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Abstract:
As human-robot systems make their ways into our every day life, safety has become a core
concern of the learning algorithms used by such systems. Examples include semi-autonomous
vehicles such as automobiles and aircrafts. The robustness of controllers in such systems relies on
the accuracy of models of human behavior. In this paper, we propose a systematic methodology
for analyzing the robustness of learning-based control of human-cyber-physical systems. We
focus on the setting where human models are learned from data, with humans modeled as
approximately rational agents optimizing their reward functions. In this setting, we provide a
novel optimization-driven approach to find small deviations in learned human behavior that
lead to violation of desired (safety) objectives. Our approach is experimentally validated via
simulation for the application of autonomous driving.
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1. INTRODUCTION

Many cyber-physical systems and robots today operate
with human input or interact closely with humans. Ex-
amples include fly-by-wire aircraft (interacting with pilots
or ground-based operators), semi-autonomous automobiles
(interacting with a driver, pedestrians, or other human-
driven vehicles), and medical devices (interacting with a
doctor, nurse, or patient). We term such system as human-
cyber-physical systems or human-robot systems. Several
of these systems are safety-critical, with severe costs of
incorrect operation. Moreover, the interaction between
human operators and autonomous controllers are often the
reason for failures or “near failures”, as noted by several
studies (e.g., [FAA], L. T. Kohn and J. M. Corrigan and
M. S. Donaldson, editors. [2000]).

In order to design such systems, it is crucial to have good
models of human behavior. But how does one formally
model human behavior? Broadly speaking, modeling ap-
proaches fall into two categories. On the one hand, one can
rely on an expert to create a human model from experience,
data, and documentation (e.g., Rushby [2002]). In such
approaches, uncertainty in human behavior is modeled
as adversarial, non-deterministic behavior, which can be
extremely conservative. Additionally, when models are
crafted by human experts, they are also prone to errors
or biases by those experts. An alternative is to use a
data-driven approach, where human models are inferred
from data collected from experiments or the field. Such
an approach has been gaining currency in recent times,
notably for the application of autonomous driving Levine
and Koltun [2012], Sadigh et al. [2014, 2016a,b], Shia
et al. [2014], Vasudevan et al. [2012]. However, data-driven
methods suffer the limitation that the learned models may
be inaccurate due to lack of sufficient data or due to implicit

assumptions in the learning process. Nonetheless, it is
important to raise the level of assurance on the overall
human-cyber-physical systems even when the learned model
of human behavior may be inaccurate.

In this paper, we present a new approach for a rigorous
analysis of human-cyber-physical systems that is based on
learned models of human behavior. We focus on analyzing
the robustness of a learning-based controller for human-
cyber-physical systems where the human behavior deviates
slightly from a learned model. As a motivating application,
we consider autonomous controllers for vehicles that are
based on the common and effective model predictive
control (MPC) paradigm Bemporad and Morari [1999],
Morari et al. [1993], in the receding horizon sense. In this
setting, the autonomous controller computes its control
actions for a horizon of N time units, while optimizing its
reward function (which typically encodes safety and other
objectives). For this purpose, it uses a dynamical model
of both the system under control and its environment.
Additionally, the environment contains human agents who
are modeled as rational agents seeking to take actions that
maximize their reward function. However, the human’s true
reward function is unknown to the autonomous controller.
Therefore, the controller learns an approximation of the
reward function from collected data, and uses this learned
function in computing its actions. We refer to such a
controller as an interaction-aware controller. Given a
parameter δ that quantifies the deviation of the true human
model from the learned model, our goal is to determine
whether there exist behaviors of the human agent that can
lead to a “failure”, i.e., where the controller fails to meet its
objectives. Since, given a large enough deviation, a failure
can typically be induced, the utility of such an analysis is
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also to determine the value of δ at which a failure can occur;
hence, we also refer to the problem as one of falsification.

