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Abstract

We study a class of discontinuous vector fields brought to our attention by multi–legged
animal locomotion. Such vector fields arise not only in biomechanics, but also in robotics,
neuroscience, and electrical engineering, to name a few domains of application. Under the
conditions that (i) the vector field’s discontinuities are locally confined to a finite number of
smooth submanifolds and (ii) the vector field is transverse to these surfaces in an appropriate
sense, we show that the vector field yields a well–defined flow that is Lipschitz continuous and
piecewise–differentiable. This implies that although the flow is not classically differentiable,
nevertheless it admits a first–order approximation (known as a Bouligand derivative) that is
piecewise–linear and continuous at every point. We exploit this first–order approximation to
infer existence of piecewise–differentiable impact maps (including Poincaré maps for periodic
orbits), show the flow is locally conjugate (via a piecewise–differentiable homeomorphism) to
a flowbox, and assess the effect of perturbations (both infinitesimal and non–infinitesimal) on
the flow. We use these results to give a sufficient condition for the exponential stability of a
periodic orbit passing through a point of multiply intersecting events, and apply the theory
in illustrative examples to demonstrate synchronization in abstract first– and second–order
phase oscillator models.
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1 Introduction
We study a class of discontinuous vector fields brought to our attention by multi–legged animal
locomotion. Parsimonious dynamical models for diverse physical phenomena are governed by vec-
tor fields that are smooth except along a finite number of surfaces of discontinuity. Examples
include: integrate–and–fire neurons that undergo a discontinuous change in membrane voltage
during a threshold crossing [Kee+81; HH95; Biz+13]; legged locomotors that encounter discon-
tinuities in net forces due to intermittent interaction of viscoelastic limbs with terrain [Ale84;
Gol+99; Hol+06]; electrical power systems that undergo discontinuous changes in network topol-
ogy triggered by excessive voltages or currents [His95]. In each of these examples, behaviors of
interest—phase locking [Kee+81] or local synchronization [HH95]; simultaneous touchdown of two
or more legs [Ale84; Gol+99; Hol+06]; voltage collapse phenomena [DL92] [His95, Section II-
A.2]—occur at or near the intersection of multiple surfaces of discontinuity. Although analyti-
cal tools exist to study orbits that pass transversely through non–intersecting switching surfaces
(e.g. to assess stability [AG58; Gri+02], compute first–order variations [HP00; WA12], and re-
duce dimensionality [Bur+15b]), piecewise–defined (or hybrid) systems that admit simultaneous
discrete transitions generally exhibit “branching” wherein the flow depends discontinuously1 on
initial conditions [Sim+05, Definition 3.11]. For instance, in the mechanical setting, the flow of
a Lagrangian dynamical system subject to unilateral constraints is generically discontinuous near
simultaneous–impact events [Bal00, Section 7]. In the case where a vector field is discontinuous
across two transversally–intersecting surfaces, others have established continuity and derived first–
order approximations of the flow [Iva98; DB+08; DL11; Biz+13]. Techniques applicable to arbitrary
numbers of surfaces have been derived for the case of pure phase oscillators with perpendicular
transition surfaces [MS90].

We generalize these approaches to accommodate an arbitrary number of nonlinear transition
surfaces that are not required to be transverse and extend a suite of analytical and computa-
tional techniques from classical (smooth) dynamical systems theory to the present (non–smooth)
setting. Under the conditions that (i) the vector field’s discontinuities are locally confined to a
finite collection of smooth submanifolds and (ii) the vector field is “transverse” to these surfaces
in an appropriate sense, we show that the vector field yields a well–defined flow that is Lipschitz
continuous and piecewise–differentiable. The definition of piecewise–differentiability we employ
(introduced in [Rob87; Roc03; Sch12]) implies that although the flow is not classically differen-
tiable, nevertheless it admits a first–order approximation (the so–called Bouligand derivative or
B–derivative [Sch12, Chapter 3]) that is piecewise–linear and continuous at every point. We exploit
this first–order approximation to infer existence of piecewise–differentiable impact maps (includ-
ing Poincaré maps for periodic orbits), assess the effect of perturbations on the flow, and derive a
straightforward procedure to compute the B–derivative. We use these results to give a sufficient
condition for the exponential stability of a periodic orbit passing through a point of multiply in-
tersecting events, and apply the theory in illustrative examples to demonstrate synchronization in
abstract first– and second–order phase oscillator models.

The paper is organized as follows. Following a brief review of relevant technical background
in Section 2, we define the discontinuous but piecewise–smooth vector fields of interest and show
that they yield continuous B–differentiable flows in Section 3. In Section 4 we demonstrate that
such flows are continuously conjugate to classical flows, leading to results in Section 5 establishing
their persistence under small perturbations. Section 6 develops stability results and their applica-

1 We note that hybrid state spaces do not possess a natural metric, and continuity of the flow depends on the
chosen metric; this issue is discussed in detail elsewhere [Bur+15a, Sec. V-A].
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tion to simple oscillator models is given in Section 7. The paper concludes with a brief summary
in Section 8 suggesting the relevance of these results to biological and engineered systems of prac-
tical interest.

2 Preliminaries
The mathematical constructions we use are “standard” in the sense that they are familiar to
practitioners of (applied) dynamical systems or optimization theory (or both), but since this paper
represents (to the best of our knowledge) the first application of some techniques from non–smooth
analysis to the present class of dynamical systems, the reader may be unfamiliar with some of the
more recently–developed devices we employ. Thus in this section we briefly review mathematical
concepts and introduce notation that will be used to state and prove results throughout this paper,
and suggest textbook references where the interested reader could obtain a complete exposition.

2.1 Notation

To simplify the statement of our definitions and results, we fix notation of some objects in Rn:
+1 ∈ Rn denotes the vector of all ones and −1 its negative; ej is the j–th standard Euclidean
basis vector; Bn := {−1,+1}n ⊂ Rn is the set of corners of the n-dimensional cube. We let
sign : Rn → {−1,+1}n be the vectorized signum function taking its values in the Euclidean cube’s
corners, i.e.

∀x ∈ Rn, j ∈ {1, . . . , n} : e>j sign(x) =

{
−1, xj < 0
+1, xj ≥ 0

. (1)

To fix notation, in the following paragraphs we will briefly recapitulate standard constructions
from topology, differential topology, and dynamical systems theory, and refer the reader to [Lee12]
for details. If U ⊂ X is a subset of a topological space, then IntU ⊂ X denotes its interior and
∂U denotes its boundary. Let f : X → Y be a map between topological spaces. If U ⊂ X then
f |U : U → Y denotes the restriction. If V ⊂ Y then f−1(V ) = {x ∈ X : f(x) ∈ V } denotes the
pre–image of V under f .

Given Cr manifolds D,N , we let Cr(D,N) denote the set of Cr functions from D to N .
H ⊂ D is a Cr codimension-k submanifold of the d-dimensional manifold D if every x ∈ H has a
neighborhood U ⊂ D over which there exists a Cr diffeomorphism h : U → Rd such that

H ∩ U = h−1
({
y ∈ Rd : yk+1 = · · · = yd = 0

})
.

If f ∈ Cr(D,N) then at every x ∈ D there exists an induced linear map Df(x) : TxD → Tf(x)N
called the pushforward (in coordinates, Df(x) is the Jacobian linearization of f at x ∈ D) where
TxD denotes the tangent space to the manifold D at the point x ∈ D. Globally, the pushforward
is a Cr−1 map Df : TD → TN where TD is the tangent bundle associated with the manifold
D; we recall that TD is naturally a 2d–dimensional Cr manifold. When N = R, we will invoke
the standard identification TyN ' R for all y ∈ N and regard Df(x) as a linear map from TxD
(i.e. an element of the cotangent space T ∗xD) into R for every x ∈ D; we recall that the cotangent
bundle T ∗D is naturally a 2d–dimensional Cr manifold. If U ⊂ D and f : U → N is a map, then
a map f̃ : D → N is a Cr extension of f if f̃ is Cr and f̃ |U = f .

Following [Lee12, Chapter 8], a (possibly discontinuous or non–differentiable) map F : D → TD
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is a (rough)2 vector field if π ◦ F = idD where π : TD → D is the natural projection and idD is
the identity map on D. A vector field may, under appropriate conditions, yield an associated flow
φ : F → D defined over an open subset F ⊂ R×D called a flow domain; in this case for every x ∈ D
the set Fx = F∩ (R× {x}) is an open interval containing the origin, the restriction φ|Fx : Fx → D
is absolutely continuous, and the derivative with respect to time is Dtφ(t, x) = F (φ(t, x)) for
almost every t ∈ Fx. A flow is maximal if it cannot be extended to a larger flow domain. An
integral curve for F is an absolutely continuous function ξ : I → D over an open interval I ⊂ R
such that ξ̇(t) = F (ξ(t)) for almost all t ∈ I; it is maximal if it cannot be extended to an integral
curve on a larger open interval.

2.2 Piecewise Differentiable Functions and Nonsmooth Analysis

The notion of piecewise–differentiability we employ was originally introduced by Robinson [Rob87];
since the recent monograph from Scholtes [Sch12] provides a more comprehensive exposition, we
adopt the notational conventions therein. Let r ∈ N ∪ {∞} and D ⊂ Rd be open. A continuous
function f : D → Rn is called piecewise–Cr if for every x ∈ D there exists an open set U ⊂ D
containing x and a finite collection {fj : U → Rn}j∈J of Cr–functions such that for all x ∈ U
we have f(x) ∈ {fj(x)}j∈J. The functions {fj}j∈J are called selection functions for f |U , and f
is said to be a continuous selection of {fj}j∈J. A selection function fj is said to be active at
x ∈ U if f(x) = fj(x). We let PCr(D,Rn) denote the set of piecewise–Cr functions from D
to Rn. Note that PCr is closed under composition and pointwise maximum or minimum of a
finite collection of functions. Any f ∈ PCr(D,Rn) is locally Lipschitz continuous, and a Lipschitz
constant for f is given by the supremum of the induced norms of the (Fréchet) derivatives of the set
of selection functions for f . Piecewise–differentiable functions possess a first–order approximation
Df : TD → TRn called the Bouligand derivative (or B–derivative) [Sch12, Chapter 3]; this is the
content of Lemma 4.1.3 in [Sch12]. We let Df(x; v) denote the B–derivative of f evaluated along
the tangent vector v ∈ TxD. The B–derivative is positively homogeneous, i.e. ∀v ∈ TxD,λ ≥ 0 :
Df(x;λv) = λDf(x; v).

3 Local and Global Flow
In this section we rederive in our present nonsmooth setting the erstwhile familiar fundamental
construction associated with a vector field: its flow. We begin in Section 3.1 by introducing the
class of vector fields under consideration, namely, event–selected Cr vector fields. Subsequently
in Section 3.2 we construct a candidate flow function via composition of piecewise–differentiable
functions. Finally in Section 3.3 we show this candidate function is indeed the flow of the event–
selected Cr vector field.

3.1 Event–Selected Vector Fields Discontinuities

The flow of a discontinuous vector field F : D → TD over an open domain D ⊂ Rd can exhibit
pathological behaviors ranging from nondeterminism to discontinuous dependence on initial con-
ditions. We will investigate local properties of the flow when the discontinuities are confined to a

2We will constrain the class of vector fields under consideration in Section 3.1, but for expediency drop the rough
modifier in the sequel.
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finite collection of smooth submanifolds through which the flow passes transversally, as formalized
in the following definitions.

Definition 1. Given a vector field F : D → TD over an open domain D ⊂ Rd and a function
h ∈ Cr(U,R) defined on an open subset U ⊂ D, we say that h is an event function for F on U if
there exists a positive constant f > 0 such that Dh(x)F (x) ≥ f for all x ∈ U . A codimension–1
embedded submanifold Σ ⊂ U for which h|Σ is constant is referred to as a local section for F .

Note that if h is an event function for F on a set containing ρ ∈ D then necessarily Dh(ρ) 6= 0.
We will show in Section 3.3 that vector fields that are differentiable everywhere except a finite

collection of local sections give rise to a well–defined flow that is piecewise–differentiable. This
class of event–selected vector fields is defined formally as follows.

Definition 2. Given a vector field F : D → TD over an open domain D ⊂ Rd, we say that F
is event–selected Cr at ρ ∈ D if there exists an open set U ⊂ D containing ρ and a collection
{hj}nj=1 ⊂ Cr(U,R) such that:

1. (event functions) hj is an event function for F on U for all j ∈ {1, . . . , n};

2. (Cr extension) for all b ∈ {−1,+1}n = Bn, with

Db := {x ∈ U : bj(hj(x)− hj(ρ)) ≥ 0} ,

F |IntDb admits a Cr extension Fb : U → TU .

(Note that for any b ∈ Bn such that IntDb = ∅ the latter condition is satisfied vacuously.) We let
ECr(D) denote the set of vector fields that are event–selected Cr at every x ∈ D.

For illustrations of event–selected Cr vector fields in the plane D = R2, refer to Figures 1 and 2.

3.2 Construction of the Piecewise–Differentiable Flow

The following constructions will be used to state and prove results throughout the chapter. Suppose
F : D → TD is event–selected Cr at ρ ∈ D. By definition there exists a neighborhood ρ ∈ U ⊂ D
and associated event functions {hj}nj=1 ⊂ Cr(U,R) that divide U into regions {Db}b∈Bn by defined
by Db := {x ∈ U : (hj(x)− hj(ρ))bj ≥ 0}. The boundary of each Db is contained in the collection
of event surfaces {Hj}nj=1 defined for each j ∈ {1, . . . , n} by Hj := {x ∈ U : hj(x) = hj(ρ)}. For
each j ∈ {1, . . . , n} and b ∈ Bn, we refer to the surface Hj as an exit boundary in positive time for
Db if hj(Db) ⊂ (−∞, 0]; we refer to Hj as an exit boundary in negative time if hj(Db) ⊂ [0,+∞).
In addition, the definition of event–selected Cr implies that there is a collection of Cr vector fields
{Fb : U → TU}b∈Bn ⊂ Cr(U, TU) such that F |IntDb = Fb|IntDb for all b ∈ Bn.

3.2.1 Budgeted time–to–boundary

For each b ∈ Bn with IntDb 6= ∅, let φb : Fb → U be a flow for Fb over a flow domain Fb ⊂ R× U
containing (0, ρ); recall that φb ∈ Cr(Fb, U) since Fb ∈ Cr(U, TU). Each H ∈ {Hj}nj=1 is a local
section for F , and therefore a local section for Fb as well. This implies Fb(ρ) is transverse to H
(more precisely, Fb(ρ) 6∈ TρH), thus the Implicit Function Theorem [Lee12, Theorem C.40] implies
there exists a Cr “time–to–impact” map τHb : UH

b → R defined on an open set UH
b ⊂ D containing

ρ such that
∀x ∈ UH

b : (τHb (x), x) ∈ Fb and φb(τHb (x), x) ∈ H. (2)

6



The collection of maps
{
τHb
}
b∈Bn

are jointly defined over the open set Ub :=
⋂n
j=1 U

Hj
b ; note that Ub

is nonempty since ρ ∈ Ub. Any x ∈ Ub can be taken to any H ∈ {Hj}nj=1 by flowing with the vector
field Fb for time τHb (x) ∈ R. A useful fact we will recall in the sequel is that if y = φb(τb(x), x)
then

DτHb (x) =
−Dh(y)Dxφb(t, x)

Dh(y)Fb(y)
; (3)

this follows from [HS74, §11.2].
We now define functions τ+

b , τ
−
b : R×Ub → R that specify the time required to flow to the exit

boundary of Db in forward or backward time, respectively, without exceeding a given time budget:

∀(t, x) ∈ R× Ub : τ+
b (t, x) = max

{
0,min

(
{t} ∪

{
τ
Hj
b (x) : bj < 0

}n
j=1

)}
,

∀(t, x) ∈ R× Ub : τ−b (t, x) = min

{
0,max

(
{t} ∪

{
τ
Hj
b (x) : bj > 0

}n
j=1

)}
;

(4)

Since τ+
b , τ

−
b are obtained via pointwise minimum and maximum of a finite collection of Cr func-

tions, we conclude τ+
b , τ

−
b ∈ PCr(R × Ub,R). See Figure 1 for an illustration of the component

functions of τ+
b in a planar vector field.

