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Abstract— Automatic recognition of human actions in video
has been a highly addressed problem in robotics and computer
vision. Majority of the recent work in literature has focused on
classifying pre-segmented video clips, and some progress has
also been made on joint detection and recognition of actions
in complex video sequences. These methods, however, are not
designed for wireless camera networks where the sensors have
limited internal processing and communication capabilities.

In this paper we present an efficient system for the joint
detection and recognition of human actions using a network of
wireless smart cameras. The foundation of our work is based on
Deformable Part Models (DPMs) for detecting objects in static
images. We have extended this framework to the single-view and
multi-view video setting to jointly detect and recognize actions.
We call this the Deformable Keyframe Model (DKM) and
tightly integrate it within a centralized video analysis system.
In our system, feature extraction is locally performed on-board
wireless smart cameras, and the classification is performed
at a base station with higher processing power. Our analysis
demonstrates that this decoupling of the the recognition pipeline
can significantly minimize the power and bandwidth consumed
by the wireless cameras.

We experimentally validate our DKMs on two data sets.
We first demonstrate the competitiveness of our algorithm
by comparing its performance against other state-of-the-art
methods, on a publicly available dataset. Then, we extensively
validate our system on a novel dataset called the Bosch Multi-
view Complex Action (BMCA) dataset. Qur dataset consists
of 11 actions continuously performed by 20 different subjects
while being captured by cameras located at 4 different vantage
points. In our experiments, we demonstrate that the presence
of multiple-views improves the performance of action detection
and recognition by about 15% over the single-view setting.

I. INTRODUCTION

Traditional Closed Circuit TV (CCTV) camera based
surveillance systems typically consist of several wired cam-
eras distributed within a building and the surrounding site,
transmitting video streams to a control room as shown in Fig.
1. The security personnel employed are expected to monitor
activity on all the video feeds, due to which several events
can go unnoticed. Further, for applications such as indexing
and retrieval of surveillance video, manual methods can be
extremely time consuming, monotonous and stressful.

In the computer vision and robotics research communities,
on the other hand, significant progress has been made in
the areas of action recognition [1]-[8]. Most of this work
has focussed on automatically recognizing human actions
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in publicly available datasets composed of pre-segmented
video clips [1], [8]. The methods developed have primarily
addressed variability in scale of the subjects, background
clutter suppression and handling occlusions in the video clips
[9]. These methods, however, are not directly applicable
to surveillance systems as the temporal segmentation of
continuous video is a challenging problem. Some recent
works have focussed on partitioning the temporal segmen-
tation and recognition process for long video sequences
[10], [12]. However, these methods perform poorly, as low-
level temporal cues are generally not discriminative enough
for precisely partitioning the video. Some algorithms have
also been developed for detecting and recognizing actions
in generic video sequences [11], [23], [24]. These methods
typically require a lot of processing at the image level,
therefore making them hard to implement on a wireless smart
camera.

In this paper, we present a novel system for simultaneous
detection and recognition of human actions in wireless smart
camera networks. Our system is capable of handling video
sequences captured by a single camera or multiple cameras
with overlapping views. Our system is partitioned into dis-
tributed feature extraction (performed on the wireless smart
cameras) and centralized spatiotemporal multi-view activity
detection and recognition (performed at a base station). Each
wireless camera in our system is capable of extracting, en-
coding and transmitting a descriptor vector corresponding to
foreground objects of interest in every frame where motion is
detected. At the base station, descriptor vectors from a single
or multiple camera sources are fused within a graphical
model framework for localizing and recognizing actions of
interest. Our graphical model framework is based on the



famous Deformable Part Models (DPMs) for object detection
in static images proposed by Felzenszwalb et al. [13]. We
have extended the DPM framework to the spatiotemporal
setting for both single and multiple view video streams. At its
core, our algorithm replaces part appearance templates of the
DPM by class-specific keyframes, and enforces spatiotempo-
ral constraints between pairs of keyframes in the single-view
setting. In the multiple-view setting, homography constraints
[14] induced by the ground plane are used to enforce spatial
connectivity between object regions in images from pairs of
cameras.

