholds.

public good [result (ii)]. The existence of the thresholds and
[result (iii)] is a consequence of Assumption (A3), which means
that reducing even the last bit of his peak-time demand implies
a finite marginal cost for the user, which can be compensated by
a large-enough reward. Clearly, a case with such a large reward
will not happen in practice, nevertheless we include it here for
completeness of the model analysis.
Proposition 1 implies that for large enough parameters, the

equilibrium level of public good will be positive. Let us define,
for the fixed-budget rebate mechanism, as the smallest pa-
rameter value such that for , and similarly
for the time-of-day pricing mechanism. Then, we have the fol-
lowing result characterizing these thresholds.
Proposition 2: For the fixed-budget rebate mechanism,
, i.e., for any (if the participation con-
straint (6) is not imposed).
For the time-of-day pricing mechanism, .
The intuition behind Proposition 2 is as follows. For the fixed-

budget rebate mechanism, for any , themarginal reward is
infinite at . All users want to contribute, hence this is not
an equilibrium. In contrast, for the time-of-day pricing mecha-
nism, the marginal reward is constant. If it is small enough so
that the marginal utility of almost all user types is nonpositive
at , then it is the equilibrium.
Note that Proposition 2 holds independently of the value

of and is consistent with Theorem 2. In particular, if
, then social optimum is achieved at Nash equilibrium

for the fixed-budget rebate mechanism only for ,
whereas social optimum is achieved at Nash equilibrium for
the time-of-day pricing mechanism for any smaller than .
The next proposition describes the evolution of the aggregate

welfare with the mechanism parameters.
Proposition 3: If the participation constraint (6) is not im-

posed, for the fixed-budget rebate mechanism, the equilibrium
aggregate welfare is increasing in , decreasing
in , and constant for .
For the time-of-day pricing mechanism, the equilibrium ag-

gregate welfare is constant on . For , the
same results as for the fixed-budget rebate mechanism hold by
changing to everywhere.
Proposition 3, illustrated in Fig. 2, shows that the welfare is

unimodal. If , it increases to its only maximum at or
and then decreases. If (hence and ),

the welfare is maximal at or (i.e., with no incentive
mechanism), and it only decreases (after a constant phase for the
time-of-day pricing mechanism).
In extreme cases where the reward parameter is too large,

the equilibrium aggregate welfare may become negative. For
instance, consider a case where the usage-based price is so
high compared to the off-peak-time utility that all users
have zero off-peak-time demand. If the reward is larger than
or , then users would not use the service at all and the aggregate
welfare would be . In that case, the participation
constraint is not satisfied, hence users will simply not buy the
service. The next proposition, which is easily derived using the
monotonicity of Proposition 3, describes how the previous re-
sults are changed when introducing the participation constraint.
Proposition 4: If the participation constraint (6) is imposed,

for the fixed-budget rebate mechanism, there exists a threshold
such that we have the following.



654 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 2, APRIL 2014

Fig. 2. Variation of the equilibrium aggregate welfare with the reward pa-
rameter for Example 1: (a) for the fixed-budget rebate mechanism; (b) for the
time-of-day pricing mechanism.

i) For all , all the users buy the monthly sub-
scription, and the results of Propositions 1–3 hold.

ii) For all , no user buys themonthly subscription,
hence the welfare is zero.

The same results hold for the time-of-day pricing mechanism
by changing to everywhere.
The effect of the participation constraint is simple: Below a

threshold or , all the users participate, and above this
threshold, no users participate. This is due to our assumption
that the population is homogeneous at the timescale of a month.
Since users are offered a monthly subscription, they will buy
it if the expected utility over the month is positive, which is
equivalent to the aggregate welfare being positive. Due to our
assumption that the welfare is positive without any incentive
mechanism, we have , i.e., the welfare is positive
for any . The threshold can even be infinite if the
off-peak-time utility is high enough and the usage-based price is
small enough so that users have positive utility over the month
even without using the peak time.
The last result, which is a direct consequence of the previous