In the sequel we will require the derivative of τ+
b with respect to t and x. In general this can

be obtained via the chain rule [Sch12, Theorem 3.1.1]. If we define ν+
b : Ub → R∪{+∞} using the

convention min ∅ = +∞ by

∀x ∈ Ub : ν+
b (x) = min

{
τ
Hj
b (x) : bj < 0

}n
j=1

, (5)

then we immediately conclude that for all (t, x) ∈ R×Ub such that ν+
b (x) 6= t 6= 0, the forward–time

budgeted time–to–boundary τ+
b is classically differentiable and

Dτ+
b (t, x) =





(0, 0>d ), t < 0;
(1, 0>d ), 0 < t < ν+

b (x);(
0, DτHb (x)

)
, ν+

b (x) < t;
(6)

where in the third case H ∈ {Hj}nj=1 is such that τHb (x) = ν+
b (x). To compute Dτ−b (t, x), one

may simply use the formula in (6) applied to the vector field −F ; full details are provided in
Appendix A.1.

3.2.2 Budgeted flow–to–boundary

By composing the flow φb with the budgeted time–to–boundary functions τ+
b , τ

−
b , we now construct

functions that flow points up to the exit boundary of Db in forward or backward time over domains

V+
b =

{
(t, x) ∈ R× Ub : (τ+

b (t, x), x) ∈ Fb
}
,

V−b =
{

(t, x) ∈ R× Ub : (τ−b (t, x), x) ∈ Fb
}
.

(Note that V+
b ,V

−
b are open since τ+

b , τ
−
b are continuous and nonempty since (0, ρ) ∈ V+

b ,V
−
b .) For

each b ∈ Bn define the functions ζ+
b : V+ → D, ζ−b : V− → D by

∀(t, x) ∈ V+
b : ζ+

b (t, x) = φb
(
τ+
b (t, x), x

)
,

∀(t, x) ∈ V−b : ζ−b (t, x) = φb
(
τ−b (t, x), x

)
.

(7)
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Figure 1: Illustration of a vector field F : D → TD that is event–selected Cr at ρ ∈ D = R2. The functions{
τ
Hj

[−1,−1]

}2

j=1
specify the time required to flow via the vector field F[−1,−1] to the surface Hj . The pointwise

minimum min
{
τ
Hj

[−1,−1](x)
}2

j=1
is used in the definition of τ+[−1,−1] in (4).

Clearly ζ+
b ∈ PCr(V+

b , D) and ζ−b ∈ PCr(V−b , D) since they are obtained by composing PCr

functions [Sch12, §4.1]. Loosely speaking, the function ζ+
b coincides with φb for pairs (t, x) that

do not cross the forward–time exit boundary of Db. Yet unlike φb, it is the identity (stationary)
flow over the remainder of its domain. More precisely, for t < 0 and for values of t > ν+

b (x) the
function τ+

b (t, x) is constant (and hence the derivative with respect to time Dtζ
+
b (t, x) = 0), while

for t ∈ (0, ν+
b (x)) we have ζ+

b (t, x) = φb(t, x) (and hence Dtζ
+
b (t, x) = Fb(φb(t, x))).

Now fix x ∈ Db, choose a ∈ Bn \ b, and for t ∈ R define

t+a (t) := min
{
τHja

(
ζ+
b (t, x)

)
: aj < 0

}n
j=1

.

Applying the conclusions from the preceding paragraph, with t′ ∈ R the composition

ζ+
a (t′, ζ+

b (t, x))

is classically differentiable with respect to both t′ and t almost everywhere. Furthermore, we
can deduce that the derivative of the composition with respect to t is Fb(φb(t, x)) when t ∈

8



(
0, ν+

b (x)
)
and zero where it is otherwise defined; similarly, the derivative with respect to t′ is

Fa
(
φa(t

′, ζ+
b (t, x)

)
when t′ ∈ (0, t+a (t)) and zero where it is otherwise defined. If we impose the

relationship t′ := t− τ+
b (t, x), we have t′ = 0 for any t ∈ (0, ν+

b (x)). The composition

ζ+
a (t− τ+

b (t, x), ζ+
b (t, x))

follows the flow for Fb from x toward (but never passing) the exit boundary of Db, then follows
the flow of Fa from ζ+

b (t, x) toward the exit boundary of Da.
In the sequel we will require the derivative of ζ+

b with respect to t and x. In general this can
be obtained via the chain rule [Sch12, Theorem 3.1.1]. If we define ν+

b : Ub → R as in (5) then
we immediately conclude that for all (t, x) ∈ R × Ub such that ν+

b (x) 6= t 6= 0, the forward–time
flow–to–boundary ζ+

b is classically differentiable and

Dζ+
b (t, x) =





(0d, 0d×d), t < 0;
(Fb(φb(t, x)), Dxφb(t, x)), 0 < t < ν+

b (x);
(0d,Υ(t, x)), ν+

b (x) < t;
(8)

where in the third case Υ(t, x) =
(
0, Fb(φb(τ

+
b (t, x), x))DτHb (x) +Dxφb(τ

+
b (t, x), x)

)
and H ∈

{Hj}nj=1 is such that τHb (x) = ν+
b (x). To compute Dζ−b (t, x), one may simply use the formula

in (8) applied to the vector field −F ; full details are provided in Appendix A.2.

3.2.3 Composite of budgeted time–to– and flow–to–boundary

Define ϕ+
b : V+

b → R×D, ϕ−b : V−b → R×D by

∀(t, x) ∈ V+
b : ϕ+

b (t, x) =
(
t− τ+

b (t, x), ζ+
b (t, x)

)
=
(
t− τ+

b (t, x), φb
(
τ+
b (t, x), x

))
,

∀(t, x) ∈ V−b : ϕ−b (t, x) =
(
t− τ−b (t, x), ζ−b (t, x)

)
=
(
t− τ−b (t, x), φb

(
τ−b (t, x), x

))
.

(9)

Clearly ϕ+
b ∈ PCr(V+

b ,R ×D) and ϕ−b ∈ PCr(V−b ,R ×D). Intuitively, the second component of
the ϕ+

b , ϕ
−
b functions flow according to Fb up to exit boundaries of Db in forward or backward

time, respectively, while the first component deducts the flow time t− τ±b (t, x) from the total time
budget t. These functions satisfy an invariance property:

∀(t, x) ∈
(
V+
b ∩ (−∞, 0]× Ub

)
: ϕ+

b (t, x) = (t, x),

∀(t, x) ∈
(
V−b ∩ [0,+∞)× Ub

)
: ϕ−b (t, x) = (t, x).

(10)

We now combine (6) and (8) to obtain the derivative of ϕ+
b for all (t, x) ∈ R × Ub such that

ν+
b (x) 6= t 6= 0:

Dϕ+
b (t, x) =





[
1 0>d
0d Id

]
, t < 0;

[
0 0>d

Fb(φb(t, x)) Dxφb(t, x)

]
, 0 < t < ν+

b (x);
[

1 −DτHb (x)
0d Υ(t, x)

]
, ν+

b (x) < t;

(11)

where in the third case Υ(t, x) = Fb(φb(τ
+
b (t, x), x))DτHb (x) +Dxφb(τ

+
b (t, x), x) and H ∈ {Hj}nj=1

is such that τHb (x) = ν+
b (x). To compute Dϕ−b (t, x), one may simply use the formula in (8) applied

to the vector field −F ; full details are provided in Appendix A.3.
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D[−1,−1]

ẋ = F[−1,−1](x)

D[+1,−1]

ẋ = F[+1,−1](x)

D[+1,+1]

ẋ = F[+1,+1](x)

H1 H2

y

y−[+1,+1]

y−[−1,−1]
y−[+1,−1]

φ(−t, y)

z

z+
[−1,−1]

z+
[+1,+1]

φ(+t, z)

ρ

Figure 2: Illustration of a vector field F : D → TD that is event–selected Cr near ρ ∈ D = R2. The
vector field is discontinuous across the Cr codimension–1 submanifolds H1, H2 ⊂ D. For each b ∈ Bn =
{[−1,−1], [+1,−1], [−1,+1], [+1,+1]}, if IntDb 6= ∅ then the vector field restricts as F |IntDb

= Fb|IntDb
where

Fb : Ub → TUb is a smooth vector field over a neighborhood ρ ∈ Ub ⊂ D. An initial condition z ∈ D[−1,−1] flows in
forward time to φ(+t, y) ∈ D[+1,+1] through z+[+1,+1] ∈ H1∩H2. An initial condition y ∈ D[+1,+1] flows in backward
time to φ(−t, y) ∈ D[−1,−1] through y−[−1,+1] ∈ H1 and y−[−1,−1] ∈ H2.

3.2.4 Construction of flow via composition

Consider now the formal composition

φ = π2 ◦
(

+1∏

b=−1

ϕ+
b

)
◦
(
−1∏

b=+1

ϕ−b

)
(12)

where π2 : R×D → D is the canonical projection and
∏+1

b=−1 denotes composition in lexicographic
order (similarly

∏−1
b=+1 denotes composition in reverse lexicographic order). The set φ−1(D) ⊂

R × D is open (since φ is continuous) and nonempty (since combining (10) and (12) implies
φ(0, ρ) = ρ). Therefore there exist open neighborhoods J ⊂ R of 0 and V ⊂ D of ρ such that
F = J×V ⊂ φ−1(D). Clearly φ ∈ PCr(F, D) since it is obtained by composing PCr functions. Its
derivative can be computed by applying the chain rule [Sch12, Theorem 3.1.1]; alternatively, it can
be obtained for almost all (t, x) ∈ F as a product of the appropriate matrices given in (11), (91).
The derivative with respect to time has a particularly simple form almost everywhere, as we
demonstrate in the following Lemma.

Lemma 1 (time derivative of flow). If the vector field F : D → TD is event–selected Cr at ρ ∈ D,
then for almost all (t, x) ∈ F the flow φ ∈ PCr(F, D) defined by (12) is differentiable with respect
to time and

Dtφ(t, x) = F (φ(t, x)). (13)

Proof. Choose x ∈ D such that (0, x) ∈ F. We will show that φ|Fx is classically differentiable
for almost all times t ∈ Fx. Let t− = inf Fx, t+ = supFx so that 0 ∈ Fx = (t−, t+). We
construct a partition of [0, t+) as follows. For each b ∈ Bn, let (t+b , x

+
b ) =

(∏
a<b ϕ

+
a

)
(t+, x) where

the composition is over all a ∈ Bn that occur before b lexicographically; refer to Figure 2 for
an illustration of the sequence {yb}b∈Bn generated by an initial condition y ∈ D−1. Note that
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{
t+ − t+b

}
b∈Bn

is (lexicographically) non–decreasing and t++1 = τ+
+1(t++1, x

+
+1). Defining the interval

Jb = [t+ − t+b , t+ − t+b + τ+
b (t+b , x

+
b )],

we have [0, t+) ⊂ ⋃b∈Bn J
+
b and Int J+

a ∩ Int J+
b = ∅ for all a ∈ Bn \ {b}. Observe that

∀t ∈ Int J+
b : φ(t, x) = π2 ◦ ϕ+

b (t− (t+ − t+b ), x+
b ) ∈ IntDb,

where the condition is vacuously satisfied if Int J+
b = ∅. Therefore for all t ∈ Int J+

b , the piecewise–
differentiable function φ is classically differentiable with respect to time at (t, x) and we have

Dtφ(t, x) = Dπ2Dtϕ
+
b (t− (t+ − t+b ), x+

b )

= Fb(π2 ◦ ϕ+
b (t− (t+ − t+b ), x+

b ))

= F (π2 ◦ ϕ+
b (t− (t+ − t+b ), x+

b ))

= F (φ(t, x)).

Applying an analogous argument in backward time, we conclude that Dtφ(t, x) = F (φ(t, x)) for
almost all t ∈ (t−, t+) = Fx. Since (0, x) ∈ F was arbitrary, the Lemma follows.

3.3 Piecewise–Differentiable Flow

We now show that the piecewise–differ-entiable function φ ∈ PCr(F, D) defined in (12) is in fact
a flow for the discontinuous vector field F . See Figure 2 for an illustration of this flow.

Theorem 1 (local flow). Suppose the vector field F : D → TD is event–selected Cr at ρ ∈ D.
Then there exists a flow φ : F → D for F over a flow domain F ⊂ R ×D containing (0, ρ) such
that φ ∈ PCr(F, D) and

∀(t, x) ∈ F : φ(t, x) = x+

∫ t

0

F (φ(s, x)) ds. (14)

Proof. We claim that φ ∈ PCr(F, D) from (12) satisfies (14). Applying the fundamental theorem
of calculus [Sch12, Proposition 3.1.1] in conjunction with Lemma 1 and positive–homogeneity of
the derivative (13), we find

φ(t, x) = φ(0, x) +

∫ 1

0

Dφ(tu, x; t, 0)du

= x+

∫ t

0

Dφ(s, x; t, 0)
1

t
ds

= x+

∫ t

0

Dtφ(s, x)ds

= x+

∫ t

0

F (φ(s, x))ds.

If the vector field F : D → TD is event–selected Cr at every point in the domain D, we may
stitch together the local flows obtained from Theorem 1 (local flow) to obtain a global flow.
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Corollary 1 (global flow). If F ∈ ECr(D), then there exists a unique maximal flow φ ∈ PCr(F, D)
for F . This flow has the following properties:

(a) For each x ∈ D, the curve φx : Fx → D is the unique maximal integral curve of F starting
at x.

(b) If s ∈ Fx, then Fφ(s,x) = Fx − s = {t− s : t ∈ Fx}.

(c) For each t ∈ R, the set Dt = {x ∈ D : (t, x) ∈ F} is open in D and φt : Dt → D−t is a
piecewise–Cr homeomorphism with inverse φ−t.

Proof. This follows from a straightforward modification of the analogous Theorem 9.12 in [Lee12]
(simply replace all occurrences of the word “smooth” with “PCr”). We recapitulate the argument
in Appendix C.

If a vector field is event–selected Cr at every point along an integral curve, the following Lemma
shows that it is actually Cr at all but a finite number of points along the curve.

Lemma 2 (ECr implies Cr almost everywhere). Suppose the vector field F : D → TD is event–
selected Cr at every point along an integral curve ξ : I → D for F over a compact interval I ⊂ R.
Then there exists a finite subset δ ⊂ ξ(I) such that F is Cr on ξ(I) \ δ.

Proof. Let δ ⊂ ξ(I) be the set of points where F fails to be Cr. If |δ| = ∞, then since ξ(I) is
compact there exists an accumulation point α ∈ ξ(I). Since F is event–selected Cr at α, there
exists ε > 0 such that F is Cr at every point in the set (Bε(α) ∩ ξ(I)) \ {α}, but this violates the
existence of an accumulation point α ∈ δ. Therefore |δ| <∞.

Remark 1. One of the major values of Theorem 1 (local flow) lies in the fact that piecewise–
differentiable functions possess a first–order approximation called the Bouligand derivative as de-
scribed in Section 2.2. This Bouligand derivative (or B–derivative) is weaker than the classical
(Fréchet) derivative, but significantly stronger3 than the directional derivative. The B–derivative
of the composition (12) can be computed by applying the chain rule [Sch12, Theorem 3.1.1].

4 Time–to–Impact, (Poincaré) Impact Map, and Flowbox
We now leverage the fact that event–selected Cr vector fields yield piecewise–differentiable flows to
obtain useful constructions familiar from classical (smooth) dynamical systems theory. Using an
inverse function theorem [RS97, Corollary 20], we construct time–to–impact maps for local sections
in Section 4.1. We then apply this construction to infer the existence of piecewise–differentiable
(Poincaré) impact maps associated with periodic orbits in Section 4.2 and piecewise–differentiable
flowboxes in Section 4.3.