Verifying robustness of such human-cyber-physical systems
faces some unique challenges. First, since the human model
is learned from incomplete data under specific assumptions
and biases of the learning algorithm, and the true reward
function is unknown, the learned model will be inaccurate.
In such a setting, how can one bound the error in the
learned model? Second, given an error bound, how can one
efficiently verify whether the controller will always achieve
the desired objectives in an environment where the human
agent(s) deviate from the learned model within that error
bound?

Our approach addresses both challenges using optimization-
based algorithmic methods. For the first, we provide a
systematic and efficient methodology for estimating a
bound between the values of the human’s true reward
function and the controller’s estimate. Our methodology
generates experiments to use in human subject trials during
the learning process. For the second challenge, we present
a novel encoding of the robustness verification problem
from an optimization problem involving quantifiers over
reward functions to a more straightforward quantifier-free
optimization problem.

To the best of our knowledge, this paper is one of the first
attempts to bring a systematic verification methodology
to interaction-aware controllers for human-cyber-physical
systems. More specifically, this paper makes the following
novel contributions:

• A formalization of the problem of verifying robustness
of controllers for human-cyber-physical systems with
learned human models (Sec. 4);

• An encoding of the above problem into a more efficiently-
solvable optimization problem (Sec. 4);

• An efficient (almost linear time) optimization-driven
approach to estimating an error bound, δ, between the
true human reward function and the controller’s estimate
(Sec. 5), and

• An experimental evaluation of our approach for au-
tonomous vehicles using a car simulator (Sec. 6).

2. RUNNING EXAMPLE

We focus on falsification for human-cyber-physical systems,
where a robot (e.g., an autonomous vehicle) interacts
with human agents (e.g., human-driven vehicles) in the
environment. Our goal is to verify if any of the actions of
the human within a bound of a learned human model can
possibly cause a violation of the desired specification, such
as a collision between the two vehicles (autonomous and
human-driven). For instance, consider an autonomous car
(white car) driving on a road shared with a human-driven
vehicle (orange car) (Fig. 1). The autonomous car would
normally optimize for reaching its destination, which in
this example is to safely change lanes. The white car would
choose its actions based on considering its interaction with
the human-driven vehicle, and using a learned model of the
orange car. Here, the white car decides to start the lane
change maneuver because it has learned a model of the
human that suggests the orange car would also optimize
for her own safety, and thus will follow trajectory A.

human

robot

Fig. 1. Based on a learned model of the human, the
autonomous car (white) decides to change lane assum-
ing the human-driven car (orange) follows trajectory
A. In practice the orange car can possibly follow a
perturbed model resulting in trajectory B.

Similar to all learned models, this model of the human
(orange car) is learned under a set of assumptions from a
limited training dataset. So the truth is the actual human
can possibly take actions that slightly differ from the robot’s
learned human model. For example, the orange car might
decide to choose a slightly perturbed trajectory such as
trajectory B. As it is clear in Fig. 1, such a perturbation
can jeopardize satisfaction of the desired properties such
as collision avoidance.

In this work, we show that these perturbations in models
of learned human drivers exist, and we provide an efficient
algorithm (almost linear) to learn a distribution for such
possible perturbations using a query-based method. Fur-
ther, we provide a method for finding the falsifying actions
of the human agent (e.g. actions that result in trajectory
B) within the perturbation bound.

3. PRELIMINARIES

In this section, we discuss some of the preliminaries required
for understanding interaction-aware control of human-
robot systems and learning human models through inverse
reinforcement learning. In this work, we restrict ourselves
to the case where a single human agent interacts with a
single robot. We denote the human as H and the robot as
R. We broadly follow the approach of Sadigh et al. [2016b].