The exposition of our paper is as follows. In section II
we provide a brief literature review of activity recognition,
while focussing on recent work that address similar problems
as ours. We present our overall system pipeline in section
IIT and discuss those basic elements of our pipeline that
are drawn from previous work. The primary contribution
of our paper is the centralized, multi-view spatiotemporal
action detection and recognition algorithm and is presented
in section IV. We validate the performance of our algorithm
by performing experiments on standard and novel datasets,
as presented in section V. Section VI provides a conclusion
and an outline for future work.

II. LITERATURE REVIEW

Spatiotemporal bag-of-word representations are amongst
the most popular approaches for action recognition because
of their ease of use, and high discriminating capabilities [3],
[8]. They have successfully been employed in both single
view [10], [15], [16] and multi-view settings [6]. Although
they work very well on temporally segmented video clips,
they cannot be extended to action detection directly, as they
ignore spatial and temporal relationships between discrimi-
native templates. Further, detecting and describing spatiotem-
poral interest points would require significant processing,
which can be a challenge for a low-power smart camera.

Other spatiotemporal template and filter based methods
have also gained significant traction for action detection and
recognition. Gorelick et al. [1] extract foreground silhouettes
of moving people and use them to construct volumetric
features for action recognition. Rodriguez et al. [4] use
MACH filter responses to detect actions of interest. Ali
& Shah [17] extract kinematic features from images to
recognize actions. [9] provides an excellent survey of similar
state-of-the-art methods. All these methods, however, require
features extracted from every frame in a temporal volume.
Thus, they would not work well within our framework, where
the frequency of sampling images and transmitting extracted
features needs to be variable in order to accommodate
varying bandwidth constraints.

In the image based human pose and object detection
literature, DPMs have gained a lot of popularity [13], [18].
Such human pose detectors have been fused with traditional
image segmentation techniques to extract foreground pixels
corresponding to people in static images [19]. Niebles et al.
adapted the DPM framework to temporal action detection
[11]. Tian et al. [23] and Lan et al. [24] have extended

the framework to the spatiotemporal setting. While these
methods are similar in spirit to our algorithm, their focus
is on generic videos where no assumptions can be made
regarding the background. Thus, these methods are very
computationally intensive and cannot be easily adapted to
wireless surveillance applications. Further, it becomes ex-
ponentially complex to extend their inference algorithms
to multi-view scenarios, even after incorporating epipolar
constraints.

Generative methods for activity recognition have been
extensively addressed by the computer vision and con-
trol community. Sminchisescu et al. [25] have proposed
conditional models for human action recognition. Fox et
al. [26] and Tao et al. [27] have used Hidden Markov
Models with Dirichlet and sparsity priors respectively for
action and gesture recognition. Niebles et al. [15] have used
Probabilistic Latent Semantic analysis for learning human
actions in an unsupervised setting. Wang er al. [21] have
used HMMs to recognize actions performed by gymnasts
in multi-view settings. 3D exemplar based HMMs are used
by Weinland er al. [22] to recognize actions in arbitrary
views of camera networks. All these generative methods
tend to perform poorly in the presence of actions that are
not pre-defined during training. Further, in real surveillance
settings, transition probabilities are very hard to estimate as
different people being tracked might have different goals and
destinations.

Some recent works on joint segmentation and recognition
of human actions have addressed a problem related to ours.
Shi et al. [28] introduce a Semi Markov model framework to
capture the temporal structure of actions in video sequences.
They present a structured learning framework to learn the
parameters of their graphical model, and a Viterbi-style infer-
ence algorithm that works real-time on long video sequences.
Hoai et al. [29] employ a similar approach with a multi-
class SVM for learning model parameters and a slightly
different cost function for inference. While these methods
can be extended to our wireless surveillance camera setting,
they still require transmission of every frame captured by
the camera sensor, which can be challenging in resource
constrained settings. Further, since their framework is purely
temporal, multi-view information across pairs of cameras
cannot be easily utilized.