4.1 Piecewise–Differentiable Time–to–Impact

We begin in this section by constructing piecewise–differentiable time–to–impact maps.
3For instance, the B–derivative enables constructions like the Fundamental Theorem of Calculus [Sch12, Propo-

sition 3.1.1] and Inverse Function Theorem [RS97, Corollary 20] not enjoyed by the directional derivative.
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Theorem 2 (time–to–impact). Suppose the vector field F : D → TD is event–selected Cr at
ρ ∈ D. If σ ∈ Cr(U,R) is an event function for F on an open neighborhood U ⊂ D of ρ, then
there exists an open neighborhood V ⊂ D of ρ and piecewise–differentiable function µ ∈ PCr(V,R)
such that

∀x ∈ V : σ ◦ φ(µ(x), x) = σ(ρ) (15)

where φ ∈ PCr(F, D) is a flow for F and (0, ρ) ∈ F.

Proof. Theorem 1 (local flow) ensures the existence of a flow φ ∈ PCr(F, D) such that F ⊂ R×D
contains (0, ρ). Let α = σ ◦ φ, and note that there exist open neighborhoods T ⊂ R of 0 and
W ⊂ D of ρ such that α ∈ PCr(T ×W,R).

We aim to apply an implicit function theorem to show that α(s, x) = σ(ρ) has a unique
piecewise–differentiable solution s = µ(x) near (0, ρ). To do so, we need to establish the function
α is completely coherently oriented with respect to its first argument.

Specializing Definition 16 in [RS97], a sufficient condition for α to be completely coherently
oriented with respect to its first argument at (0, ρ) is that the (scalar) derivatives Dαj(0, ρ; 1, 0)
of all essentially active selection functions {αj : j ∈ Ie(α, (0, ρ))} have the same sign. Lemma 1
implies the time derivatives of all essentially active selection functions for φ at (0, ρ) are contained
in the collection {Fb(ρ) : b ∈ Bn, Db 6= ∅} where {Fb : b ∈ Bn} are the Cr vector fields that define
F near ρ. Since σ is an event function for F , there exists f > 0 such that

∀b ∈ Bn : Dσ(ρ)Fb(ρ) ≥ f > 0.

This implies α is completely coherently oriented with respect to time at (0, ρ). Therefore we
may apply Corollary 20 in [RS97] to obtain an open neighborhood 0 ∈ V ⊂ R and a piecewise–
differentiable function µ ∈ PCr(V,R) such that (15) holds.

Corollary 2 (time–to–impact). Suppose the vector field F : D → TD is event–selected Cr at
every point along an integral curve ξ : [0, t] → D for F . If σ ∈ Cr(U,R) is an event function for
F on an open set U ⊂ D containing ξ(t), then there exists an open neighborhood V ⊂ D of ξ(0)
and piecewise–differentiable function µ ∈ PCr(V,R) that satisfies (15).

Proof. Corollary 1 ensures the existence of a flow φ ∈ PCr(F, D) such that F ⊂ R ×D contains
[0, t]× {ξ(0)}. Let µ̃ ∈ PCr(Ṽ ,R) be the time–to–impact for σ obtained by applying Corollary 2
at ξ(t) = φ(t, ξ(0)). Then with V =

{
x ∈ D : φ(t, x) ∈ Ṽ

}
, noting that V is nonempty since

ξ(0) ∈ V and open since φ is continuous, the function µ : V → R defined by µ(x) = t+ µ̃ ◦ φ(t, x)
is piecewise–Cr and satisfies (15).

4.2 Piecewise–Differentiable (Poincaré) Impact Map

We now apply Theorem 2 (time–to–impact) in the important case where the integral curve is a
periodic orbit to construct a piecewise–differentiable (Poincaré) impact map.

Definition 3. An integral curve γ : R → D is a periodic orbit for the vector field F : D → TD
if there exists t > 0 such that γ(t) = γ(0) and Dtγ(s) 6= 0 for all s ∈ [0, t]. The minimal t > 0 for
which γ(t) = γ(0) is referred to as the period of γ, and we say that γ is a t–periodic orbit for F .
We let Γ = γ(R) denote the image of γ.
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Suppose the vector field F : D → TD is event–selected Cr at every point along a t–periodic
orbit γ for F . Then given a local section Σ ⊂ D for F that intersects Γ = γ(R) at {ρ} = Γ ∩ Σ,
Corollary 2 implies there exists a piecewise–differentiable time–to–impact µ ∈ PCr(V,R) defined
over an open neighborhood V ⊂ D of ρ such that µ(ρ) = t. With V ∩Σ, we let ψ : V → Σ be the
piecewise–differentiable impact map defined by

∀x ∈ V : ψ(x) = φ(µ(x), x). (16)

Theorem 3 (Poincaré map). Suppose the vector field F : D → TD is event–selected Cr at every
point along a periodic orbit γ for F . Then given a local section Σ ⊂ D for F that intersects
Γ = γ(R) at {ρ} = Γ ∩ Σ, there exists an open neighborhood V ⊂ D of ρ such that the impact
map (16) restricts to a piecewise–differentiable (Poincaré) map P ∈ PCr(S,Σ) on S = V ∩ Σ.

Proof. Without loss of generality assume γ(0) ∈ Σ. Let T be the period of γ, apply Theorem 2
(time–to–impact) to γ|[0,T ] to obtain an open set V ⊂ D containing γ(0) and a piecewise–Cr impact
time map µ ∈ PCr(V,R), and define ψ : V → Σ as in (16). Then with S = V ∩ Σ, the restriction
P = ψ|S is a piecewise–Cr Poincaré map for γ.

Since the Poincaré map P : S → Σ yielded by Theorem 3 (Poincaré map) is piecewise–
differentiable, it admits a first–order approximation (its Bouligand derivative) DP : TS → TΣ
that can be used to assess local exponential stability of the fixed point P (ρ) = ρ. This topic will
be investigated in more detail in Section 6.2.

4.3 Piecewise–Differentiable Flowbox

Theorem 2 (time–to–impact) enables us to easily derive a canonical form for the flow near an
event–selected vector field discontinuity.

Theorem 4 (flowbox). Suppose the vector field F : D → TD is event–selected Cr at ρ ∈ D, and
let φ : F → D be the flow obtained from Theorem 1 (local flow). Then there exists a piecewise–
differentiable homeomorphism χ ∈ PCr(V,W ) between neighborhoods V ⊂ D of ρ and W ⊂ Rd of
0 such that

∀x ∈ V, t ∈ Fx : χ ◦ φ(t, x) = χ(x) + te1

where e1 ∈ Rd is the first standard Euclidean basis vector.

Proof. Let σ ∈ Cr(U,R) be an event function for F on a neighborhood ρ ∈ U ⊂ D that is linear4.
Theorem 2 (time–to–impact) implies there exists a piecewise–differentiable time–to–impact map
µ ∈ PCr(V,R) on a neighborhood V ⊂ D of ρ such that

∀x ∈ V : σ ◦ φ(µ(x), x) = σ(ρ),

i.e. φ(µ(x), x) lies in the codimension–1 subspace Σ = σ−1(σ(ρ)). Define χ : V → R× Σ by

∀x ∈ V : χ(x) = (−µ(x), φ(µ(x), x)). (17)

Clearly χ ∈ PCr(V,R× Σ) and hence χ is continuous. Furthermore, it is clear that χ is injective
since (i) πΣχ(x) = πΣχ(y) implies x and y lie along the same integral curve, and (ii) distinct points

4Existence of a linear event function is always guaranteed. For instance, take the linear approximation at ρ of
any nonlinear event function for F
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along an integral curve pass through Σ at distinct times. It follows from Brouwer’s Open Mapping
Theorem [Bro11; Hat02] that the image W = χ(V ) is an open subset of Rd. This implies χ is a
homeomorphism between V andW . With ι : R×Σ→ R×D denoting the canonical inclusion, the
inverse of χ ∈ PCr(V,W ) is φ◦ ι|W ∈ PCr(W,V ), thus χ is a PCr homeomorphism. Finally, using
the semi–group property of the flow φ and the fact that µ ◦φ(t, x) = µ(x)− t for all x ∈ V, t ∈ Fx,

∀x ∈ V, t ∈ Fx : χ ◦ φ(t, x) = (−µ ◦ φ(t, x), φ(µ ◦ φ(t, x), φ(t, x)))

= (t− µ(x), φ(µ(x)− t, φ(t, x)))

= (t− µ(x), φ(µ(x), x))

= χ(x) + te1.

Thus the flow is conjugate via a piecewise–differentiable homeomorphism to a flowbox [HS74,
§11.2], [Lee12, Theorem 9.22].

5 Perturbed Flow
In this section we study how the flow associated with an event–selected Cr vector field varies under
perturbations to both the smooth vector field components (in Section 5.1) and the event functions
(in Section 5.2).

5.1 Perturbation of Vector Fields

Suppose F : D → TD is event–selected Cr at ρ ∈ D with respect to the components of h ∈
Cr(D,Rn). Then by Definition 2 there exists U ⊂ D containing ρ such that for each b ∈ Bn

either IntDb = ∅ or Db ⊂ U and F |IntDb admits a Cr extension Fb : U → TU . We note that F is
determined on U up to a set of measure zero from h and the function F̂ ∈ Cr

(∐
b∈Bn U,

∐
b∈Bn TU

)

defined by F̂ |{b}×U = Fb|U . Note that we regard Cr
(∐

b∈Bn U,
∐

b∈Bn TU
)
as a vector space under

pointwise addition of tangent vectors and the norm
∥∥∥F̂
∥∥∥
Cr

=
∑

b∈Bn

∥∥∥F̂ |{b}×U
∥∥∥
Cr
. (18)

Thus in the sequel we consider perturbations to event–selected Cr vector fields in the space
Cr
(∐

b∈Bn U,
∐

b∈Bn TU
)
.

Theorem 5 (vector field perturbation). Let F ∈ Cr
(∐

b∈Bn D,
∐

b∈Bn TD
)
, h ∈ Cr(D,Rn) deter-

mine an event–selected Cr vector field at ρ ∈ D, r ≥ 1. Then for all ε > 0 there exists δ > 0 such
that for all F̃ ∈ BCr

δ (F ):

(a) pairing h with the perturbed vector field F̃ determines an event–selected Cr vector field at ρ;

(b) the perturbed flow φ̃ : F̃ → D obtained by applying Theorem 1 (local flow) to this perturbed
vector field satisfies φ̃ ∈ BC0

ε (φ) on F̃ ∩ F and (0, ρ) ∈ F̃ ∩ F;
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(c) there exists a piecewise–differentiable homeomorphism η ∈ PCr(U, Ũ) defined between neigh-
borhoods U, Ũ ⊂ D of ρ such that η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)) and we have

η ◦ φ(t, x) = φ̃(t, η(x)) (19)

for all (t, x) ∈ R× Rd such that x ∈ U , t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U .

Proof. Since F is event–selected Cr with respect to h at ρ, there exists f > 0 such that for all
x sufficiently close to ρ every component of Dh(x)F (x) is bounded below by f . Then so long as
0 < δ < f , every component of Dh(x)F̃ (x) is bounded below by f − δ > 0, establishing claim (a).

We claim that (b) follows from [Fil88, Theorem 1 in §8 of Chapter 2], which we repro-
duce as Theorem 8 (differential inclusion perturbation) in Appendix D. Indeed, given any
G ∈ Cr(

∐
b∈Bn D,

∐
b∈Bn TD) for which (G, h) determines an event–selected Cr vector field, define

a set–valued map G : D → 2TD as follows:

∀x ∈ D : G(x) = conv
{
G|{b}×D(x) : b ∈ Bn, x ∈ Db

}
. (20)

At any x ∈ D, it is clear that G(x) is nonempty, bounded, closed, and convex. Furthermore, it is
clear that G is upper semicontinuous at x in the sense defined in Section 2.2. Therefore the map G
satisfies Assumption 1 (differential inclusion basic conditions) over the domain of the flow for G. It
is straightforward to verify that solutions to the differential inclusion ẋ ∈ G(x) coincide with those
of the differential equation ẋ = G(x) since the derivatives of the (absolutely continuous) solution
functions agree almost everywhere. Claim (b) then follows by applying Theorem 8 (differential
inclusion perturbation) to F determined from F by (20) and F̃ determined from F̃ ∈ BCr

δ (F )
by (20).

For claim (c), apply Corollary 4 (flowbox) to φ and φ̃ to obtain χ ∈ PCr(V,W ) and χ̃ ∈
PCr(Ṽ , W̃ ) such that

∀x ∈ V ∩ Ṽ , t ∈ Fx ∩ F̃x : χ ◦ φ(t, x) = χ(x) + t e1, χ̃ ◦ φ̃(t, x) = χ̃(x) + t e1. (21)

Then with U = χ−1(W̃ ), Ũ = χ̃−1 ◦ χ(U) (both sets are nonempty since ρ ∈ U ∩ Ũ and open
since χ and χ̃ are homeomorphisms), the piecewise–differentiable homeomorphism η = χ̃−1 ◦
χ|U ∈ PCr(U, Ũ) provides conjugacy between φ and φ̃ for all (t, x) ∈ R × Rd such that x ∈ U ,
t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U :

η ◦ φ(t, x) = χ̃−1 ◦ χ ◦ φ(t, x)

= χ̃−1 (χ(x) + t e1)

= χ̃−1
(
χ̃ ◦ χ̃−1 ◦ χ(x) + t e1

)

= χ̃−1 (χ̃ ◦ η(x) + t e1)

= φ̃(t, η(x)).

(22)

We now wish to choose δ > 0 sufficiently small to ensure η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)). Recalling from (17),

∀x ∈ V : χ(x) = (−µ(x), φ(µ(x), x)), (23)
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where µ ∈ PCr(V,R) is the time–to–impact map for the event surface used to define χ, we have

‖χ(x)− χ̃(x)‖ ≤ |µ(x)− µ̃(x)|+
∥∥∥φ(µ(x), x)− φ̃(µ̃(x), x)

∥∥∥
≤ |µ(x)− µ̃(x)|+ ‖φ(µ(x), x)− φ(µ̃(x), x)‖

+
∥∥∥φ(µ̃(x), x)− φ̃(µ̃(x), x)

∥∥∥
≤ (1 + Lφ) |µ(x)− µ̃(x)|+ εφ

(24)

where Lφ > 0 is a Lipschitz constant for φ on Bδ(0, ρ), claim (b) ensures φ̃ ∈ BC0

εφ
(φ) for any desired

εφ > 0, and we have restricted to x ∈ V ∩ Ṽ ∩ Bδ(ρ) for which (µ̃(x), x) ∈ F and (µ(x), x) ∈ F̃.
Applying [RS97, Lemma 9, Theorem 11] to µ, we conclude that δ > 0 can be chosen sufficiently
small to ensure µ̃ ∈ BC0

εµ (µ) for any desired εµ > 0. Therefore (1 + Lφ)εµ + εφ can be made
arbitrarily small in (24), hence we may apply [RS97, Theorem 11] to choose δ > 0 sufficiently
small to ensure χ̃−1 ∈ BC0

ε (χ−1) for any desired ε > 0. Thus δ > 0 may be chosen sufficiently
small to ensure Bδ(ρ) ⊂ U and

‖η(x)− x‖ =
∥∥χ̃−1 ◦ χ(x)− χ−1 ◦ χ(x)

∥∥ ≤ ε, (25)

whence η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)). This completes the proof of claim (c).

5.2 Perturbation of Event Functions

It is a well–known fact that the solution of n equations in n unknowns generically varies con-
tinuously with variations in the equations. This observation provides a basis for studying struc-
tural stability of the flow associated with event–selected Cr vector fields when there are exactly
n = d = dimD event functions, since for a collection of event functions {hj}dj=1 ⊂ Cr(D,R) whose
composite h ∈ Cr(D,Rd) satisfies detDh(ρ) 6= 0, the existence of a unique intersection point ρ̃ and
the set of possible transition sequences undertaken by nearby trajectories are unaffected by a suf-
ficiently small perturbation h̃ of h. We now combine this observation with the previous Theorem.
Subsequently, we will present an embedding technique that enables immediate generalization to
cases where Dh(ρ) is not invertible (whether because n < d, n > d, or n = d and detDh(ρ) = 0).