results of this section, shows that both mechanisms are welfare-
improving for a wide range of parameters.
Corollary 1: If , the fixed-budget rebate mechanism

is strictly welfare-improving for any parameter in a range
where

The same results hold for the time-of-day pricing mechanism
by changing to everywhere, and 0 to .
This result is important as it shows that, by implementing an

incentive mechanism with a parameter lying in a wide range
around an optimal parameter, the provider can increase welfare.
Fig. 2 shows that for Example 1, the time-of-day pricing mech-
anism with any parameter in is welfare-improving,
and the fixed-budget rebate mechanism with any parameter in

is welfare-improving. However, a consequence of
Proposition 3 is that both mechanisms can “overshoot”: If or
is too large (larger than or ), can be larger than
, and the aggregate user welfare is suboptimal. In a compet-

itive environment, a provider would not intentionally choose
an overshooting parameter because it would be a competitive
disadvantage as compared to a provider choosing an optimal
parameter. However, if the provider has imperfect information
about user utilities, it may overshoot unintentionally. Fig. 2
suggests that in this case, the aggregate welfare remains higher
for the fixed-budget rebate mechanism than for the time-of-day
pricing mechanism. In Section IV-D, we investigate in detail
the robustness of each mechanism to imperfect information
about user utilities.

D. Comparison of the Two Incentive Mechanisms

In this section, we compare the sensitivity of the two
incentive mechanisms to imperfect information about user
utilities. Let the games and

correspond to the baseline case
of perfect information considered in the previous sections, and
suppose that and have been chosen according to (22) to
induce a socially optimal level of public good at equilibrium
(i.e., ). We assume that . We analyze
the variations in equilibrium and in social optimum when

and are maintained for the respective mechanisms and
utilities are perturbed (i.e., actual utilities are different from the
estimation used by the provider to set the parameters).
We restrict our analysis to the case where only the cost of

shifting is perturbed and the rest of the utilities are unchanged.
Indeed, we argue that it is more difficult to obtain data on the
time preferences (the willingness to move demand from peak
time to off-peak time) than on the total demand or on the sensi-
tivity to delay. Therefore, the cost of shifting is more likely to
be imperfectly estimated by the provider. We consider the fol-
lowing general form of the perturbed cost of shifting:

(23)

where is a real number and is a continuously
differentiable function satisfying

Parameter is the perturbation magnitude, and function
is the direction of the perturbation. For the analysis, we restrict
to small perturbations, i.e., small. For small enough, the
perturbed functions satisfy Assumptions (A2) and (A3).
We assume that the perturbation direction is such that the aggre-
gate best response has a nonzero perturbation at the order one in
at the point (the nonperturbed equilibrium). Otherwise, the
equilibrium point would not be changed by the perturbation. For
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numerical illustrations, we will use the following simple pertur-
bation that satisfies the above conditions: for all
types , i.e., is scaled by a factor independent
of the type.
Let and be the equilibrium levels

of public good in the games with perturbed utilities
and ,

respectively. Let and be the corresponding
equilibrium welfares. Let and be the socially
optimal level of public good with perturbed utilities and the
corresponding welfare resulting from the maximization of (5)
where is replaced by . To evaluate the variation of

with the perturbation, we need to evaluate the variation
of the aggregate best response [recall that is the
fixed-point of ; see (21)]. (The variation of is
handled similarly since from Theorem 2, the social optimum
can also be seen as a Nash equilibrium in a mechanism
with unit reward given by (24c).) For this purpose, we intro-
duce, for each mechanism , the quantity
equal to the opposite of the slope of at the common
nonperturbed equilibrium point [see (33)]. We
define the following conditions.

(C1) .

(C2) .