ITII. SYSTEM PIPELINE

Our system consists of multiple smart cameras communi-
cating wirelessly with a central processing station as shown
in Fig. 2. In our current framework, we assume that all the
cameras connected to the base station are viewing the same
scene from different vantage points, and that images from
all of them share some amount of overlap. We also assume
that the cameras are time synchronized, and that minimal
extrinsic calibration is available between pairs of cameras.
The details of our calibration and the spatiotemporal multi-
view recognition algorithm of the central processing station
are presented in the section that follows.
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Each wireless smart camera is capable of separating fore-
ground objects, extracting gradient features for each object,
and transmitting these features to the central processing
station. We use an off-the-shelf background subtraction
algorithm [30] to extract foreground object silhouettes in
each camera. The size of the bounding box around the
object can be used to determine the scale of the object.
Nonetheless, it is impossible to uniquely disambiguate the
size of the object and its distance from the camera as this
information is lost during perspective projection. For our
activity recognition application, however, we argue that the
scale encodes sufficient information, as the distance covered
by a smaller person translating closer to a camera can be
comparable to that covered by a larger person further away.

Some activity recognition papers use features computed
on silhouettes as inputs to their algorithms [1], [28], [29].
However, due to self occlusion, discriminative details within
the object boundary can be lost when using silhouettes. For
instance, this can be seen in the silhouette extracted by
the first camera in Fig. 2, where the arm of the person is
fully encapsulated by the boundary around his silhouette.
In order to utilize maximum information available in each
image, we extract HOG descriptors [31] within the bounding
box around the foreground object. Specifically, we use the
silhouette to extract the foreground pixels within the bound-
ing box, and apply a grid to the foreground region. The
number of rows and columns of the grid are kept constant
for all foreground regions. In our experiments we have used
5 x 5 grids for each foreground object. HOG descriptors
are extracted within each grid and vectorized to represent
the appearance of the foreground object. These appearance
descriptors along with the bounding box coordinates are
subsequently transmitted wirelessly to the central processing
station.

System Analysis: The processing performed on board

System pipeline. See text for details.

each wireless camera is largely stabilized, making it
amenable to deployment with minimal requirements for
firmware updates. Even in situations where the number of
action classes or the entire action recognition framework
changes, the basic operations performed on the smart camera
can remain unaltered. The primary purpose of feature extrac-
tion on-board the camera is to minimize the data transmitted.
In the current framework, only 800 bytes (5 x 5 x 32)
of data is transmitted for every object detected. Further,
we can leverage the sparsity of the feature descriptors and
utilize a compression scheme similar to that presented in
[29]. In comparison, H.264 video compression provides an
average bit rate of 64K bytes per image for 640 x 480
color images [32] (roughly 2 orders of magnitude higher)
with more complex processing performed on the imaging
platform. Although this analysis assumes that only one
object is detected in any frame, this is still a conservative
estimate of transmission savings, as there are going to be
situations where no people are present or moving in front
of the cameras. This leads us to believe that our system is
an attractive wireless alternative for automated surveillance
applications.

IV. SPATIOTEMPORAL MULTI-VIEW ACTION
RECOGNITION

A. DEFORMABLE KEYFRAME MODEL (DKM)

Single-view Model: Our keyframe based action detection
framework is closely related to the DPM model commonly
used for object detection [13]. We represent a video sequence
as D and any particular action as an N node directed graph,
G = (V,E). The nodes in the graph, V, correspond to
keyframes. Any given node ¢ € {1...N} has an anchor
position p; = (x;,y:,t;), where (x;,y;) represent the pixel
location of the center of the bounding box around an object
in the image, and ¢; represents the frame number in the video



Fig. 3. Multi-view graphical model that represents any particular
action. Filled nodes represent keyframes in reference camera, and
empty nodes represent keyframes in other two cameras.

sequence. Edges in the graph, F, specify which pairs of
keyframes are constrained to have relations. The framework
is very general and edges in the graph need not be successive.
For instance, jump edges can be used to connect nodes
corresponding to repetitive keyframes in cyclical actions.