Theorem 6 (event function perturbation). Let F ∈ Cr
(∐

b∈Bn D,
∐

b∈Bn TD
)
, h ∈ Cr(D,Rd)

determine an event–selected Cr vector field at ρ ∈ D and suppose Dh(ρ) is invertible, r ≥ 1. Then
for all ε > 0 sufficiently small there exists δ > 0 such that for all F̃ ∈ BCr

δ (F ), h̃ ∈ BCr

δ (h):

(a) there exists a unique ρ̃ ∈ Bδ(ρ) such that h̃(ρ̃) = 0 and h̃(x) 6= 0 for all x ∈ Bδ(ρ) \ {ρ̃};

(b) pairing h̃ with the perturbed vector field F̃ determines an event–selected Cr vector field at ρ̃;

(c) the perturbed flow yielded by Theorem 1 (local flow), φ̃ : F̃ → D, satisfies φ̃ ∈ BC0

ε (φ) on
F̃ ∩ F 6= ∅;

(d) there exists a piecewise–differentiable homeomorphism η ∈ PCr(U, Ũ) defined between neigh-
borhoods U, Ũ ⊂ D containing {ρ, ρ̃} such that η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)) and we have

η ◦ φ(t, x) = φ̃(t, η(x)) (26)

for all (t, x) ∈ R× Rd such that x ∈ U , t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U .
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Proof of Theorem 6 (event function perturbation). Smooth dependence of the intersection point
follows from the Implicit Function Theorem [Abr+88, Theorem 2.5.7] since Cr functions over
compact domains comprise a Banach space [Hir76, Chapter 2.1]. Specifically, if h ∈ Cr(D,Rn)
satisfies h(ρ) = 0 for some ρ ∈ D and Dh(ρ) is invertible5, then there exists α, β > 0 and
ρ̃ ∈ Cr(Bα(h), Bβ(ρ)) such that for all h̃ ∈ Bα(h) the point ρ̃(h̃) is the unique zero of h̃ on Bβ(ρ),
i.e. h̃(ρ̃(h̃)) = 0 and for all x ∈ Bβ(ρ) \

{
ρ̃(h̃)

}
we have h̃(x) 6= 0. This establishes (a); (b) follows

from continuity.
For any δ′ > 0, we can choose δ > 0 sufficiently small to ensure that F̃ ∈ BCr

δ (F ), h̃ ∈ BCr

δ (h)

implies Dh̃−1 ◦ F̃ ∈ BCr

δ′ (Dh−1 ◦ F ); let F̃ ′ = Dh̃−1 ◦ F̃ , F ′ = Dh−1 ◦ F . With φ̃′ : F̃′ → Rd,
φ′ : F′ → Rd denoting the flows for F̃ ′, F ′, Theorem 5 (vector field perturbation) implies that
δ′ > 0 can be chosen sufficiently small to ensure φ̃′ ∈ BC0

ε′ (φ′) for any ε′ > 0. Since h̃ provides
conjugacy between φ̃ and φ̃′, and similarly h provides conjugacy between φ and φ′, we conclude
that δ > 0 can be chosen sufficiently small to ensure φ̃ ∈ BC0

ε (φ) on F̃ ∩ F. This establishes (c).
Let η′ ∈ PCr(U ′, Ũ ′) be the conjugacy from Theorem 5 (vector field perturbation) relating φ′

to φ̃′. Then η = h̃ ◦ η′ ◦ h−1 provides conjugacy between φ and φ̃ since

η ◦ φ(t, x) = h̃ ◦ η′ ◦ h−1 ◦ φ(t, x)

= h̃ ◦ η′ ◦ φ′(t, h−1(x))

= h̃ ◦ φ̃′(t, η′ ◦ h−1(x))

= φ̃(t, h̃ ◦ η′ ◦ h−1(x))

= φ̃(t, η(x))

(27)

for all (t, x) ∈ R × Rd such that x ∈ h(U), t ∈ Fx ∩ F̃η(x), and φ(t, x) ∈ U . Furthermore, given
ε > 0 we may choose δ > 0 sufficiently small to ensure h̃−1 ∈ BC0

δ (h−1) and η′ ∈ BC0

δ (id), whence

‖η(x)− x‖ =
∥∥∥h̃ ◦ η′ ◦ h−1(x)− x

∥∥∥

≤
∥∥∥h̃ ◦ η′ ◦ h−1(x)− h̃ ◦ h−1(x)

∥∥∥+
∥∥∥h̃ ◦ h−1(x)− x

∥∥∥
≤ Lh̃ ‖η′(y)− y‖+ δ

≤ (1 + Lh̃)δ

(28)

for all x ∈ Bδ(0). Thus δ < ε/(1 + Lh̃) ensures η|Bδ(ρ) ∈ BC0

ε (idBδ(ρ)). This completes the proof of
claim (d).

Remark 2. Now consider the case where F : D → TD is event–selected Cr at ρ ∈ D with respect
to the composite event function h ∈ Cr(D,Rn) but Dh(ρ) ∈ Rn×d is not invertible (because either
n < d, n > d, or n = d and detDh(ρ) = 0). We will embed this d–dimensional system into a
(d+n)–dimensional system to obtain an event–selected Cr vector field with respect to an invertible
composite event function; this will enable application of the preceding Theorem to the degenerate
system determined by F and h. For each b ∈ Bn, let Sb =

{
x> ∈ R1×d : x>Fb(ρ) > 0

}
be the open

half–space of row vectors that have a positive inner product with Fb(ρ). The set S = ∩b∈BnSb is
open (since each Sb is open) and nonempty (since in particular Dh1(ρ) ∈ S). Let A ∈ Rd×d be an

5Note that necessarily n = dimD.
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invertible matrix whose rows are selected from S; such a matrix always exists since S is open and
nonempty. Now let D = D × Rn and define F : D → TD and h ∈ Cr(D,Rd+n) as follows:

∀(x, y) ∈ D × Rn : F (x, y) =

[
F (x)

0

]
, h(x, y) =

[
Ax

h(x) + y

]
. (29)

Clearly F is event–selected Cr at ρ = (ρ, 0), and Dh(ρ) is invertible since

Dh(ρ) =

[
A 0

Dh(x) In

]
∈ R(d+n)×(d+n) (30)

has linearly independent columns. Therefore Theorem 6 (event function perturbation) may be
applied to study the effect of perturbations on the flow φ : F → D for F ; the conclusions of
the Theorem can be specialized to the original flow φ : F → D for F as follows. With V ={

(t, x) ∈ F : (t, x, 0) ∈ F
}
let ι : V → F̃ denote the embedding defined by ι(t, x) = (t, x, 0) for all

(t, x) ∈ V and let π : D → D denote the projection defined by π(x, y) = x for all (x, y) ∈ D. With
these definitions we have

φ|V =
(
π ◦ φ ◦ ι

)
|V. (31)

6 Computation
In this section, we apply the theoretical results from Sections 3, 4, and 5 to derive procedures to
compute the B–derivative of the flow and assess stability of a periodic orbit for an event–selected
Cr vector field F . We begin in Section 6.1 by developing a concrete procedure to compute the
B–derivative of the piecewise–differentiable flow yielded by F . Subsequently, in Section 6.2 we
provide sufficient conditions ensuring exponential stability of a periodic orbit that passes through
the intersection of multiple surfaces of discontinuity for F .

6.1 Variational Equations and Saltation Matrices

In this section we compute the B–derivative of the piecewise–differentiable flow by solving a jump–
linear time–varying ordinary differential equation (ODE) along a trajectory. At trajectory points
where the vector field is Cr, we recall in Section 6.1.1 that the derivative is obtained by solving
a time–varying ODE (the so–called variational equation) with no “jumps”. At points where the
vector field is discontinuous along one (or two transverse) event surface(s), in Section 6.1.2 we note
(as others have before us) that the ODE must be updated discontinuously (via a so–called saltation
matrix ). In the remainder of the section, we exploit properties of the piecewise–differentiable flow
to derive a generalization of this procedure applicable in the presence of an arbitrary number of
surfaces of discontinuity that are not required to be transverse.

6.1.1 Cr vector field

Let D ⊂ Rd be an open domain and F ∈ Cr(D,TD) a smooth vector field on D. It is a classical
result [HS74, Theorem 1 in §15.2] that the derivative of the flow φ : F → D associated with F
with respect to state can be obtained by solving a linear time–varying differential equation—the
so–called variational equation—along a trajectory, i.e. if (t, x) ∈ F and X : [0, t]→ Rd×d satisfies

∀u ∈ [0, t] : Ẋ(u) = DxF (φ(u, x))X(u), X(0) = I, (32)
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then the derivative of the flow with respect to time and state is given by

Dtφ(t, x) = F (φ(t, x)), Dxφ(t, x) = X(t). (33)

Here and in the sequel we assume without loss of generality that t > 0; the t < 0 case can be
addressed by applying the same reasoning to the vector field −F .

6.1.2 Event–selected Cr vector field

If the vector field is instead event–selected Cr, F ∈ ECr(D), adjustments must be made to (32)
wherever a trajectory crosses a surface of discontinuity. Let φ : F → D denote the global flow of
F yielded by Corollary 1 (global flow) and let (t, x) ∈ F. As shown in [AG58, Equation 1.4] (and
subsequently [HP00, Equations 57–60]), if for some s ∈ (0, t) the vector field F is event–selected Cr

at ρ = φ(s, x) with respect to a single surface of discontinuity, H, then the variational equation (32)
must be updated discontinuously via multiplication by a so–called saltation matrix,

X(s+) =

[
I +

(F+1(ρ)− F−1(ρ))Dh(ρ)

Dh(ρ)F−1(ρ)

]
X(s−), (34)

where X(s+) = limu→s+ X(u), X(s−) = limu→s− X(u), and H ⊂ h−1(0) near ρ.
As claimed in [Iva98, Equation 2.4] (and subsequently [DB+08, Theorem 7.5], [DL11, Equa-

tion 46], and [Biz+13, Equation 27]), if for some s ∈ (0, t) the vector field F is event–selected Cr

at ρ = φ(s, x) with respect to multiple surfaces of discontinuity, then the variational equation (32)
must be updated discontinuously via multiplication by one saltation matrix for each surface. Un-
like the preceding cases, the flow will generally not possess a classical derivative with respect to
state after time s. Previous authors compute the first–order effect of the flow using crossing times
of perturbed trajectories. Due to the combinatorial complexity of this approach, these authors
only derive the first–order approximation for two intersecting surfaces; though they claim that the
approach readily extends to arbitrary numbers of intersecting surfaces, they leave the details to
the reader.

The development in Section 3 enables us to directly compute the derivative of the flow along
trajectories passing through an arbitrary collection {Hj}nj=1 of surfaces across which F is discon-
tinuous. Without loss of generality6 we assume F is Cr at every point in φ([0, t] \ {s} , x), and we
let ρ = φ(s, x) as before.

6.1.3 Sampled vector field associated with event–selected Cr vector field

We begin by noting that the B–derivative calculation in (11) depends only on first–order approxi-
mations of the flow and event functions {hj}nj=1. For all b ∈ Bn let

D̃b = {x ∈ D : bj Dhj(ρ)(x− ρ) ≥ 0} (35)

and consider the flow φ̃ : F̃ → D of the piecewise–constant vector field F̃ : D → TD defined by

∀b ∈ Bn, x ∈ D̃b : F̃ (x) = Fb(ρ). (36)

6Lemma 2 ensures there are a finite number of discontinuities along any integral curve of a vector field F ∈
ECr(D). Therefore to evaluate the B–derivative of the flow after any number of discontinuities one may iteratively
apply the procedure described in the sequel to a finite number of trajectory segments and combine the result using
the chain rule [Sch12, Theorem 3.1.1].
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Applying (11) together with the chain rule [Sch12, Theorem 3.1.1] we conclude that

∀(v, w) ∈ T(0,ρ)F : Dφ(0, ρ; v, w) = Dφ̃(0, ρ; v, w). (37)

In other words, by sampling the event–selected Cr vector field F across its tangent planes we
obtain a piecewise–constant event–selected C∞ vector field F̃ whose flow φ̃ agrees with the flow φ
for F to first order. In this sense, we regard the piecewise–constant “sampled” vector field F̃ as the
analogue of the linearization of a smooth vector field in our nonsmooth setting. Note that, since
the flow of the sampled system is obtained in (12) by composing a sequence of piecewise–affine
functions, it is piecewise–affine:

∀(v, w) ∈ T(0,ρ)F : φ̃(v, ρ+ w) = φ̃(0, ρ) +Dφ̃(0, ρ; v, w). (38)

These observations enable us in the remainder of this section to derive several properties of the
B–derivative that will prove useful in the applications presented in Section 7.

6.1.4 Saltation matrix for multiple transition surfaces

Suppose (v, w) ∈ T(t,x)F = R × Rd is such that7 for all c > 0 sufficiently small the trajectory
initialized at x + cw: (i) passes through a unique sequence of m region interiors on its way to
φ(t + cv, x + cw) ∈ D+1; and (ii) does not pass through the intersection of non–tangent surfaces.
Let ω : {1, . . . ,m} → Bn specify the sequence of region interiors, excluding D+1, and let η :
{1, . . . ,m} → {1, . . . , n} specify the corresponding sequence8 of surfaces crossed. The B–derivative
of the flow evaluated in the (v, w) direction is

Dφ(t, x; v, w) = Dφ(t− s, ρ)

[
m∏

j=1

Dϕ+
ω(j)(0, ρ)

][
0

Dφ(s, x)

] [
v
w

]
, (39)

where Dφ(t − s, ρ), Dφ(s, x) are obtained as in (33) by solving the classical variational equation
since F is smoothly extendable to a neighborhood of those segments of the trajectory and for each
j ∈ {1, . . . ,m} the derivative Dϕ+

ω(j)(0, ρ) is given by the matrix in the third case in (11) with the
simplifications τ+

ω(j)(0, ρ) = 0, φω(j)(0, ρ) = ρ. Substituting f = Fω(j)(ρ), g> = Dhη(j)(ρ) for clarity
yields

Dϕ+
ω(j)(0, ρ) =

[
1 1

g>f
g>

0 I − 1
g>f

f g>

]
= I +

1

g>f

[
1
−f

] [
0 g>

]
(40)

since (3) simplifies to DτHη(j)ω(j) (ρ) = − 1
g>f

g>. Thus, the B–derivative in (39) is obtained by compos-
ing rank–1 updates of the identity with solutions to classical variational equations. In the sequel
we will make use of the saltation matrix Ξω ∈ R(d+1)×(d+1) given by

Ξω =
m∏

j=1

Dϕ+
ω(j)(0, ρ). (41)

7Since the flow φ̃ for the “sampled” vector field (36) is piecewise–affine, the set of tangent vectors that fail to
satisfy the two specified conditions has measure zero. Since the B–derivative is a continuous function of tangent
vectors, it is determined by its values on the dense subset of tangent vectors that satisfy the condition.

8If Hj is tangent to Hi at ρ then either Hj or Hi may be indexed by η; the choice will have no effect on the
subsequent calculation.
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6.1.5 Flow between tangent transition surfaces

If the surfaces are tangent at the point ρ = φ(s, x) ∈ ⋂n
j=1Hj 6= ∅ of intersection with the

trajectory, a perturbed trajectory is not affected to first order by flow through the interior of a
region between surfaces that are tangent; this follows from the equality in (37) relating the B–
derivative of the original system to that of its “sampled” version. Indeed, consider the vector field
illustrated in Figure 2 where the surfaces H1 and H2 are tangent at ρ. Evaluating the derivative
Dφ(t, z; 0, (0, δ)) for any δ > 0 requires composition of Dϕ−1, Dϕ[+1,−1], and Dϕ+1,

Dφ(t, z; 0, (0, δ)) = Dφ(t− s, ρ)Dϕ+
[+1,−1](0, ρ)Dϕ+

+1(0, ρ)Dφ(s, z)




0[
0
δ

]

 ,

since the perturbed trajectory φ(t, z + (0, δ)) passes through the interior of D[+1,−1]. Combin-
ing (3), (39), and (40), after some algebra we obtain

Dϕ+
[+1,−1](0, ρ)Dϕ+

−1(0, ρ) = Dϕ+
−1(0, ρ).