3.1 Interaction-Aware Control

We model the interaction between H and R as a fully
observable dynamical system, similar to Sadigh et al.
[2016b]. x ∈ X denotes the continuous state of the system
that lies in the set of all possible states X. For our running
example, this will include the position, velocity, and heading
of both agents H and R (orange and white cars). The
robot can take continuous actions uR, which will modify
the state of the system x through its dynamics. Similarly,
the continuous actions of the human uH affects the state
of the system through the dynamics of H. The dynamics
of the two agents advances the state at every time step.
For instance, these actions can be acceleration and steering
angle for the vehicles shown in Fig. 1. Therefore, the overall
dynamics is:

xt+1 = f(xt, ut
R, ut

H). (1)

The robot needs to calculate an autonomous control action
uR considering the interaction between the human and
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robot. In this paper, our algorithm is oblivious to the source
of uR; we give an approach based on nested-optimization
for computing uR, but our falsification algorithm works for
any other source of uR, e.g., deep neural networks, sampling
based methods, or optimization-based techniques.

One approach in designing an autonomous controller for
the robot is by optimizing its reward function. Assuming
the actions of one agent affects the other, the reward
function of R at every time step will depend on both
uR and uH. Therefore, this reward function at every step
rR(xt, ut

R, ut
H) requires a model describing the actions of

the human ut
H. For instance, the white car’s reward function

in Fig. 1 is changing lanes while avoiding collisions with
the orange car and following the rules of the road. The
white car decides on its actions based on a model of how
the orange car’s driver would act on the road.

To optimize for the actions of the robot, we use a model
predictive control (MPC) Morari et al. [1993] approach,
where the robot plans for its actions by optimizing the
reward for a finite horizon, and after taking the optimal
action for the first time step, it will replan for the same
horizon. Let x = (x1, . . . , xN )� be a finite sequence of
states, uR = (u1

R, . . . , uN
R)� a finite sequence of con-

tinuous actions of R, and uH = (u1
H, . . . , uN

H) a finite
sequence of continuous actions of H. We let RR be the
accumulated reward of the robot for this finite horizon:
RR(x0,uR,uH) =

∑N
t=1 rR(xt, ut

R, ut
H). Here, x0 is the

initial state of the horizon, and it will be updated based
on the dynamics in eq. (1). We formally define the control
problem for the robot as:

Problem 1. (Interaction-Aware Planner). Given a system
as in eq. (1), an initial state x0 ∈ X, a finite horizon N ,
and a robot reward function RR, compute:

u∗
R = argmax

uR
RR(x0,uR,u∗

H(x0,uR)) (2)

Remark 1. We emphasize again that Problem 1 is only
one method for computing the actions of the robot that
we have introduced for concreteness. Our approach may be
combined with any other technique for computing control
actions over a finite horizon.

The reward function RR takes into account the interaction
between the two agents by depending on the actions of the
human u∗

H(x0,uR). These actions can be computed based
on a data-driven model of H. Ideally, humans are modeled
as agents who optimize their reward function RH as well:

u∗
H(x0,uR) = argmax

uH
RH(x0,uR,uH) (3)

Such a reward function represents our data-driven model
of H, which is learned offline. We let RH(x0,uR,uH) be
the sum of reward functions of H over horizon N , where
rH(xt, ut

R, ut
H) is the human’s reward function at every

time step:RH(x0,uR,uH) =
∑N

t=1 rH(xt, ut
R, ut

H). For our
running example, the reward function of the human (orange
car) can include collision avoidance and following the rules
of the road.

3.2 Inverse Reinforcement Learning (IRL)

The human model we have used in this work is based
on learning RH from demonstrated trajectories provided
by H Abbeel and Ng [2004]. However, we note that
our falsification algorithm is oblivious to the specific

learning method used for finding such a human model. We
parameterize the human’s reward function at every time
step as a linear combination of a set of hand-coded features:
rH(xt, ut

R, ut
H) = w · φ(xt, ut

R, ut
H). Here, φ(xt, ut

R, ut
H)

is a vector of the features, and w is a vector of the
weights corresponding to each feature. The features describe
different aspects of the environment or the robot that the
human should care about. For instance, for our running
example, we choose 5 features that are based on: i) distance
to the boundaries of the road; ii) distance to the middle of
the lane; iii) heading; iv) velocity, and v) distance to the
other vehicles on the road for collision avoidance. We use
Gaussian kernels for the features that encode distances.