The score, S, associated with a particular action model
and keyframe-labeling can be written as [13]:

S(p|D7W) = Z <wi7¢app(D7pi)>+ Z <wij7¢d€f(piapj)>
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where, ¢*PP(D,p;) is the HOG appearance descriptor of
the object detected at frame ¢; (see section III for details),
and ¢/ (pi,pj) models the deformation between pairs of
frames. In the single-view setting, the deformation is given
by ¢/ (pi,p;) = [dz,dz?, dy,dy?, dt,dt?], where dz =
Ti — Tj, dy = y; — y; and dt = t; — t;. For the right
match, the keyframe appearance template, w;, will have
a maximum inner product response with the appearance
descriptor at location p; in the video D. The deformation
weight w;; models the Mahalanobis distance between the
pairs of keyframes in the model, and its parameters need
to be learned during training. We address the learning of
appearance and deformation weights in section IV-C.

Multi-view Model: We extend our single-view keyframe
model framework to incorporate multiple cameras capturing
the same scene. In this case, we choose one reference camera,
and all other cameras are connected to it, thereby yielding a
directed graphical model as shown in Fig. 3. In this paper, we
do not model the spatiotemporal relationship between nodes
corresponding to each non-reference camera. This would,
however, be a straightforward extension as the introduction
of spatiotemporal edges in non-reference cameras would not
introduce any cycles in our directed graph.

The score function for the multi-view setting remains the
same as that in the single-view model in eqn. 1. The defor-
mation function between frames captured at the same time
instance from two views, however, needs to account for the
epipolar constraints between the views. In most surveillance
settings, it is common to have significant overlapping views
of the ground plane on which people move about. We use
the homography induced by this ground plane to enforce
pairwise constraints between views.

Specifically, we compute the ground plane homography,
HJ, between any camera [ in the network that shares scene
overlap with the reference camera r. Since the homography
is a linear transform that maps pixels in one view of a plane

Deformation constraints between reference view in the
middle and two other cameras viewing the scene. Deformation cost
modeled as spring connecting center of line between bottom corners
of each bounding box, as they lie on the ground plane. All three
images are captured at same time instant from three vantage points.

Fig. 4.

to another, it can be used to determine the distance between
object detections across views. Further, since the people in
the cameras’ fields-of-view are in contact with the ground
plane at most times, the centre of the line connecting the
bottom corners of the bounding box detection around them
can be used as a proxy for their 3D location in the scene.
Although this assumption can be easily violated when people
are closer to the camera, in surveillance applications, that
is unlikely as cameras are intentionally positioned far from
reach.

Given a pixel p' = (2!,y',1)T on the ground plane in
the [t" camera view, its position in the reference camera
can be estimated as p" = Hy p'. The deformation func-
tion for the two views can then given by ¢/ (pl pI) =
[dx, dx?, dy, dy?], where, [dz,dy] = (p" — H[p")T. Fig. 4
shows an example with deformation constraints between a
reference camera and two other cameras on either side of it.

)T

B. KEYFRAME SELECTION

Analogous to parts in DPMs for object detection, our
deformable keyframe models use appearance templates cor-
responding to keyframes as node potentials. Thus, it is
important for the same set of keyframes to be present in all
samples of a given action, at least while learning the model
parameters. We adopt the definition proposed by Bourdev &
Malik [34] to define keyframes in our setting: Given a set
of M training video samples {D;, ..., Dy} of any action,
the goal of keyframe selection is to find a subset of N
representative frames in each sample such that, similarly
selected representative frames of actions are tightly clustered
in 3D body configuration space. This process of supervised
clustering of keyframes can easily be done using motion
capture, where different subjects perform actions while si-
multaneously being recorded by a motion capture system
to capture their 3D pose and a camera network to capture
their appearance in multiple views. Using this method, we
can automatically obtain ground-truth keyframe labelings
{p1,..,pa}, for all the video samples. In our experiments,
however, we have manually annotated the keyframes as
we were unable to find any publicly available complex
action datasets captured using motion capture and traditional
cameras.

C. LEARNING

We employ a structured learning [33] approach to train the
parameters of our model for each action, ¢ € {1...C'}, where



C is the total number of actions in our database. Given a set
of M positive training examples {D,} (¢ = 1,2,...M) for
any action ¢, we are interested in learning the appearance
(ws’s) and deformation parameters (wfj’s) given in eqn. 1
that would produce the correct labeling {p,}. Since our
scoring function (1) is linear in these parameters, it can be
rewritten as

2

where, w® is a vector that includes all the appearance
and deformation parameters that need to be learned, and
®(Dy, pg) is the corresponding appearance and deformation
energy due to a certain labeling p,.