In other words, Dφ(t, z; 0, (0, δ)) is unaffected by flow through D[+1,−1]. Intuitively, the time
spent flowing through any region between surfaces that meet at a tangency at ρ ∈ D depends
quadratically on the distance from ρ, therefore it does not affect the first–order approximation of
the flow through ρ. If r > 1 B–derivatives of the flow are desired, then it would be necessary to
take these higher–order effects into account when evaluating the desired higher–order derivative.

6.1.6 Variational equation for event–selected Cr vector field

By synthesizing the preceding observations, we now provide a generalization of the variational
equation in (32) applicable to the piecewise–differentiable flow yielded by an event–selected Cr

vector field. We wish to evaluate Dφ(t, x; v, w) where F is event–selected Cr at ρ = φ(s, x) for
some s ∈ (0, t) and F is Cr at every point in φ([0, t] \ {s} , x), and where (v, w) ∈ T(t,x)F. By (39),
the desired derivative can be obtained by solving a jump–linear time–varying differential equation.
With ω : {1, . . . ,m} → Bn denoting the word associated with the tangent vector (v, w) from (39)
and letting Ξω ∈ R(d+1)×(d+1) be the saltation matrix from (41), if (λ, ξ) : [0, t]→ R×Rd satisfies

∀u ∈ [0, t] \ {s} :

[
λ̇(u)

ξ̇(u)

]
=

[
0

DxF (φ(u, x))ξ(u)

]
,

[
λ(0)
ξ(0)

]
=

[
v
w

]
,

[
λ(s)
ξ(s)

]
= Ξω

[
λ(s−)
ξ(s−)

]
,

(42)

the B–derivative of the flow is given by

Dφ(t, x; v, w) = F (φ(t, x))λ(t) + ξ(t). (43)

More generally, (39) indicates the selection functions for the piecewise–differentiable flow φ are
indexed by the set of words, i.e. functions from {1, . . . ,m} into Bn that specify the sequence of
regions a perturbed trajectory could pass through when flowing from D−1 to D+1:

Ω = {ω : {1, . . . ,m} → Bn | m ≤ n, ω is injective and increases from −1 to +1} ; (44)

here the phrase ω increases from −1 to +1 means that ω(1) = −1, ω(m) = +1, and for each
j ∈ {1, . . . ,m− 1} there exists Ij ⊂ {1, . . . , n} such that ω(j+ 1)−ω(j) = 2

∑
i∈Ij ei. To evaluate
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the (Fréchet) derivative for the selection function φω indexed by ω ∈ Ω, we solve a matrix–valued
jump–linear time–varying differential equation to obtain (Λ>ω , Xω) : [0, t]→ R(d+1)×d via

∀u ∈ [0, t] \ {s} :

[
Λ̇>ω (u)

Ẋω(u)

]
=

[
0

DxF (φ(u, x))Xω(u)

]
,

[
Λ>ω (0)
Xω(0)

]
=

[
0
Id

]
,

[
Λ>ω (s)
Xω(s)

]
= Ξω

[
Λ>ω (s−)
Xω(s−)

]
.

(45)

Then the B–derivative of the selection function φω with respect to state is given by

Dxφω(t, x) = F (φ(t, x))Λ>ω (t) +Xω(t) (46)

As we demonstrate in the following section, evaluating (46) for all words ω ∈ Ω provides a straight-
forward computational procedure9 to check contractivity of a Poincaré map associated with a
periodic orbit.

6.2 Stability of a Periodic Orbit

We assume given an event–selected Cr vector field F ∈ ECr(D) over an open domain D ⊂ Rd

containing a periodic orbit γ : R → D. Theorem 1 (local flow) and Corollary 1 (global flow)
together yield a maximal flow φ ∈ PCr(F, D) for F . Theorem 3 (Poincaré map) yields a Poincaré
map P ∈ PCr(S,Σ) over any local section Σ ⊂ D that intersects Γ = γ(R) at {ρ} = Γ ∩ Σ. The
Bouligand derivative DP : TS → TΣ of this piecewise–differentiable Poincaré map can be used
to assess local exponential stability of the fixed point P (ρ) = ρ, as the following Corollary shows;
this generalizes Proposition 3 in [Iva98] to stability of fixed points for arbitrary PCr functions.

Proposition 1 (contractivity test for stability of a periodic orbit). Suppose P ∈ PCr(S,Σ) where
S ⊂ Σ has a fixed point P (ρ) = ρ and DP is a contraction over tangent vectors near ρ, i.e. there
exists c ∈ (0, 1), δ > 0, and ‖·‖ : Rd−1 × Rd−1 → R such that

∀x ∈ Bδ(ρ) ⊂ S ∩ Σ, v ∈ TxΣ : ‖DP (x; v)‖ ≤ c ‖v‖ . (47)

Then γ is an exponentially stable periodic orbit.

Proof. By the fundamental theorem of calculus [Sch12, Proposition 3.1.1],

∀x, y ∈ Bδ(ρ) : ‖P (x)− P (y)‖ ≤
∫ 1

0

‖DP (y + s(x− y);x− y)‖ ds

≤ c ‖x− y‖ .

We conclude that P is a contraction over the compact ball Bδ(ρ), whence by the Banach contraction
mapping principle [Ban22] [Lee12, Lemma C.35] its unique fixed point P (ρ) = ρ is exponentially
stable.

In the remainder of this section we consider the case where P is a Poincaré map associated with a
periodic orbit in an event–selected Cr vector field, and demonstrate how the B–derivative of P can
be obtained from the B–derivative of the flow φ. This provides a straightforward computational

9Though straightforward, this procedure can be laborious since the number of elements in Ω grows factorially
with the number n of surfaces of discontinuity.
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procedure to determine whether the contraction hypothesis in the above Proposition is satisfied
using the variational equation developed in Section 6.1.

Let µ ∈ Cr(V,R) be the time–to–impact map for Σ on a neighborhood V ⊂ D containing ρ;
note that V can be chosen sufficiently small to ensure µ is continuously (as opposed to piecewise)
differentiable since F is Cr at ρ. Let ψ ∈ Cr(V,Σ) be the impact map given by ψ(x) = φ(µ(x), x)
for all x ∈ V ; again note that ψ is continuously differentiable. By continuity of the flow there
exists a neighborhood U ⊂ S ⊂ Σ of ρ sufficiently small to ensure {φ(t, x) : x ∈ U} ⊂ V , whence
we have the equality

∀x ∈ U : P (x) = ψ ◦ φ(t, x). (48)
Applying the chain rule [Sch12, Theorem 3.1.1] we find that

∀w ∈ TρΣ : DP (ρ;w) = Dψ(ρ)Dφ(t, ρ; 0, w) (49)

where Dψ(ρ) ∈ R(d−1)×d is the (Fréchet) derivative of ψ. Following the conventions from Sec-
tion 6.1, let {φω}ω∈Ω denote the set of selection functions for the flow φ. Now satisfying the
contractivity condition (47) from Proposition 1 (contractivity test for periodic orbit stability),
namely that DP is a contraction over tangent vectors near ρ, is clearly equivalent to finding
c ∈ (0, 1) and ‖·‖ : Rd−1 × Rd−1 → R such that

∀ω ∈ Ω, w ∈ TρΣ : ‖Dψ(ρ)Dxφω(t, ρ)(0, w)‖ ≤ c ‖w‖ . (50)

We emphasize that a single norm must be found relative to which the inequality in (50) is satisfied
for all ω ∈ Ω; it would not suffice, for instance, to merely ensure that all the eigenvalues of
Dψ(ρ)Dxφω(t, ρ) reside in the open unit ball.

The condition in (50) is equivalent to requiring that the induced norm of the linear operator
Dψ(ρ)Dxφω(t, ρ) satisfy the bound

∀ω ∈ Ω : ‖Dψ(ρ)Dxφω(t, ρ)‖i ≤ c. (51)

These observations are summarized formally in the following Proposition.

Proposition 2 (induced norm test for periodic orbit stability). Let D be an open domain, suppose
γ : R→ D is a t–periodic orbit for F ∈ ECr(D), let φ ∈ PCr(F, D) denote the maximal flow for
F , and let {φω}ω∈Ω denote a set of selection functions for φ. Let Σ ⊂ D be a local section for F
such that F is Cr at {ρ} = Γ ∩ Σ where Γ = γ(R) and let ψ ∈ Cr(V,R) be the impact map for
Σ over a neighborhood V ⊂ D containing ρ such that F |V is Cr. If there exists c ∈ (0, 1) and
‖·‖ : Rd → Rd such that (51) holds, then γ is an exponentially stable periodic orbit.

Remark 3. As noted above, (51) is equivalent to stipulating that DP is a contraction over tangent
vectors near ρ, which is the contractivity condition from Proposition 1 (contractivity test for periodic
orbit stability). In [Iva98], Ivanov considered the stability of a fixed point of a piecewise–defined
map. It is clear from his exposition that [Iva98, Proposition 3] is intended to apply to the Poincaré
map P associated with a periodic orbit that passes through multiple surfaces of discontinuity. We
demonstrate that P has the piecewise–defined form assumed in [Iva98, (3.1)] and formally derive a
stability condition in Proposition 2 (induced norm test for periodic orbit stability) that is equivalent
to that in [Iva98, Proposition 3].

Remark 4. In Proposition 2 (induced norm test for periodic orbit stability), the problem of finding
the norm that ensures (51) holds is equivalent to that of finding a common quadratic Lyapunov
function for a switched linear system, which remains an open problem in the theory of switched
systems. We refer the interested reader to [LA09, Section II–A] for a survey of state–of–the–art
approaches to this problem.
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7 Applications
We now illustrate the applicability of these results by appeal to a very simple family of event–
selected Cr fields that abstractly captures the essential nature of the discontinuities arising in
the physical settings mentioned in Section 1. For instance, integrate–and–fire neuron models
consist of a population of n subsystems that undergo a discontinuous change in membrane volt-
age and synaptic capacitance triggered by crossing a voltage threshold [Kee+81; HH95; Biz+13].
Since the discontinuities in state are confined to independent “reset” translations in membrane
voltages [Kee+81, Equation (2)], these transitions can be modeled locally as a first–order dis-
continuity in an event–selected Cr vector field. As another example, legged animals and robots
with four, six, and more limbs exhibit gaits with near–simultaneous touchdown of two or more
legs [Ale84; Gol+99; Hol+06]. Since each touchdown introduces a discontinuity in the forces act-
ing on the body, these transitions give rise to second–order discontinuities in an event–selected Cr

vector field. In the context of electrical power networks, when constituent elements—lines, cables,
and transformers—encounter excessive voltages or currents they trip fail–safe mechanisms that
discontinuously change connectivity between elements [His95, Section II-A.2].

Motivated by these applications in neuroscience, biological and robotic locomotion, and elec-
trical engineering, we now apply the results derived in the previous sections to analyze the effect
of flowing near the intersection of multiple surfaces of discontinuity generated by a very simple
but illustrative family of step functions. As noted in Section 6.1, to describe this effect in gen-
eral one must solve a collection of variational equations that grows factorially with the number
of surfaces of discontinuity. Thus for clarity in Section 7.1 and Section 7.2 we focus on a simple
family of examples arising from the presence of a generalized signum function. We demonstrate
that populations of phase oscillators in both first- and second-order versions of this setting can be
synchronized via piecewise-constant feedback.

7.1 Synchronization of First–Order Phase Oscillators

In this section we study synchronization in a system consisting of d first–order phase oscillators,
i.e. a control system of the form

q̇ = ν1 + u(q), (52)

where q ∈ Q = (S1)d, ν ∈ R is a constant, and u : Q → TQ is a state–dependent feedback law.
The state space is the d–dimensional torus Q = (S1)d = Rd/Zd; we let π : Rd → Q denote the
canonical quotient projection, considered as a covering map [Lee12, Appendix A]. In this section,
we propose a piecewise–constant form for u and prove that it renders the synchronized orbit

Γ = {q ∈ Q | ∀i, j ∈ {1, . . . , d} : qi = qj} (53)

locally exponentially stable for (52).

7.1.1 B–derivative of flow in Euclidean covering space via saltation matrices

First, we work in the Euclidean covering space, considering the vector field F : Rd → TRd defined
by

∀x ∈ Rd : F (x) = ν1− δ sign(x) (54)
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where 0 < δ < ν is a given constant and sign : Rd → Bd is the vectorized signum function
defined as in (1).10 Clearly F is event–selected C∞ on Rd since the event surfaces coincide with
the d standard coordinate planes; for clarity we let 0d ∈ Rd denote the intersection point (i.e. the
origin). Let φ : F → Rd be the global flow for F yielded by Corollary 1.

We aim to compute the B–derivative of the flow with respect to state along the trajectory
passing through 0d. For clarity we outline the computation here and relegate a detailed derivation
to Appendix B.1. For any word ω ∈ Ω we can obtain the derivative of the selection function φω
with respect to state from (46),

Dxφω(0, 0d) = F (φ(0, x))Λ>ω (0) +Xω(0) = Ξω

[
0>d
Id

]
, (55)

since Λ>ω (0) = 0>d and Xω(0) = Id. The saltation matrix Ξω, given in general by (41), simplifies in
this example to (96), whence we conclude as in (100) that

∀ω ∈ Ω : Dxφω(0, 0d) =
ν − δ
ν + δ

Id. (56)

This shows that φ is in fact C1 with respect to state at (0, 0d) ∈ F, and hence

∀w ∈ T0dR
d : Dφ(0, 0d; 0, w) =

ν − δ
ν + δ

w, (57)

i.e. the first–order effect of the nonsmooth flow associated with this piecewise–constant vector field
is linear contraction at rate ν−δ

ν+δ
independent of the direction w ∈ T0dRd.

7.1.2 B–derivative of flow in Euclidean covering space via flowbox

Before continuing with the task at hand—namely, applying feedback of the form in (54) to
demonstrate synchronization of the first–order phase oscillators in (52)—we digress momentar-
ily to provide an alternate derivation of the result in (57) that yields additional intuition. Let
χ0, χ

−1
0 : R→ R be the piecewise–linear homeomorphisms defined by

∀s ∈ R : χ0(s) =

{
s, s < 0;
ν+δ
ν−δs, s ≥ 0;

∀s̃ ∈ R : χ−1
0 (s̃) =

{
s̃, s̃ < 0;
ν−δ
ν+δ

s̃, s̃ ≥ 0;
(58)

and let χ, χ−1 : Rd → Rd be the piecewise–linear homeomorphisms defined by

∀x ∈ Rd : χ(x) = (χ0(x1), . . . , χ0(xd)) , ∀x̃ ∈ Rd : χ−1(x̃) =
(
χ−1

0 (x̃1), . . . , χ−1
0 (x̃d)

)
. (59)

Note that χ0 ◦ χ−1
0 = idR and hence χ ◦ χ−1 = idRd . Since furthermore χ ∈ PCr(Rd,Rd), there is

no ambiguity in the definition of the “pushforward” F̃ := Dχ ◦ F ◦ χ−1 : Rd → TRd. In fact, the
vector field F̃ is constant,

∀x̃ ∈ Rd : F̃ (x̃) = (ν + δ)1, (60)

and hence its flow φ̃ : R× Rd → Rd has the simple form

∀(t, x̃) ∈ R× Rd : φ̃(t, x̃) = x̃+ t(ν + δ)1. (61)

10We note that there are three common definitions for the scalar signum function, depending on what value one
chooses to assign to 0 ∈ R, and hence 3d candidate definitions for a vectorized version. Since integral curves for F
spend zero time at the signum’s zero crossing, there is no loss of generality in our choice.
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(b) ˙̃x = Dχ ◦ F ◦ χ−1(x̃)

Figure 3: (a) Illustration of the vector field F : R2 → TR2 from (54) in the planar case d = 2. (b) Pushforward
of F via the piecewise–linear (“flowbox”) homeomorphism χ : D → D from (59).