If the slopes ’s for the different mechanisms are close enough,
these conditions reduce to the following more intuitive condi-
tions (see details in Appendix G-B):
(C1 ) , at ;
(C2 ) , at ;
where are the respective derivatives of the unit
rewards

(24a)

(24b)

(24c)

Then, we have the following results.
Proposition 5: There exists such that, for any pertur-

bation (23) with and , the following holds.
i) If Condition (C1) is satisfied, then

ii) If Condition (C2) is satisfied, then

The intuition behind Proposition 5 is the following: The
mechanism with the unit reward closer to the optimal unit
reward has an equilibrium closer to the social optimum
equilibrium . Since and are both de-
creasing functions, one expects to be closer to
than . It is often the case. The fact that decreases
when increases is the closed-loop effect: The more users
reduce their peak-time demand, the lower is the incentive
to reduce it. However, if decreases much faster than

Fig. 3. Variation of the equilibrium amount of public good when func-
tions are scaled by a factor starting from the baseline case: (a) for
Example 1; (b) for Example 2.

can be closer to . This possibility is
covered by case (ii) of Proposition 5.
Fig. 3 illustrates the result of Proposition 5 with the perturba-

tion for all . As it turns out, Example 1
[Fig. 3(a)] falls in case (i) of Proposition 5 (see the unit rewards
on Fig. 4); hence, the fixed-budget rebate mechanism remains
closer to social optimum than the time-of-day pricing mecha-
nism. This is due to fact that the sensitivity to congestion is
“strongly convex,” i.e., function (12) is far from linear.
Hence, the optimal unit reward (24c) decreases “fast,” as for
the fixed-budget rebate mechanism. For the sole purpose of il-
lustrating numerically case (ii) of Proposition 5, we construct
the following example.
Example 2: Everything is defined as in Example 1, but the

disutility function is artificially contrived to have
. (The factor is chosen to

yield the same social optimum level of public good than in
Example 1 when .)
Example 2 is a contrived example where is almost linear

so that the optimal unit reward is almost constant, as in
the time-of-day pricing mechanism. As a result, the time-of-day
pricing mechanism is closer to social optimum [Fig. 3(b)].
Proposition 5 compares the distance between and

for the two incentive mechanisms, when utilities are perturbed.
It holds for all perturbation directions (satisfying
the conditions mentioned above). However, the direction of the
variation of and depends on the perturbation direc-
tions . With the simple perturbation where

for all , Fig. 3 shows that and decrease
when increases (this could also be easily derived analytically
from the proof of Proposition 5). Intuitively, if users are less
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Fig. 4. Unit reward as a function of : (a) for Example 1; (b) for Example 2.

willing to contribute due to a high cost of shifting, the equilib-
rium and social optimal amount of public good will be lower.
With a general perturbation, the variation of and is de-
termined by the variation of the aggregate best response
at the point when the utilities perturbation is introduced.
From Proposition 5, we deduce the following result.
Theorem 3: There exists such that, for any perturba-

tion (23) with and , we have the following.
i) If Condition (C1) is satisfied, then the fixed-budget rebate
mechanism is more robust than the time-of-day pricing
mechanism

ii) If Condition (C2) is satisfied, then the time-of-day pricing
mechanism is more robust than the fixed-budget rebate
mechanism

Theorem 3 is our main robustness result. It establishes which
of the two mechanisms remains closer to optimal after the per-
turbation, in terms of welfare, i.e., in terms of user expected
utility over the timescale of a month (see Section III-B). The
conditions of Theorem 3 are the same as in Proposition 5:Mech-
anism is more robust if its unit reward is closer
to the optimal unit reward. Since Example 1 satisfies Condi-
tion (C1) (due to “strong enough” convexity of the sensitivity to
congestion), the fixed-budget rebate mechanism is more robust.
It means that if the provider chooses the parameters based on an
imperfect estimation of the cost of shifting , the welfare of
a population of users whose actual cost of shifting is will

Fig. 5. Variation of the aggregate welfare when functions are
scaled by a factor starting from the baseline case: (a) for Example 1;
(b) for Example 2. For readability and robustness comparison, the difference

is plotted.