We then apply the maximum entropy principle Levine and
Koltun [2012], Ziebart [2010], Ziebart et al. [2008] in order
to recover the weights w from demonstrated trajectories.
Under this principle, the actions of H are taken probabilisti-
cally, where higher reward rH corresponds to more probable
trajectories: P (uH|x0, w) ∝ exp(RH(x0,uR,uH)). The
weights can be recovered from the demonstrated trajectories
by finding the maximum likelihood: maxw P (uH|x0, w).
The reward function rH is then reconstructed from the
estimated weights.

4. ROBUSTNESS IN H-CPS CONTROL

Our falsification problem is to find out whether there
exists a sequence of human actions that can lead to unsafe
scenarios. Let RH, i.e., the sum of the learned reward
functions of H over horizon N represent our human model.
Our ultimate goal is to verify that the robot is resilient
to model inaccuracies of RH within a specific bound.
Such inaccuracies usually exist due to two main factors:
i) particular assumptions on the learning algorithm, ii)
insufficiency of collected training data.

We have assumed humans are optimizers of a particular
type of reward function RH, and such reward functions can
be learned through various learning techniques (e.g., IRL as
in Sec. 3.2). However, in practice the human might follow
a different reward function, which we call the true reward

function R†
H. R†

H can possibly have a different structure
from RH, i.e., it might not even be a linear combination
of a set of hand-coded features described in Sec. 3.2, or
we (designers) might have missed specifying a particular
feature as part of φ. So the learning methods can possibly

never converge to the true reward function R†
H. Further,

we might decide to learn RH from a collection of human
demonstrations, but in practice, the robot interacts with

a specific human agent whose true reward function is R†
H,

which can be different from RH due to variations amongst
humans. So when it comes to interacting with different
humans, the learned RH might not perform as expected.

We are motivated to verify if Problem 1 can be solved

in scenarios where the true human reward function R†
H,

unknown to us, deviates a bit from the learned function
RH. We let δ to be the bound between the distance of these
two reward functions:

∀(x0,uR,uH), |RH(x0,uR,uH)−R†
H(x0,uR,uH)| < δ.

(4)
For brevity, we will slightly abuse notation and write this

inequality as |RH −R†
H| < δ.

IFAC CPHS 2018
Miami, FL, USA, Dec. 14-15, 2018

133



 Dorsa Sadigh  et al. / IFAC PapersOnLine 51-34 (2019) 131–138 133

robot. In this paper, our algorithm is oblivious to the source
of uR; we give an approach based on nested-optimization
for computing uR, but our falsification algorithm works for
any other source of uR, e.g., deep neural networks, sampling
based methods, or optimization-based techniques.

One approach in designing an autonomous controller for
the robot is by optimizing its reward function. Assuming
the actions of one agent affects the other, the reward
function of R at every time step will depend on both
uR and uH. Therefore, this reward function at every step
rR(xt, ut

R, ut
H) requires a model describing the actions of

the human ut
H. For instance, the white car’s reward function

in Fig. 1 is changing lanes while avoiding collisions with
the orange car and following the rules of the road. The
white car decides on its actions based on a model of how
the orange car’s driver would act on the road.