Since the homeomorphism χ provides conjugacy between the flows, we have

∀(t, x) ∈ F : χ ◦ φ(t, x) = φ̃(t, χ(x)) = χ(x) + t(ν + δ)1; (62)

this relationship is illustrated in Figure 3. If t ∈ R and x,w ∈ Rd are such that x, x+w, x−w ∈ D−1
and φ(t, x), φ(t, x + w), φ(t, x − w) ∈ D+1 as in Figure 3, the conjugacy in (62) can be used to
evaluate the B–derivative of the flow Dφ, since

φ(t, x+ sw) = χ−1 (χ(x+ sw) + t(ν + δ)1)

=
ν − δ
ν + δ

((x+ sw) + t(ν + δ)1)

=
ν − δ
ν + δ

(x+ sw) + t(ν − δ)1

(63)

and hence
lim
s→0+

1

s
(φ(t, x+ sw)− φ(t, x)) =

ν − δ
ν + δ

w, (64)

whence (57) follows directly. We emphasize that this outcome—the piecewise–differ-entiable flow
is C1 with respect to state—will not arise in general, but note that other examples in this vein can
be obtained by applying other piecewise–linear homeomorphisms to a constant vector field (i.e. a
flowbox) so long as the constant vector field is transverse to surfaces of non–smoothness for the
homeomorphism (needed to ensure the vector field is event–selected Cr).

We conclude by noting that this approach to computing Dφ required a closed–form expression
for the “flowbox” homeomorphism χ and its inverse χ−1, which is equivalent to possessing a closed–
form expression for the flow φ. Since such expressions are rarely available in applications of interest,
in general we expect to rely on the technique developed in Section 6.1 to compute the B–derivative
of the flow.
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7.1.3 Synchronization via piecewise–constant feedback

Now, returning to the state space of interest, let U∆ ⊂ Q be the following open set parameterized
by ∆ > 0:

U∆ =

{
q ∈ TQ | ∃x ∈ π−1(q) : ‖x‖1 ≤

∆

d

}
; (65)

for ∆ > 0 sufficiently small, U∆ is “evenly covered” in the sense that π|π−1(U∆) is a homeomor-
phism [Lee12, Appendix A]. Consider the effect of applying feedback of the form

∀q ∈ Q : u(q) =

{
−δ sign ◦ π−1(q), q ∈ U ;
0, q ∈ Q \ U ;

(66)

to (52). It is straightforward to show (as we do in Appendix B.1) that the synchronized orbit
Γ defined in (53) is a periodic orbit for (52) under this feedback; we note that the closed–loop
dynamics determine an event–selected C∞ vector field on a neighborhood of Γ.

Now we choose a local section Σ ⊂ Q \ U∆ for the closed–loop dynamics that is perpendicular
to Γ and let P ∈ PC∞(S,Σ) denote a Poincaré map for Γ over a neighborhood S ⊂ Σ containing
{ρ} = Γ ∩ Σ. To compute DP (ρ) we employ (49), which involves solving the jump–linear time–
varying differential equation (45) with the saltation matrix update given by (57). Note that away
from discontinuities introduced by the feedback (66) the vector field in (52) does not depend
on the state. This implies that DxF ≡ 0, hence the continuous–time portion of the variational
dynamics (45) does not alter the derivative computation.

Focusing our attention to the discrete–time (saltation matrix) portion of the variational dy-
namics (45), the closed–loop dynamics are discontinuous at three points in Γ: {−∆1, 0d,+∆1}.
At 0d, the saltation matrix is given by (57). At ±∆1, the update is determined by a single event
surface that we chose to be perpendicular to Γ; although these updates affect Dφ, they have no
effect on DP since they lie in the kernel of Dψ in (49). We conclude that P is C1 and

DP (ρ) =
ν − δ
ν + δ

Id−1. (67)

Therefore the induced norm contraction hypothesis of Proposition 2 (induced norm test for periodic
orbit stability) is satisfied with the standard Euclidean norm and c = ν−δ

ν+δ
. We conclude that Γ is

exponentially stable, whence the state feedback in (66) synchronizes the first–order phase oscillators
in (52) at an exponential rate.

7.2 Synchronization of Second–Order Phase Oscillators

In this section we study synchronization in a system consisting of d second–order phase oscillators,
i.e. a control system of the form

q̈ = α1− βq̇ + u(q, q̇), (68)

where q ∈ Q = Rd/Zd, α, β ∈ R are constants, and u : TQ→ T ∗Q is a state–dependent feedback
law. The state space is the tangent bundle TQ of the d–dimension-al torus Q = Rd/Zd; we let
π : R2d → TQ denote the canonical quotient projection.

If u ≡ µ1 where µ ∈ R is a constant then (68) reduces to d decoupled cascades of a pair of
scalar affine time–invariant systems, thus it is clear that q̈ → 0 and hence q̇ → α+µ

β
1 as t → ∞;

this convergence is exponential with rate β. In this section, we propose a piecewise–constant form
for the feedback u and prove that for all β sufficiently large there exists an exponentially stable
periodic orbit that passes near (0, α

β
1) ∈ TQ.
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7.2.1 B–derivative of flow in Euclidean covering space

First, consider the vector field F : R2d → TR2d defined by

∀(x, ẋ) ∈ R2d : F (x, ẋ) =

[
ẋ

α1− βẋ− δ sign(x)

]
(69)

where 0 < δ < α is a given constant. Clearly F is event–selected C∞ on the open set

D =
{

(x, ẋ) ∈ R2d | ∀j ∈ {1, . . . , d} : ẋj 6= 0
}
⊂ R2d (70)

since the event surfaces coincide with the first d standard coordinate planes in R2d; since F fails
to be event–selected Cr at points with zero velocity, we exclude them from our analysis. Let
φ : F → D denote the global flow for F yielded by Corollary 1.

We begin by computing the B–derivative of the flow with respect to state along the trajectory
passing through a point (0, ν1) ∈ D where ν > 0. For clarity we outline the computation here and
relegate a detailed derivation to Appendix B.2. For any word ω ∈ Ω we can obtain the derivative
of the selection function φω with respect to state from (46),

Dxφω(0, (0, ν1)) = F (φ(0, x))Λ>ω (0) +Xω(0) = Ξω

[
0>2d
I2d

]
, (71)

since Λ>ω (0) = 0>2d and Xω(0) = I2d. The saltation matrix Ξω, given in general by (41), simplifies
in this example to (109), whence we conclude as in (113) that

Dxφω(0, (0, ν1)) =

[
Id 0
−2δ

ν
Id Id

]
. (72)

This shows that φ is in fact C1 with respect to state at (0, (0, ν1)) ∈ F, and hence

∀(p, ṗ) ∈ T(0,ν1)D : Dφ(0, (0, ν1); 0, (p, ṗ)) =

[
Id 0
−2δ

ν
Id Id

] [
p
ṗ

]
=: Ξ

[
p
ṗ

]
, (73)

i.e. the first–order effect of the nonsmooth flow associated with this piecewise–constant vector
field is a change in velocity ṗ 7→ ṗ − 2δ

ν
p that is proportional to the error in position p. Solving

the variational equation as in Section 6.1, a straightforward calculation (given for completeness in
Appendix B.2) yields

[
p(s)
ṗ(s)

]
=

[
Id

1
β

(
1− e−βs

)
Id

0 e−βsId

] [
p(0+)
ṗ(0+)

]
=: X(s)

[
p(0+)
ṗ(0+)

]
, (74)

where (p(0+), ṗ(0+)) is determined from (p(0), ṗ(0)) ∈ T(0,ν1)D by applying (73). Combining (73)
with (74) we conclude that the B–derivative with respect to state at time s is given by

[
p(s)
ṗ(s)

]
= Dφ

(
s,

[
x(0)
ẋ(0)

]
; 0,

[
p(0)
ṗ(0)

])

= X(s) Ξ

[
p(0)
ṗ(0)

]

=

[
Id

1
β

(
1− e−βs

)
Id

0 e−βsId

] [
Id 0
−2δ

ν
Id Id

] [
p(0)
ṗ(0)

]

=

[
Id − 2δ

βν

(
1− e−βs

)
Id

1
β

(
1− e−βs

)

−2δ
ν
e−βsId e−βsId

] [
p(0)
ṗ(0)

]
.

(75)
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Taking the limit as s→∞,
[
p(∞)
ṗ(∞)

]
= lim

s→∞

[
p(s)
ṗ(s)

]
=

[ (
1− 2δ

βν

)
p(0)

0

]
. (76)

In plain language (76) indicates that, to first order, the nonsmooth flow associated with the
vector field (69) asymptotically (i) drives the initial velocity error ṗ(0) to zero and (ii) multiplies
the initial position error p(0) by a factor of c =

(
1− 2δ

βν

)
. If we ensure ν ∈

(
α
β
, α+δ

β

)
, then

c =
(

1− 2δ
βν

)
∈
(
1− 2δ

α
, 1− 2δ

α+δ

)
⊂ (−1,+1), achieving contraction in positions. Finally, we note

that the convergence in (76) is exponential with rate β.

7.2.2 Synchronization via piecewise–constant feedback

We now apply a construction analogous to that of Section 7.1 to define a piecewise–constant
feedback law that results in an exponentially stable periodic orbit that passes near (0, α

β
1) ∈ TQ.

To that end, consider the following form for the control neighborhood U∆ ⊂ TQ parameterized by
∆ > 0:

U∆ =

{
(q, q̇) ∈ TQ |

(
∃(x, ẋ) ∈ π−1(q, q̇) : ‖x‖1 ≤

∆

d

)

∧ (∀j ∈ {1, . . . , d} : q̇j > 0)

}
;

(77)

for ∆ > 0 sufficiently small, U∆ is “evenly covered” in the sense that π|π−1(U∆) is a homeomor-
phism [Lee12, Appendix A]. Furthermore, “synchronized” points of the form (±∆1, ν1) where
ν > 0 are in the boundary ∂U∆. We study the effect of applying feedback of the form

∀(q, q̇) ∈ TQ : u(q, q̇) =

{
−δ sign ◦ π−1(q, q̇), (q, q̇) ∈ U∆;
0, (q, q̇) ∈ TQ \ U∆;

(78)

to (68). It is straightforward to show (as we do in Appendix B.2) that for all β > 0 sufficiently
large there exists νβ ∈

(
α
β
, α+δ

β

)
such that the trajectory initialized at (0, νβ1) is periodic for the

dynamics in (68) subject to the piecewise–constant forcing (78). We let Γβ ⊂ TQ denote the image
of the periodic orbit, and let ν−β (resp. ν+

β > 0) denote the speed of the orbit when the position
is equal to −∆1 (resp. +∆1) so that (−∆1, ν−β 1) ∈ Γβ (resp. (+∆1, ν+

β 1) ∈ Γβ). Note that, by
increasing β, ν−β can be made arbitrarily close to α

β
and νβ can be made arbitrarily close to α+δ

β
,

whence νβ ∈
(
α
β
, α+δ

β

)
. Further, note that the closed–loop dynamics determine an event–selected

C∞ vector field on a neighborhood of Γβ.
Now we choose a local section Σβ ⊂ TQ \ U∆ for the closed–loop dynamics whose normal

vector is parallel to (1, 0) at the point ρβ = (−∆1, ν−β 1) ∈ Γβ ∩ Σβ. Note that by construction
Σβ ∩ ∂U∆ is an open set containing ρβ. Let Pβ ∈ PC∞(Sβ,Σβ) denote a Poincaré map for Γβ over
a neighborhood Sβ ⊂ Σβ containing {ρβ}. To compute DPβ(ρβ) we employ (49), which involves
solving the jump–linear time–varying differential equation (45) with the saltation matrix update
given by (73). Away from discontinuities introduced by the feedback (78) the state dependence of
the vector field in (68) is confined to viscous drag on velocities. This implies that the continuous–
time portion of the variational dynamics (45) is given by (74), i.e. the first–order effect of the
flow contracts velocity error at an exponential rate and amplfies position error by an amount
proportional to 1/β.
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Focusing our attention now on the discrete–time (saltation matrix) portion of the variational
dynamics (45), the closed–loop dynamics are discontinuous at three points in Γ: (−∆1, ν−β 1),
(0, ν1), and (+∆1, ν+

β 1). At (0, ν1), the saltation matrix is given by (73). At (±∆1, ν±β ), the
saltation matrix is determined by a single event surface whose normal vector is parallel to (1, 0).
Although these updates affect Dφ, they have no effect on DPβ since they lie in the kernel of Dψ
in (49). We conclude that Pβ is C1 and

DPβ(ρβ) =

[ (
1− 2δ

βνβ

)
Id−1 0

0 0

]
+ Eβ (79)

where the induced norm of the error term ‖Eβ‖i decreases exponentially with increasing β. There-
fore for all β > 0 sufficiently large the induced norm contraction hypothesis of Proposition 2
(induced norm test for periodic orbit stability) is satisfied with the standard Euclidean norm and
c ≈

(
1− 2δ

βνβ

)
∈
(
1− 2δ

α
, 1− 2δ

α+δ

)
⊂ (−1,+1). We conclude that Γβ is exponentially stable for

all β > 0 sufficiently large, whence the state feedback in (78) synchronizes the second–order phase
oscillators in (68) at an exponential rate.

8 Discussion
In this paper, we studied local properties of the flow generated by vector fields with “event–selected”
discontinuities, that is, vector fields that are (i) smooth except along a finite collection of smooth
submanifolds and (ii) “transverse” to these submanifolds in the sense that integral curves intersect
them at isolated points in time. We emphasize that the vector field transversality condition (ii)
excludes sliding modes [Utk77; Jef14] from our analysis. Basic properties of discontinuous vec-
tor fields have been studied in a more general setting, for instance yielding sufficient conditions
ensuring existence of a continuous flow (see [Fil88, Chapter 2] generally and [Fil88, Theorem 3
in §8] specifically). Our chief contribution is the introduction of techniques from non–smooth
analysis [Sch12] to show that a vector field with event–selected discontinuities yields a continuous
flow that admits a strong first–order approximation, the (so–called [Rob87]) Bouligand deriva-
tive. We employed this B–derivative to obtain fundamental constructions familiar from classical
(smooth) dynamical systems theory, including impact maps, flowboxes, and variational equations,
and to study the effect of perturbations, both infinitesimal and non–infinitesimal. In the classical
setting, these constructions are obtained using the classical (alternately called Fréchet [Sch12, Sec-
tion 3.1] or Jacobian [GH83, Section 1.3]) derivative of the smooth flow; our construction of the
non–smooth object proceeded analogously to that of its smooth counterpart after replacing the
classical derivative of the flow with our B–derivative. Thus the piecewise–differentiable dynamical
systems we study bear a closer resemblance to classically differentiable dynamical systems than to
discontinuous dynamical systems considered, for instance, in [PB10; Jim+13].

In future work, we expect to obtain generalizations of other techniques from the classical
theories of dynamical and control systems that depend primarily on the existence of first– or
higher–order approximations of the flow, for instance: stability analysis via control Lyapunov
functions [Art83; Son89] or infinitesimal contractivity [LS98; Son10]; conditions for controllability
based on the inverse function theorem [LN93, Theorem 8] [Car+09, Section II.C]; or necessary
and sufficient conditions for optimality in nonlinear programs involving dynamical systems [Pol97,
Chapter 4]. More broadly, we believe our results support the study of a class of discontinuous
vector fields that arise in neuroscience [Kee+81], biological and robotic locomotion [Hol+06], and
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electrical engineering [His95]. In each of these disparate domains, behaviors of interest occur near
the intersection of surfaces of discontinuity, hence the techniques we developed in this paper may
be brought to bear. Thus we conclude with brief remarks about the formal applicability and
practical relevance of our results in these applications.

Integrate–and–fire neuron models consist of a population of n subsystems that undergo a dis-
continuous change in membrane voltage triggered by crossing a voltage threshold [Kee+81],

v̇ = −γv + u,

v(t+) = 0 if v(t−) = v,
(80)

where: v ∈ R is the membrane voltage; γ ∈ R is a dissipation constant; u ∈ R is an exogenous input;
and v ∈ R is the firing threshold. When driven by a periodic exogenous input, integrate–and–fire
neuron populations can exhibit phase locking [Kee+81] or local synchronization [HH95] behavior,
resulting in simultaneous or near–simultaneous firing. Of interest in applications is the computation
of so–called11 “Lyapunov exponents” using variational equations. We showed in Section 6.1 that the
variational equation must be supplemented by discontinuous updates via saltation matrices near
such simultaneous–firing events. As noted in [Biz+13, Section 4.1], neglecting this non–smooth
effect can result in erroneous conclusions.