TABLE II
EQUILIBRIUM FOR EXAMPLE 1, WITH UTILITIES PERTURBED BY A SCALING OF
FACTOR WITH . THE PARAMETERS ARE CHOSEN BASED ON

UNPERTURBED UTILITIES: AND /Gb (SEE FIG. 1)

be higher with the fixed-budget rebate mechanism than with the
time-of-day pricing mechanism. Similarly, if the cost of shifting
was varying according to a given probability law and parameters
and were chosen based on expectations, the fixed-budget re-

bate mechanism would give a higher expected welfare.
Fig. 5 illustrates our robustness results for a simple pertur-

bation. It shows that our analysis with close to zero extends
to larger perturbations. The numerical values for Example 1 are
reported in Table II: For a 50% error in the cost-of-shifting es-
timation , the welfare is 20% below optimal with the
time-of-day pricing mechanism, whereas it is only 0.3% below
optimal with the fixed-budget rebate mechanism.

V. CONCLUDING REMARKS

This paper provides a comparative analysis of two in-
centive mechanisms of reducing peak-time congestion in
Internet broadband access: a fixed-budget rebate mechanism
inspired by the economic literature on public good provision
by means of lotteries, and a more standard for the network
literature time-of-day pricing mechanism. The fixed-budget
rebate mechanism can be interpreted as probabilistic pricing:
In this mechanism, each user’s reward depends not only on his
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contribution, but also on the contribution of the other users.
We suggest that this mechanism has two advantages relative
to the time-of-day pricing mechanism with given prices for
specific time-slots. First, the fixed-budget rebate mechanism
is easy to implement via lottery-like scheme(s), for which a
total user reward is announced by the ISP in advance. Second,
it has built-in self-tuning, which appears to be attractive in
environments with imperfectly known demand.
Our paper uses a simplified model to provide a theoretical

structure that permits to understand the benefits of the fixed-
budget rebate mechanism over more standard approaches. The
deployment of the mechanism will raise a number of practical
questions. In particular, the ISP has to decide at which scale to
deploy the mechanism: Deploying it at the scale of a base sta-
tion would involve too precise monitoring, whereas deploying it
region-wide would face the issue that users do not all share the
same access bottleneck.We believe that such decision should be
made based on historical statistics on each bottleneck that are
accessible to ISPs. Our model also considers only two time pe-
riods, whereas it could be useful for an ISP to use a finer subdi-
vision of the day. Again, we believe that the number of time pe-
riods should be determined using historical data available to the
provider. The fixed-budget rebate mechanism could be easily
extended to multiple time periods, and we believe that it would
remain more robust than the time-of-day pricing mechanism.
In our model, we considered a monopolist, and the reward

was financed by an increase in the subscription price. We
showed that both mechanisms still improve each user’s average
utility. In different scenarios, if the subscription price cannot
be increased, it would be possible to finance the reward by
a different means, e.g., by the reduction of the congestion
cost or by the higher number of customers that the provider
could accommodate with the same infrastructure due to lower
congestion.
Our model focuses on user welfare maximization rather than

on the cost savings for the ISP. However, we believe that both
objectives are consistent, as in an competitive environment, in-
creasing user welfare allows either to accommodate more users
with the same capacity or to reduce the capacity provisioning
costs for the same user base. A quantitative analysis of these
questions would require modeling of the cost structure and of
the competition (we could typically assume perfect competi-
tion) and is left as future work.
To implement in practice the fixed-budget rebate mechanism,

an ISP will need to track separately the consumption at peak
and off-peak time. However, such separate accounting is also
needed for the time-of-day pricing mechanism and is already
technically possible in most settings (mobile access, electricity
with smart meters, etc.). The use of probabilistic pricing also
raises the question of contention billing and verifiability. How-
ever, these transparency issues are the same as in many other
contexts where they have been successfully solved (state lot-
teries, casinos, etc.). For instance, inspection techniques similar
to those used for gambling [32] could be used here.
While our motivating application is telecommunications,

we believe that the fixed-budget rebate mechanism could be
modified for use in other applications such as electricity and
transportation networks. In the case of electricity demand
management, privacy and security considerations make our
mechanism advantageous relative to real-time pricing. Indeed,

our mechanism requires no real-time user–dispatcher com-
munication. In addition, unlike currently suggested real-time
pricing mechanisms (e.g., [33]), our mechanism requires only
aggregate data. We plan to explore these other applications in
future work.