In our setting, we are also interested in discerning different
actions from each other, so we need to learn models that can
jointly detect and discriminate between different actions. We
adopt a one-vs-all learning policy for each action, and learn
the model parameters that can jointly detect and recognize
any particular action given hard negative examples of other
actions in the database.

We adopt the structural SVM framework of [33] and write
our learning objective as,

1
argmin — —[|[WZH A Y & A Y Mg
we (€4} {ng,4}202 zq: g

s.t. Vg, (Wcaq)(qupq) - Q(anﬁ» > A(pqaﬁ) - gq
Vq,q', (w©, ®(Dq,pq) — ®(Dy,pg)) = Alpg, Pg) — Ng,qs

where, A1, Ao are user defined scaling parameters to min-
imize slack values in the optimization.

The first constraint in eqn. 3 implies that for the same
class, any keyframe labeling p, other than the ground-truth
labeling p,, for the ¢'" data sample, needs to be penalized
according to the loss function A(py,p). The non-negative
slack term £, provides an extra level of robustness to account
for some violation of the constraint. The second constraint
implies that given any ground truth labeling p, for the g
sample of a particular action, any ground truth labeling p,/
of the {¢’'}*" sample of any other action sequence in the
database will produce a lower score after filtering through
another violation accommodating hinge-loss 714, 4/.

The objective of the loss function A(p,,p) is to reflect
how well a particular labeling hypothesis p, matches the true
labeling p,. We have adopted a simple binary loss function
with A(py,p) = 1 if p = p,, and A(pg,p) = 0 otherwise.
We employ the cutting-plane algorithm described in [33] to
solve our quadratic program (3).

Model bias: The learning procedure, however, does not
produce weights of the same magnitude for each action
class. Thus, the modeling score for each action class has an
associated bias b, that needs to be estimated and subtracted
from the final score during inference. In order to determine
the bias for each action class, we apply the learned model
for that action class to the training data samples and take the
median of these scores as the bias, i.e.,

S(pq|quWc) = (w¢, (I)(anpq» )

3)

b® = median{S (p1| D1, w), ..., S(par|Dps, W)} (4)

D. INFERENCE

In our detection and recognition setting, given a query
video sequence D, the inference problem is to find the best
action c*, and correspond labeling p*, that maximizes the
modeling score:

(S(ID,w®) =b%). (5

{c*,p"} = argmax

p,ce{l...C'}

Since our directed graph is a chain in the single-view and a

tree in the multi-view scenarios, inference can efficiently be
done via dynamic programming [13].

V. EXPERIMENTS

We evaluate our Deformable Keyframe Model (DKM)
framework in three scenarios. In the first scenario, we test
the discriminating capabilities of our model by performing
whole-clip recognition. In the second scenario, we test the
joint detection and recognition capabilities of our model
in a controlled setting by synthesizing a complex action
sequence by concatenating simple action video-clips. In the
final scenario, we test our algorithm for joint detection and
recognition of actions on a novel complex data set consisting
of continuous actions performed by different subjects while
being recorded by cameras placed at multiple vantage points.

A. Weizmann Simple Actions

The Weizmann dataset [1] is a popular dataset for validat-
ing action recognition algorithms, as it consists of short video
clips captured under controlled conditions. It is composed of
10 action clips performed by 9 actors, all of whom remain
un-occluded and at the same distance from the camera’s
focal plane. The background model of the scene is available,
using which foreground silhouettes of the actors have been
extracted for every frame of the video.

Keyframe selection: Automatic keyframe selection for
the Weizmann dataset is challenging as there is no motion
capture data available. Hence, we have manually selected
keyframes for each action. A set of 5 keyframes have
been manually selected for each action performed by every
individual.

We follow the same testing procedure proposed by [1] for
the dataset. As presented in section III, we extract HOG
appearance descriptors for the foreground region in each
frame, along with the coordinates of the bounding box. We
use these features within our DKM framework and pick the
action class that maximizes the modeling score (see eqn.5).
Our DKM framework achieves 100% recognition accuracy.
This is comparable to the perfect recognition recognition
reported by the authors of the dataset, and others who have
also validated their methods after adopting the same testing
procedure [1], [23], [35].