Legged locomotion of animals and robots involves intermittent interaction of limbs with terrain;
their dynamics are given by [Joh+, Section II],

M(q)q̈ = f(q, q̇) + λ(q, q̇)Da(q),

q̇(t+) = R(q(t))q̇(t−) if aj(t−) = 0,
(81)

where: q ∈ Q is a vector of generalized coordinates for the body and limbs; M is the inertia tensor;
f : TQ → T ∗Q contains internal, applied, and Coriolis forces; a : Q → Rn specifies n unilateral
constraints of the form

∀j ∈ {1, . . . , n} : aj(q) ≥ 0; (82)

λ : TQ → T ∗Q denotes the reaction forces that ensure (82) are satisfied by (81) for all time.
The update q̇(t+) = R(q(t))q̇(t−) is triggered when one of the unilateral constraints aj would be
violated by a penetrating velocity; it causes a discontinuity in both the velocity and the forces
acting on the system. Legged animals and robots with four, six, and more limbs exhibit gaits with
near–simultaneous touchdown of two or more legs [Ale84; Gol+99; Hol+06]. Steady–state gaits are
commonly modeled as periodic orbits in the body reference frame [SK88; KB91; KF99]. In practice,
gait stability is assessed using the linearization of the first–return or Poincaré map, since if the
eigenvalues of the linearization (the so–called Floquet multipliers [GH83, Section 1.5]) lie within
the unit disk then the gait is exponentially stable [AG58; Gri+02]. We showed in Section 4.2 that
the Poincaré map associated with a periodic orbit passing through the intersection of multiple
surfaces of discontinuity is generally non–smooth. This implies that it is not possible to assess
stability of such orbits using the F–derivative since the F–derivative of the map does not exist.
In Section 6.2, we showed how the B–derivative of the Poincaré map can be employed instead to
assess stability of such orbits.

Electrical power systems undergo discontinuous changes in network topology triggered by ex-
cessive voltages or currents, leading to differential–algebraic models of the form [His95, (2)–(4)]

11In practice, one computes singular values of finite–time sensitivity matrices, rather than the formal asymptotic
Lyapunov exponent as defined, for instance, in [Sas99, Section 3.4.1].
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ẋ = f(x, y, z; p), 0 = g(x, y, z; p),

z(t+) = h(x(t), y(t), z(t−); p) if yj(t−) = 0,
(83)

where: x ∈ Rd contains dynamic states; y ∈ Rn contains algebraic states; z ∈ Rm contains discrete
states; p ∈ R` contains parameters; f : Rd+n+m+` → Rd is a smooth vector field; g : Rd+n+m+` → Rk

is a smooth constraint function; and h : Rd+n+m+` → Rm is a smooth reset function. The update
z(t+) = h(x(t), y(t), z(t−); p) is applied when one of the algebraic states yj crosses a prespecified
threshold (e.g. a bus voltage limit), causing a discontinuity in the vector field governing the
time evolution of x. In electrical power networks, discrete switches triggered by over–excitation
limits can occur at arbitrary times with respect to one another. When the switches occur at
distinct time instants, the trajectory sensitivity matrix (i.e. the F–derivative the flow) computed
as in [HP00] can provide quantitative insights for design and control. However, as noted in [HP00,
Section VIII], these calculations lose accuracy when event times become coincident; this is due to
the fact that the flow is not classically differentiable along trajectories that undergo simultaneous
discrete transitions. The procedure we developed in Section 6.1 can be employed to compute a
collection of trajectory sensitivity matrices (i.e. the B–derivative of the flow) that generalize the
approach advocated in [HP00] to be applicable in power networks that undergo an arbitrary (but
finite) number of simultaneous discrete transitions.
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A F–Derivative Formulae for Piecewise–Differentiable Flow
A piecewise–differentiable function is differentiable almost everywhere [Roc03, Theorem 2], and
hence its B–derivative at any point is contained in the convex hull of the limit of F–derivatives
of its selection functions [Sch12, § 4.3]. For completeness and to aid the reader’s comprehension,
we now derive explicit formulae for F–derivatives of the piecewise–differentiable objects used in
Section 3.3 to construct the piecewise–differentiable flow. In general the B–derivative can be
obtained via the chain rule [Sch12, Theorem 3.1.1].

A.1 Budgeted time–to–boundary

We adopt the notational conventions from Section 3.2.1.
Define ν+

b : Ub → R ∪ {+∞} using the convention min ∅ = +∞ by

∀x ∈ Ub : ν+
b (x) = min

{
τ
Hj
b (x) : bj < 0

}n
j=1

, (84)
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then for all (t, x) ∈ R×Ub such that ν+
b (x) 6= t 6= 0, the forward–time budgeted time–to–boundary

τ+
b is classically differentiable and

Dτ+
b (t, x) =





(0, 0>d ), t < 0;
(1, 0>d ), 0 < t < ν+

b (x);(
0, DτHb (x)

)
, ν+

b (x) < t;
(85)

where in the third case H ∈ {Hj}nj=1 is such that τHb (x) = ν+
b (x) > 0.

Define ν−b : Ub → R ∪ {−∞} using the convention max ∅ = −∞ by

∀x ∈ Ub : ν−b (x) = min
{
τ
Hj
b (x) : bj > 0

}n
j=1

, (86)

then for all (t, x) ∈ R×Ub such that ν−b (x) 6= t 6= 0, the backward–time budgeted time–to–boundary
τ−b is classically differentiable and

Dτ−b (t, x) =





(0, 0>d ), t > 0;
(1, 0>d ), ν−b (x) < t < 0;(
0, DτHb (x)

)
, t < ν−b (x);

(87)

where in the third case H ∈ {Hj}nj=1 is such that τHb (x) = ν−b (x) < 0.

A.2 Budgeted flow–to–boundary

We adopt the notational conventions from Section 3.2.2.
Define ν+

b : Ub → R as in (84) then for all (t, x) ∈ R × Ub such that ν+
b (x) 6= t 6= 0, the

forward–time flow–to–boundary ζ+
b is classically differentiable and

Dζ+
b (t, x) =





(0d, 0d×d), t < 0;
(Fb(φb(t, x)), Dxφb(t, x)), 0 < t < ν+

b (x);
(0d,Υ(t, x)), ν+

b (x) < t;
(88)

where in the third case Υ(t, x) = Fb(φb(τ
+
b (t, x), x))DτHb (x) + Dxφb(τ

+
b (t, x), x) and H ∈ {Hj}nj=1

is such that τHb (x) = ν+
b (x).

Define ν−b : Ub → R as in (86) then for all (t, x) ∈ R × Ub such that ν−b (x) 6= t 6= 0, the
backward–time flow–to–boundary ζ−b is classically differentiable and

Dζ−b (t, x) =





(0d, 0d×d), t > 0;
(Fb(φb(t, x)), Dxφb(t, x)), ν−b (x) < t < 0;
(0d,Υ(t, x)) , t < ν−b (x);

(89)

where in the third case Υ(t, x) = Fb(φb(τ
−
b (t, x), x))DτHb (x) + Dxφb(τ

−
b (t, x), x) and H ∈ {Hj}nj=1

is such that τHb (x) = ν+
b (x).

A.3 Composite of budgeted time–to– and flow–to–boundary

We adopt the notational conventions from Section 3.2.3.
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Combine (6) and (8) to obtain the derivative of ϕ+
b for all (t, x) ∈ R×Ub such that ν+

b (x) 6= t 6= 0:

Dϕ+
b (t, x) =





[
1 0
0 I

]
, t < 0;

[
0 0

Fb(φb(t, x)) Dxφb(t, x)

]
, 0 < t < ν+

b (x);
[

1 −DτHb (x)
0 Υ(t, x)

]
, ν+

b (x) < t;

(90)

where in the third case Υ(t, x) = Fb(φb(τ
+
b (t, x), x))DτHb (x) + Dxφb(τ

+
b (t, x), x) and H ∈ {Hj}nj=1

is such that τHb (x) = ν+
b (x).

Combine (87) and (89) to obtain the derivative of ϕ−b for all (t, x) ∈ R×Ub such that ν−b (x) 6=
t 6= 0:

Dϕ−b (t, x) =





[
1 0
0 I

]
, t > 0;

[
0 0

Fb(φb(t, x)) Dxφb(t, x)

]
, ν−b (x) < t < 0;

[
1 −DτHb (x)
0 Υ(t, x)

]
, t < ν−b (x);

(91)

where in the third case Υ(t, x) = Fb(φb(τ
−
b (t, x), x))DτHb (x) + Dxφb(τ

−
b (t, x), x) and H ∈ {Hj}nj=1

is such that τHb (x) = ν+
b (x).

B Periodic Orbits and B–derivative Formulae for Phase Os-
cillators

In the following subsections we provide detailed derivations that were deemed too laborious to
include in the main text.

B.1 Synchronization of First–Order Phase Oscillators

We adopt the notational conventions of Section 7.1, and derive several useful properties of closed–
loop dynamics obtained by applying the piecewise–constant feedback in (66) to the system in (52).

First we argue that the synchronized set (53) is a periodic orbit for the closed–loop dynamics.
Since (52) consists of d identical subsystems and the feedback in (66) encounters discontinuities
synchronously (i.e. all coordinates of the vector field change discontinuously at the same time) at
points {−∆1, 0d,+∆1} and at every other point in time the vector field coordinates are identical,
we conclude that the trajectory initialized at 0d remains synchronized for all time.

We now explicitly derive the B–derivative in (57). Fixing a word ω : {1, . . . , d} → Bd with
corresponding sequence of surfaces crossed η : {1, . . . , d} → {1, . . . , d}, we know from Section 6.1
that for all ε > 0 the F–derivative of the selection function φω at (2ε, φ(−ε, 0d)) is given by (39),

Dφω(2ε, φ(−ε, 0d)) = Dφ(ε, 0d)

[
d∏

j=1

Dϕ+
ω(j)(0, 0d)

][
0

Dφ(ε, φ(−ε, 0d))

]
. (92)

Here, Dφ(ε, 0d), Dφ(ε, φ(−ε, 0d)) are obtained as in (33) by solving the classical variational equa-
tion since F : Rd → TRd is smoothly extendable to a neighborhood of those segments of the
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trajectory; noting that for all s ∈ [−ε, 0) we have F (φ(s, 0d)) = F−1(0d), DxF (φ(s, 0d)) = 0 and
for all s ∈ (0,+ε] we have F (φ(s, 0d)) = F+1(0d), DxF (φ(s, 0d)) = 0, we conclude that

Dφ(s, 0d) =
[
F+1(0d) Id

]
, Dφ(s, φ(−s, 0d)) =

[
F−1(0d) Id

]
. (93)

For each j ∈ {1, . . . , d} the derivative Dϕ+
ω(j)(0, 0d) is given by the matrix in the third case in (11)

with the simplifications τ+
ω(j)(0, 0d) = 0, φω(j)(0, 0d) = 0d; setting fj = Fω(j)(0d), g>j = Dhη(j)(0d)

for each j ∈ {1, . . . , d}, by (40) we have

Dϕ+
ω(j)(0, 0d) = Id+1 +

1

g>j fj

[
1
−fj

] [
0 g>j

]
. (94)

Now for all j ∈ {1, . . . , d} we have fj = Fω(j)(0d) = ν1− δω(j) ∈ Rd and g>j = Dhη(j)(0d) = e>η(j) ∈
R1×d, hence g>j fj = ν+δ. Since for all i ∈ {1, . . . , d} with i > j the vector ω(i) is lexicographically
greater than ω(j), we also have g>i fj = ν+ δ. These simplifications yield for all j ∈ {1, . . . , d− 1}

Dϕ+
ω(j+1)(0, 0d)Dϕ

+
ω(j)(0, 0d)

=

[
Id+1 +

1

ν + δ

[
1

−fj+1

] [
0 e>η(j+1)

]] [
Id+1 +

1

ν + δ

[
1
−fj

] [
0 e>η(j)

]]

= Id+1 +
1

ν + δ

[
1

−fj+1

] [
0 e>η(j+1)

]
+

1

ν + δ

[
0

fj+1 − fj

] [
0 e>η(j)

]
.

(95)

Noting that fj+1 − fj = −2δeη(j), we conclude that e>η(i)(fj+1 − fj) = 0 for all i ∈ {j + 1, . . . , d}.
This implies that

Ξω =
d∏

j=1

Dϕ+
ω(j)(0, 0d)

= Id+1 +
1

ν + δ

[
1
−fd

] [
0 e>η(d)

]
+

1

ν + δ

d−1∑

j=1

[
0

−2δeη(j)

] [
0 e>η(j)

]
.

(96)

Noting for any f ∈ Rd with 0d = 0 · 1d ∈ Rd that
[

0 0>d
f Id

]
= Id+1 +

[
−1
f

] [
1 0>d

]
, (97)

defining f+ = F+1(0d) and noting that f+ − fd = −2δeη(d) we have

[
0 0>d
f+ Id

] d∏

j=1

Dϕ+
ω(j)(0, 0d) = Id+1 +

[
−1
f+

] [
1 0>d

]

+
1

ν + δ

[
0

f+ − fd

] [
0 e>η(d)

]

+
1

ν + δ

d−1∑

j=1

[
0

−2δeη(j)

] [
0 e>η(j)

]

= Id+1 −
2δ

ν + δ

[
0 0>d
0d Id

]
+

[
−1
f+

] [
1 0>d

]
.

(98)
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Finally, defining f− = F−1(0d) we have

Dφω(0, 0d) =

[
0 0>d
f+ Id

] d∏

j=1

Dϕ+
ω(j)(0, 0d)

[
0 0>d
f− Id

]

= Id+1 −
2δ

ν + δ

[
0 0>d
0d Id

]
+

[ −1(
ν−δ
ν+δ

)
f−

] [
1 0>d

]

=
[ (

ν−δ
ν+δ

)
f− ν−δ

ν+δ
Id
]
.

(99)

Restricting to the derivative with respect to state, we find for all words ω ∈ Ω that

Dxφω(0, 0d) =
ν − δ
ν + δ

Id. (100)

Thus the piecewise–differentiable flow φ is C1 with respect to state at (0, 0d), and (57) follows.
Restricting instead to the derivative with respect to time, we find as expected that

Dtφω(0, 0d) =
ν − δ
ν + δ

f− = f+ = F+1(0d). (101)

B.2 Synchronization of Second–Order Phase Oscillators

We adopt the notational conventions of Section 7.2, and derive several useful properties of closed–
loop dynamics obtained by applying the piecewise–constant feedback in (78) to the system in (68).

First we argue that, for any β,∆ > 0 there exists νβ ∈
(
α
β
, α+δ

β

)
such that the trajectory

initialized at (0, ν1) is a periodic orbit for the closed–loop dynamics. Since (68) consists of d
identical subsystems and the feedback in (78) encounters discontinuities synchronously (i.e. all
coordinates of the vector field change discontinuously at the same time) at points of the form
(θ1, ν1) where θ ∈ {−∆, 0,+∆} and ν > 0 and at every other point in time the vector field
coordinates are identical, we conclude that a trajectory initialized at (0, ν1) remains synchronized
for all time, so the asymptotic behavior of this trajectory can be studied by restricting our attention
to the scalar case (i.e. d = 1), wherein the dynamics take the simple form

d = 1 =⇒ q̈ =





α− δ − βq̇, q ∈ [−∆, 0);
α + δ − βq̇, q ∈ [0,+∆];
α− βq̇, else;

(102)

here we adopt the abuse of notation that q ∈ [−∆, 0) if there exists x ∈ [−∆, 0) ⊂ R such that
π(x) = q, and similarly for q ∈ [0,+∆]. Clearly if the initial velocity q̇(0) > 0 then q̇(t) > 0 for all
t > 0 since 0 < δ < α. This implies that q(t) crosses the thresholds θ ∈ {−∆, 0,+∆} in sequence.
The impact map P

(θ1,θ2)
β : (0,∞) → (0,∞) obtained by integrating the flow of (102) between

any sequential pair of event surfaces (θ1, θ2) ∈ {(−∆, 0), (0,+∆), (+∆,−∆)} is a contraction
over velocities with a Lipschitz constant that decreases exponentially with increasing β. Thus
the composition Pβ = P

(0,+∆)
β ◦ P (−∆,0)

β ◦ P (+∆,−∆)
β is a contraction for all β sufficiently large.