APPENDIX A
PROPERTIES OF THE COST OF SHIFTING

Let . First, we show that the function ,
defined by (10), is differentiable on . By assumption, the
function is differentiable so
we only need to show that the function

at is differentiable on . Since the function
is twice differentiable increasing strictly concave by

assumption, the function is twice differentiable
strictly concave. Let be its maximum on . Then

if
if

If (hence ),
or if (hence ),
then is clearly differen-
tiable on . If , we need to show that

is differentiable at the point
. However, since is an interior maximum, we

have , therefore both the left and right
derivatives of at are zero.
Next, to show that the function is strictly

convex on , we show that its derivative is increasing.
By assumption that is strictly concave, the derivative of

is increasing. Moreover,
the derivative of is increasing
on and constant on . Therefore, the
derivative of is increasing.
Lastly, we show that is increasing on .

If , the result is trivial. If , by definition of
. Hence, since we have shown that is

increasing, we have , which gives
the result.

APPENDIX B
PROOF OF THEOREM 1

Let and be fixed, and let . For a given
, the best response [solving the FOCs (20)] defines amea-

surable function given for all
by

if
if

otherwise.
(25)

Due to Assumption (A2), is strictly increasing, hence in-
vertible and with an increasing inverse function. Therefore, (25)
uniquely defines . Let

(26)

be the aggregate best response. By definition and strict con-
cavity of the utility function, a measurable function
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is a Nash equilibrium if and only if there exists
satisfying the fixed-point equation (21) such that
. To conclude the proof, we show that (21) admits a

unique fixed-point (see illustration in Fig. 1).
Lemma 1: There exists a unique solution of (21).
Proof: The r.h.s. of (21) is clearly a strictly increasing

continuous function of , from to .
For the l.h.s. , first note that it is a continuous

function of . Indeed, due to Assumption (A2),
is strictly increasing continuous, hence is continuous
in for all . Moreover, the function

is dominated by the constant function equal to (i.e.,
), which is integrable w.r.t. . Therefore, for

any and for any sequence that converges
to , we have pointwise (by con-

tinuity of w.r.t to for all ) and by Lebesgue
dominated convergence theorem

Clearly, the l.h.s. is also a nonincreasing func-
tion of taking values in . Therefore, there is a unique
fixed-point of (21).

APPENDIX C
PROOF OF THEOREM 2

We first prove (i). Let be the set of functions
such that , and let be the set of
functions . Consider the aggregate welfare (5)
as a functional on taking values in

Since is compact and the functional is continuous, it
has a maximum (see [34, p. 152, Corollary 38.10]). Let
be such that is maximal, and let

Define the three subsets of : , and , where
and , respectively. We now derive

necessary conditions for to maximize in each subset.
We start with the subset corresponding to interior points.

Let be such that for all . We define
the directional derivative (also called Gâteaux derivative) of
around in the direction as

Then, we have

where the exchange between limit and integration in the last
term (giving ) is justified by Lebesgue’s dominated
convergence theorem whenever .
This holds here due to Assumption (A3).
For to be optimal, it is necessary that , i.e.,

For this to hold for any function such that for all
, it is necessary that we have

(27)

for almost all , i.e., for almost all such that
.

We now treat the case of subset , which corresponds to the
points of the lower boundary. Let be such that for
all and for all ; that is, is a direction
that “pushes up” the values of that are at zero. The directional
derivative of around in the direction is defined similarly
to the previous case, but with a limit

which gives

For to be optimal, it is necessary that , i.e.,

For this to hold for any function such that for all
and for all , it is necessary that

(28)

for almost all , that is for almost all such that .
The case of subset is handled similarly and yields the

necessary condition

(29)

for almost all such that .
In summary, (27)–(29) show that for function to maximize
, it is necessary that is solution of the FOCs (20) where

is replaced by . By Assumption (A1),
this is a decreasing function of . Therefore, the same proof
as for Theorem 1 shows that is uniquely determined almost-
everywhere.
We now prove (ii). From the proof of part (i), it is clear that

if (resp. ), then the FOCs (20) at a Nash equi-
librium coincide with the optimality condition, which gives the
result.