B. Weizmann Complex Actions

In order to validate the joint detection and recognition
capability of our DKM, we synthesize complex actions by
concatenating all the 10 actions performed by each of the
subjects in the Weizmann dataset, thereby yielding 9 videos.



The order in which the actions are composed is chosen at
random for each subject. The frame level features are still
extracted using the method outlined in section III.

Our training methodology is similar to that employed
by Hoai et al. [29]. We adopt a leave-one-out evaluation
strategy: training on 8 sequences and testing on the left-out
sequence. The models and associated bias for each action
are learned using the procedure outlined in section IV-C.

Our evaluation metric is also inspired by theirs. Specifi-
cally, we evaluate each of our models on a query synthesized
video. Multiple detections are found by each action specific
DKM, and all the overlapping detections with the highest
score per class are retained. The temporal union of these
detections provides a class specific segmentation of the query
video sequence. At this point, the overall frame-level accu-
racy against the ground truth labels is calculated as the ratio
of number of agreements over the total number of frames.
It is important to note that this segmentation based metric is
designed for joint segmentation and recognition algorithms
such as [29] and it serves as a harder baseline evaluation
metric for our detection and recognition algorithm.

Fig. 5 shows the confusion matrix for the joint segmenta-
tion and recognition of the 10 actions using the 9 complex
video sequences. The average accuracy of our method is
86.28%. Hoai et al. [29] report an average accuracy of
87.7%, which is just slightly higher than our accuracy.
However, their focus is on joint segmentation and recog-
nition, and their algorithm yields a label for every frame in
the query video. In our detection based framework, there
is no guarantee that all frames will be assigned a class
label, as evidenced by the white regions in our qualitative
segmentation results shown in Fig. 6. This leads us to believe
that our method will perform well even in the presence of
previously unseen action classes, but we have not yet tested
this hypothesis.

C. Bosch Multi-view Complex Actions (BMCA) Dataset

In the literature, there exist several public datasets for
activity recognition, but continuous action datasets for action
detection are limited. Further, to the best of our knowledge,
there are no publicly available multi-view action detection
datasets with subjects performing several actions contin-
uously. To aid in peer evaluation of distributed activity
detection and recognition, we have constructed a multi-
view video dataset called the BMCA dataset which will be
available online.

The BMCA dataset consists of 11 actions performed back-
to-back by 20 subjects. Each subject performs three to four
trials of each action while facing different directions, and at
different locations within the capture area. The subjects are
continuously recorded using 4 time synchronized cameras
arranged in the configuration shown in Fig. 7. The cameras
capture color video at a frame rate of 10 Hz, thereby yielding
4 long video clips of roughly 12-15 minutes each. The
location within the capture area and the direction to face
while performing an action are decided by the subjects
themselves. However, they are all instructed to maintain

Fig. 5. DKM performance on the Weizmann complex dataset. Con-
fusion matrix shows joint segmentation and recognition accuracy
of 10 actions at frame level. Off-diagonal numbers show frame
misclassification rates. Average accuracy of 86.28% achieved on
dataset.

(a) Daria Segmentation (b) Lena Segmentation

(c) Ido Segmentation (d) Moshe Segmentation

Fig. 6. Qualitative segmentation of four complex videos. For each
segmentation, top row shows true class labels and bottom row
shows estimated labels. Note the existence of white regions in the
estimated labels at frames where no reliable detections were found.
As expected, majority of the error occurs at segment boundaries.
Image best viewed in color.

angular orientations of roughly {0°,90°,180° and 270°}
relative to the reference camera. In our setting, camera-2
is chosen as the reference view.

Capture Area

Ao
e

Cam-2 Cam-3

cam1”

Fig. 7. Configuration of cameras used to create BMCA dataset.
Cameras capture color video at 10HZ, and are time synchronized.