Since furthermore for all β sufficiently large the compact set
[
α
β
, α+δ

β

]
is mapped to itself under

Pβ, the Banach contraction mapping principle [Ban22] [Lee12, Lemma C.35] implies there exists
νβ ∈

(
α
β
, α+δ

β

)
such that Pβ(νβ) = νβ. In other words, the trajectory initialized at (0, νβ) lies on

a periodic orbit for (102), and hence (0, νβ1) lies on a periodic orbit for the closed–loop dynamics
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obtained by applying the feedback in (78) to the system in (68). It is straightforward to verify in
this scalar system that solving the variational equation as in Section 6.1 yields

[
p(s)
ṗ(s)

]
=

[
1 1

β

(
1− e−βs

)

0 e−βs

] [
p(0+)
ṗ(0+)

]
=: X(s)

[
p(0+)
ṗ(0+)

]
. (103)

Since the saltation updates are synchronous along the periodic orbit, (74) follows.
We now explicitly derive the B–derivative in (73). Fixing a word ω : {1, . . . , d} → Bd with

corresponding sequence of surfaces crossed η : {1, . . . , d} → {1, . . . , d}, we know from Section 6.1
that for all ε > 0 the F–derivative of the selection function φω at (2ε, φ(−ε, (0, ν1))) is given
by (39),

Dφω(2ε, φ(−ε, (0, ν1)))

= Dφ(ε, (0, ν1))

[
d∏

j=1

Dϕ+
ω(j)(0, (0, ν1))

] [
0

Dφ(ε, φ(−ε, (0, ν1)))

]
.

Here, Dφ(ε, (0, ν1)), Dφ(ε, φ(−ε, (0, ν1))) are obtained as in (33) by solving the classical varia-
tional equation since F : R2d → TR2d is smoothly extendable to a neighborhood of those segments
of the trajectory; we conclude that

lim
s→0+

Dφ(s, (0, ν1)) =
[
F+1(0, ν1) Id

]
,

lim
s→0+

Dφ(s, φ(−s, (0, ν1))) =
[
F−1(0, ν1) Id

]
.

(104)

For each j ∈ {1, . . . , d} the derivative Dϕ+
ω(j)(0, (0, ν1)) is given by the matrix in the third case

in (11) with the simplifications τ+
ω(j)(0, (0, ν1)) = 0, φω(j)(0, (0, ν1)) = (0, ν1); setting fj =

Fω(j)(0, ν1), g>j = Dhη(j)(0,ν1) for each j ∈ {1, . . . , d}, by (40) we have

Dϕ+
ω(j)(0, (0, ν1)) = Id+1 +

1

g>j fj

[
1
−fj

] [
0 g>j

]
. (105)

For convenience, we let
I2d =

[
e1 · · · ed ė1 · · · ėd

]
, (106)

i.e. for all j ∈ {1, . . . , d} we let ej ∈ R2d denote the j–th standard Euclidean basis vector and let
ėj = ed+j ∈ R2d denote the (d+ j)–th such vector; though a mild abuse of the “dot” (“ ˙”) notation,
this convention simplifies the subsequent exposition. Now for all j ∈ {1, . . . , d} we have

fj = Fω(j)(0, ν1) =

[
ν1

α1− βν1− δω(j)

]
∈ R2d,

g>j = Dhη(j)(0, ν1) = e>η(j) ∈ R1×2d,

(107)

and hence for any i ∈ {1, . . . , d} we have g>i fj = ν. These simplifications yield for all j ∈
{1, . . . , d− 1}

Dϕ+
ω(j+1)(0, (0, ν1))Dϕ+

ω(j)(0, (0, ν1))

=

[
I2d+1 +

1

ν

[
1

−fj+1

] [
0 g>j+1

]] [
I2d+1 +

1

ν

[
1
−fj

] [
0 g>j

]]

= I2d+1 +
1

ν

[
1

−fj+1

] [
0 g>j+1

]
+

1

ν

[
0

fj+1 − fj

] [
0 g>j

]
.

(108)
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Noting that fj+1 − fj = −2δėη(j), we conclude that e>η(i)(fj+1 − fj) = 0 for all i ∈ {j + 1, . . . , d}.
This implies that

Ξω =
d∏

j=1

Dϕ+
ω(j)(0, (0, ν1))

= I2d+1 +
1

ν

[
1
−fd

] [
0 e>η(d)

]
− 2δ

ν

d−1∑

j=1

[
0
ėη(j)

] [
0 e>η(j)

]
.

(109)

Noting for any f ∈ R2d with 02d = 0 · 12d ∈ R2d that
[

0 0>2d
f I2d

]
= I2d+1 +

[
−1
f

] [
1 0>2d

]
, (110)

defining f+ = F+1(0, ν1) and noting that f+ − fd = −2δėη(d) we have

[
0 0>2d
f+ I2d

] d∏

j=1

Dϕ+
ω(j)(0, (0, ν1))

= I2d+1 +

[
−1
f+

] [
1 0>2d

]
+

1

ν

[
0

f+ − fd

] [
0 e>η(d)

]

− 2δ

ν

d−1∑

j=1

[
0
ėη(j)

] [
0 e>η(j)

]

= I2d+1 −
2δ

ν

d∑

j=1

[
0
ėη(j)

] [
0 e>η(j)

]
+

[
−1
f+

] [
1 0>2d

]
.

(111)

Finally, defining f− = F−1(0, ν1) we have

Dφω(0, (0, ν1))

=

[
0 0>2d
f+ I2d

] d∏

j=1

Dϕ+
ω(j)(0, (0, ν1))

[
0 0>2d
f− I2d

]

= I2d+1 −
2δ

ν




0 0>d 0>d
0d 0 0
0d Id 0


+



[
−1
f−

]
−




0
0d

2δ1




 [ 1 0>d 0>d

]
.

(112)

Restricting to the derivative with respect to state, we find for all words ω ∈ Ω that

Dxφω(0, (0, ν1)) =

[
Id 0
−2δ

ν
Id Id

]
. (113)

Thus the piecewise–differentiable flow φ is C1 with respect to state at (0, (0, ν1)), and (73) follows.
Restricting instead to the derivative with respect to time, we find as expected that

Dtφω(0, (0, ν1)) = f− −
[

0d
2δ1

]
= f+ = F+1(0, ν1). (114)
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C Global Piecewise–Differentiable Flow
This section contains a proof of Corollary 1 (global flow) that consists of a straightforward adap-
tation of the proof of [Lee12, Theorem 9.12] obtained by replacing all instances of the modifier
“smooth” with “piecewise–smooth”.

Lemma 3 (Translation Lemma). Let D ⊂ Rd be open, F ∈ ECr(D), J ⊂ R be an interval, and
ξ : J → D an integral curve for F . For any b ∈ R, the curve ξ̂ : Ĵ → D defined by ξ̂(t) = ξ(t+ b)

is also an integral curve for F , where Ĵ = {t : t+ b ∈ J}.

Proof. Clearly ξ̂ ∈ PCr(Ĵ , D), whence the fundamental theorem of calculus [Sch12, Proposi-
tion 3.1.1] in conjunction with Lemma 1 implies ξ̂ is an integral curve for F .

Theorem 7 (Fundamental Theorem on Flows). If F ∈ ECr(D), then there exists a unique max-
imal flow φ ∈ PCr(F, D) for F . This flow has the following properties:

(a) For each x ∈ D, the curve φx : Fx → D is the unique maximal integral curve of F starting
at x.

(b) If s ∈ Fx, then Fφ(s,x) = Fx − s = {t− s : t ∈ Fx}.

(c) For each t ∈ R, the set Dt = {x ∈ D : (t, x) ∈ F} is open in D and φt : Dt → D−t is a
piecewise–Cr homeomorphism with inverse φ−t.

Proof. This proof is a straightforward adaptation of the proof of Theorem 9.12 in [Lee12].
Theorem 1 (local flow) shows that there exists an integral curve for F starting at each point

x ∈ D. Suppose ξ, ξ̃ : J → D are two integral curves for F defined on the same open interval
J such that ξ(t0) = ξ̃(t0) for some t0 ∈ J . Let S =

{
s ∈ J : ξ(s) = ξ̃(s)

}
. Clearly S 6= ∅ since

t0 ∈ S, and S is closed in J by continuity of integral curves. On the other hand, suppose t1 ∈ S.
Applying Theorem 1 (local flow) near x = ξ(t1), we see that there exists an interval t1 ∈ I ⊂ R
such that ξ|I = ξ̃|I . This implies S is open in J . Since J is connected, S = J , which implies
ξ|J = ξ̃|J . Thus any two integral curves that agree at one point agree on their common domain.

For each x ∈ D, let Fx be the union of all domains of integral curves for F originating at x at
time 0. Define φx : Fx → D by letting φx(t) = ξ(t), where ξ is any integral curve starting at x
and defined on an open interval containing 0 and t. Since all such integral curves agree at t by the
argument above, φx is well–defined, and is obviously the unique maximal integral curve starting
at p.

Now let F = {(t, x) ∈ R×D : t ∈ Fx} and define φ : F → D by φ(t, x) = φx(t). We also
write φt(x) = φ(t, x). By definition, φ satisfies property (a) in the statement of the fundamental
theorem: for each x ∈ D, φx is the unique maximal integral curve for F starting at x. To verify the
group laws, fix any x ∈ D and s ∈ Fx, and write y = φ(s, x) = φx(s). The curve ξ : (Fx − s)→ D
defined by ξ(t) = φx(t+ s) starts at y, and Lemma 3 shows that ξ is an integral curve for F . Since
φ is a function, ξ agrees with φy on their common domain, which is equivalent to

∀s ∈ Fx, t ∈ Fφ(s,x) : (s+ t ∈ Fx) =⇒ (φ(t, φ(s, x)) = φ(t+ s, x)) . (115)

The fact that φ(0, x) = x for all x ∈ D is obvious. By maximality of φx, the domain of ξ cannot
be larger than Fy, which means that Fx − s ⊂ Fy. Since 0 ∈ Fx, this implies −s ∈ Fy, and the
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group law (115) implies that φy(−s) = x. Applying the same argument with (−s, y) in place of
(s, x), we find that Fy + s ⊂ Fx, which is the same as Fy ⊂ Fx − s. This proves (b).

Next we show that F is open in R × D (so it is a flow domain) and that φ : F → D is
PCr. Define a subset W ⊂ F as the set of all (t, x) ∈ F such that φ is defined and PCr on a
product neighborhood of (t, x) of the form J ×U ⊂ F, where J ⊂ R is an open interval containing
0 and t and U ⊂ D is a neighborhood of x. Then W is open in R × D, and the restriction
φ|W ∈ PCr(W,D), so it suffices to show that W = F. Suppose this is not the case. Then there
exists some point (τ, x0) ∈ F \W . For simplicity, assume τ > 0; the argument for τ < 0 is similar
(and can be obtained, for instance, by considering the flow for −F ).

Let t0 = inf {t ∈ R : (t, x0) 6∈ W} (see Fig. 9.6 in [Lee12]). By Theorem 1 (local flow), φ is
defined and PCr in some product neighborhood of (0, x0), so t0 > 0. Since t0 ≤ τ and Fx0 is an
open interval containing 0 and τ , it follows that t0 ∈ Fx0 . Let y0 = φx0(t0). By Theorem 1 (local
flow) again, there exists ε > 0 and a neighborhood U0 of y0 such that (−ε, ε) × U0 ⊂ W . We
will use the group law (115) to show that φ admits a PCr extension to a neighborhood of (t0, x0),
which contradicts our choice of t0.

Choose some t1 < t0 such that t1 +ε > t0 and φx0(t1) ∈ U0. Since t1 < t0, we have (t1, x0) ∈ W ,
so there is a product neighborhood (t1 − δ, t1 + δ)× U1 ⊂ W for some δ > 0. By definition of W ,
this implies φ is defined and PCr on [0, t1 + δ) × U1. Because φ(t1, x0) ∈ U0, we can choose U1

small enough that φ maps {t1} × U1 into U0. Define φ̃ : [0, t1 + ε)× U1 → D by

∀(t, x) ∈ [0, t1 + ε)× U1 : φ̃(t, x) =

{
φt(x), x ∈ U1, 0 ≤ t < t1,
φt−t1 ◦ φt1(x), x ∈ U1, t1 − ε < t < t1 + ε.

The group law for φ guarantees that these definitions agree where they overlap, and our choices
of U1, t1, and ε ensure that this defines a PCr map. By Lemma 3, each map t 7→ φ̃(t, p) is an
integral curve of F , so φ̃ is a PCr extension of φ to a neighborhood of (t0, x0), contradicting our
choice of t0. This completes the proof that W = F.

Finally, we prove (c). The fact that Dt is open is an immediate consequence of the fact that F
is open. From part (b) we deduce that

x ∈ Dt =⇒ t ∈ Fx =⇒ Fφt(x) = Fx − t
=⇒ −t ∈ Fφt(x) =⇒ φt(x) ∈ D−t,

which shows that φt maps Dt to D−t. Moreover, the group laws then show that φ−t ◦ φt is equal
to the identity on Dt. Reversing the roles of t and −t shows that φt ◦ φ−t is the identity on D−t,
which completes the proof.
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D Perturbation of Differential Inclusions
In the proof of the perturbation results of Section 5, we relied on a result due to Filippov. For
completeness, we reproduce the statement of the result we required.

Assumption 1 ([Fil88, Chapter 2, §8, Theorem 1]). In the domain F a set–valued function F (t, x)
satisfies the basic conditions if for all (t, x) ∈ F the set F (t, x) is nonempty, bounded, closed, and
convex, and furthermore the function F is upper semicontinuous in t, x.

Here, F is understood to be a subset of R×Rd, and F is upper semicontinuous as a multifunction
F : F → 2Rd [Cla90, §2.1], i.e. for all (t, x) ∈ F, ε > 0 there exists δ > 0 such that

∀(s, y) ∈ (t, x) +Bδ(0) : F (s, y) ⊂ F (t, x) +Bε(0) (116)

where we adopt the usual notation in a Banach space X,

∀x ∈ X, B ⊂ X : x+B = {x+ y : y ∈ B} . (117)

As in [Fil88, Chapter 2, §8], for any F̃ : F → 2Rd we define the deviation dF(F̃ , F ) as

dF(F̃ , F ) = inf
{
δ > 0 | ∀(t, x) ∈ F : F̃ (t, x) ⊂ [coF (t+Bδ(0), x+Bδ(0))] +Bδ(0)

}
(118)

where for any U ⊂ Rd the set coU denotes the convex hull of points in U .

Theorem 8 ([Fil88, Chapter 2, §8, Theorem 1]). Let F (t, x) satisfy Assumption 1 (differential
inclusion basic conditions) in the open domain F; t0 ∈ [a, b], (t0, x0) ∈ F; let all the solutions of
the problem

ẋ ∈ F (t, x), x(t0) = x0 (119)

exist for all t ∈ [a, b] and their graphs lie in F.
Then for any ε > 0 there exists a δ > 0 such that for any t̃0 ∈ [a, b], x̃0 and F̃ (t, x) satisfying

the conditions ∣∣t̃0 − t0
∣∣ ≤ δ, ‖x̃0 − x0‖ ≤ δ, dF(F̃ , F ) ≤ δ

and Assumption 1 (differential inclusion basic conditions), each solution of the problem

˙̃x ∈ F̃ (t, x̃), x̃(t̃0) = x̃0 (120)

exists for all t ∈ [a, b] and differs from some solution of (119) by not more than ε.

Here, a “solution of the problem (119)” on the interval [a, b] ⊂ R is an absolutely continuous
function y : [a, b]→ Rd; its “graph lies in F” if {(t, y(t)) : t ∈ [a, b]} ⊂ F.
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