APPENDIX D
PROOF OF PROPOSITION 1

We provide the proof for the fixed-budget rebate mechanism
. It is the same for the time-of-day pricing mechanism.

We first prove (i) using three cases.
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Case 1: If , then the result is obvious.
Case 2: If , then we have

for almost all , which implies
. Hence, .

Case 3: If . For a given
of (25) is nondecreasing when increases to , and strictly
increasing for ’s s.t. . Since the
set of such ’s is of positive measure, the new fixed-point has

.
From (i), (ii) follows clearly.
We finally prove (iii). The existence of the threshold fol-

lows from the fact that , hence

for almost all beyond [due to
Assumption (A3)].

APPENDIX E
PROOF OF PROPOSITION 2

For the fixed-budget rebate mechanismwith , if ,
the unit reward is infinite, hence each user wants to contribute
positively. Therefore, is not an equilibrium.

APPENDIX F
PROOF OF PROPOSITION 3

We provide the proof for the fixed-budget rebate mechanism
. It is the same for the time-of-day pricing mecha-

nism. Let , and denote for simplicity and
. Using the notation of the proof of Theorem 2

(Appendix C), the derivative of the welfare around in the di-
rection is

Suppose first that and consider the direction
such that

By Proposition 1, we have and
for almost all . Therefore, we have for all

and for (recall that , and
are the subsets of where , and ,
respectively). Moreover, we have

for all . Indeed, in
and

(by concavity of ) and
. In

and and
. We conclude that , therefore

increases with .
The case is handled similarly, and if ,

the equilibrium does not vary with by Proposition 1(iii).

APPENDIX G
PROOF OF PROPOSITION 5

A. Proof of the Proposition

From the proof of Theorem 1, we know that for any mech-
anism is the fixed-point solution of (21).

Here, we explicitly write the dependence in the mechanism, i.e.,
for mechanism , we denote by the individual best

response (25), and by the aggregate best response
(26) to a given . We use the notation (rather than

) for the unit reward [see (24)]. From the proof of Theorem
2, we know that is found as the fixed-point solution of the
same equation (21) with defined by (24c).
Therefore, we will use the notation , which empha-
sizes this similarity and helps shorten the proof’s notation.
Before evaluating the variations of the equilibrium with ,

note that when (baseline), we have the same equilibrium

(30)

and the same unit rewards at equilibrium

if (31)

When , functions are perturbed. For a given
, the aggregate best response is modified accordingly.We

denote by the new aggregate best response. Recall

that we also denote by the new equilibrium point that

is the fixed point of . The following lemma readily
implies the result of Proposition 5.
Lemma 2: For any , we have

(32)

where

is a first-order quantity in independent of the mechanism ,
and

(33)

Proof: First note that is continu-
ously differentiable with respect to , and by assumption,
the first-order term in is nonzero. Moreover, due to (31),

is independent of the mechanism [see (26)
and (25)], and so is .
Starting from the point , at the

first order, decreases linearly when increases.
Therefore, it can be seen geometrically that it will cross again
the first bisector at the new equilibrium point

(34)

where is the slope of the curve at

, i.e.,

(35)

From (34), it is easy to see that since is first-order in , the
first-order term in the Taylor series of will give a second-
order term in the Taylor series of . Therefore, we can
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restrict the series of (35) at the order zero: ,
which directly gives the desired result (32).

B. Reduction of (C1) and (C2) to (C1 ) and (C2 )

We have

where

(36)

and is the subset of ’s for which .

At is independent of the mecha-
nism , so that (31) shows that is independent of
the mechanism . Denoting by the common
value, we have for all

If we assume that for is small, then

With this, Conditions (C1 ) and (C2 ) are easily deduced from
(C1) and (C2).

APPENDIX H
PROOF OF THEOREM 3

We consider the aggregate welfare (5) as a function of :
. We have . The result

of Theorem 3 is then deduced from Proposition 5 using a Taylor
expansion around : For
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