Keyframe selection: The background subtraction scheme
presented in section III has been used to obtain bounding
boxes around people in the dataset. We have manually anno-
tated the dataset by providing the start and end times of each
action and its associated action class labels. The keyframes
for each action have also been manually selected. Fig. 10
shows the keyframe annotations of 3 subjects performing 3
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Fig. 8. Confusion matrix for single-view joint segmentation and
recognition on BMCA dataset. Average accuracy is 66.74 %.

different actions.

Training: We have partitioned our dataset of 20 people
into 5 training and 15 test sets. The 5 training sets include
11 actions performed at 4 angular orientations. Thus, we
have learned 44 DKMs using the framework presented in
section IV-C. We learn separate models for the single-view
and multi-view experiments.

Testing: In order to validate our framework, we test our
trained models on the 15 remaining test sets. As in the
experiment for the Weizmann complex dataset, we employ
the joint segmentation and recognition evaluation strategy.
We only modify the segment labeling slightly so that all
the detections corresponding to different orientations of the
same action class are assigned the same label. We first
evaluate the single-view DKM algorithm on the training
videos captured by the reference camera. The results of
our method is presented in the confusion matrix of Fig. 8.
We obtain an average segmentation accuracy of 66.74%.
Although this accuracy is lower than that obtained on the
Weizmann complex dataset, the BMCA dataset is a lot more
challenging as it is longer and has more complex actions.
In fact some of the actions are duals to others in the set;
these include the ”stand to sit”, ”sit to stand”, ”stand to
lay”, ”lay to stand”, ”’stand to bend” and “bend to stand”
classes. Without the spatiotemporal constraints, it would
be very hard to discriminate between these action duals.
With the spatiotemporal constraints, however, there is no
misclassification between action duals, as evidenced by the
zero off-diagonal values in the confusion matrix.

Next, we evaluate the multi-view DKM algorithm on the
same test sets by including the remaining camera views. The
multi-view DKMs are evaluated on the test set using the
same joint segmentation and recognition strategy used in the
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Fig. 9. Confusion matrix for multi-view joint segmentation and
recognition on BMCA dataset. Average accuracy is 81.28 %.

single-view case. The resulting confusion matrix is presented
in Fig. 9. It is clear that the addition of multiple views
significantly improves the action detection and recognition
performance. Specifically, an average accuracy of 81.28 %
is achieved which represents a 14.54 % increase in accuracy.
We believe that incorporating more overlapping views around
the capture volume can improve the accuracy even further,
but have not yet tested this hypothesis.

VI. CONCLUSIONS

We have presented a framework for the joint detection
and recognition of human actions on long, complex video
sequences. Our method is well suited for situations where
the camera sensors and the base station are connected only
by a band-limited communication channel. We have made
three primary contributions in this paper. The first includes a
framework for feature extraction on a wireless smart camera
that can minimize its power and bandwidth requirements.
Our second contribution is the adaptation of the DPM object
detection framework for single-view and multi-view action
detection in continuous video, and our final contribution
is a novel scheme to learn the bias and parameters of
our deformable keyframe models. We have experimentally
validated our algorithm on a publicly available dataset,
and have demonstrated the competitiveness of our approach
against state-of-the-art methods. Finally, we have introduced
a novel multi-view continuous action data set called the
Bosch Multiview Complex Action dataset and extensively
validated the performance of our system using this dataset.

Our investigations have led us to several intriguing open
problems for future investigation. First, our framework for
evaluating multiple deformable keyframe models concur-
rently on the data by subtracting the model bias may de-
teriorate when more action classes are introduced. Perhaps



Fig. 10. Keyframes for a few actions in the BMCA dataset. The first row shows the 6 keyframes corresponding to the action “run”. The
second and third rows show the chosen keyframes for the actions “lie-to-stand” and “’stand-to-sit” respectively.

a detection strategy similar to the generalized Hough trans-
forms adopted by [34] could make the detectors more robust.
Second, our best detection and recognition performance
on our dataset is 82%. In order to successfully deploy
such a system in real-world surveillance applications, the
recognition rates have to be improved dramatically (e.g. >
99%) with minimal false positives. Finally, robust techniques
must be studied in order to deal with real world situations
such as poor lighting, and occlusions in the scene. In such
settings, a smart sensor selection scheme might have to be
explored.
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