To optimize for the actions of the robot, we use a model
predictive control (MPC) Morari et al. [1993] approach,
where the robot plans for its actions by optimizing the
reward for a finite horizon, and after taking the optimal
action for the first time step, it will replan for the same
horizon. Let x = (x1, . . . , xN )� be a finite sequence of
states, uR = (u1

R, . . . , uN
R)� a finite sequence of con-

tinuous actions of R, and uH = (u1
H, . . . , uN

H) a finite
sequence of continuous actions of H. We let RR be the
accumulated reward of the robot for this finite horizon:
RR(x0,uR,uH) =

∑N
t=1 rR(xt, ut

R, ut
H). Here, x0 is the

initial state of the horizon, and it will be updated based
on the dynamics in eq. (1). We formally define the control
problem for the robot as:

Problem 1. (Interaction-Aware Planner). Given a system
as in eq. (1), an initial state x0 ∈ X, a finite horizon N ,
and a robot reward function RR, compute:

u∗
R = argmax

uR
RR(x0,uR,u∗

H(x0,uR)) (2)

Remark 1. We emphasize again that Problem 1 is only
one method for computing the actions of the robot that
we have introduced for concreteness. Our approach may be
combined with any other technique for computing control
actions over a finite horizon.

The reward function RR takes into account the interaction
between the two agents by depending on the actions of the
human u∗

H(x0,uR). These actions can be computed based
on a data-driven model of H. Ideally, humans are modeled
as agents who optimize their reward function RH as well:

u∗
H(x0,uR) = argmax

uH
RH(x0,uR,uH) (3)

Such a reward function represents our data-driven model
of H, which is learned offline. We let RH(x0,uR,uH) be
the sum of reward functions of H over horizon N , where
rH(xt, ut

R, ut
H) is the human’s reward function at every

time step:RH(x0,uR,uH) =
∑N

t=1 rH(xt, ut
R, ut

H). For our
running example, the reward function of the human (orange
car) can include collision avoidance and following the rules
of the road.

3.2 Inverse Reinforcement Learning (IRL)

The human model we have used in this work is based
on learning RH from demonstrated trajectories provided
by H Abbeel and Ng [2004]. However, we note that
our falsification algorithm is oblivious to the specific

learning method used for finding such a human model. We
parameterize the human’s reward function at every time
step as a linear combination of a set of hand-coded features:
rH(xt, ut

R, ut
H) = w · φ(xt, ut

R, ut
H). Here, φ(xt, ut

R, ut
H)

is a vector of the features, and w is a vector of the
weights corresponding to each feature. The features describe
different aspects of the environment or the robot that the
human should care about. For instance, for our running
example, we choose 5 features that are based on: i) distance
to the boundaries of the road; ii) distance to the middle of
the lane; iii) heading; iv) velocity, and v) distance to the
other vehicles on the road for collision avoidance. We use
Gaussian kernels for the features that encode distances.

We then apply the maximum entropy principle Levine and
Koltun [2012], Ziebart [2010], Ziebart et al. [2008] in order
to recover the weights w from demonstrated trajectories.
Under this principle, the actions of H are taken probabilisti-
cally, where higher reward rH corresponds to more probable
trajectories: P (uH|x0, w) ∝ exp(RH(x0,uR,uH)). The
weights can be recovered from the demonstrated trajectories
by finding the maximum likelihood: maxw P (uH|x0, w).
The reward function rH is then reconstructed from the
estimated weights.

4. ROBUSTNESS IN H-CPS CONTROL

Our falsification problem is to find out whether there
exists a sequence of human actions that can lead to unsafe
scenarios. Let RH, i.e., the sum of the learned reward
functions of H over horizon N represent our human model.
Our ultimate goal is to verify that the robot is resilient
to model inaccuracies of RH within a specific bound.
Such inaccuracies usually exist due to two main factors:
i) particular assumptions on the learning algorithm, ii)
insufficiency of collected training data.

We have assumed humans are optimizers of a particular
type of reward function RH, and such reward functions can
be learned through various learning techniques (e.g., IRL as
in Sec. 3.2). However, in practice the human might follow
a different reward function, which we call the true reward

function R†
H. R†

H can possibly have a different structure
from RH, i.e., it might not even be a linear combination
of a set of hand-coded features described in Sec. 3.2, or
we (designers) might have missed specifying a particular
feature as part of φ. So the learning methods can possibly

never converge to the true reward function R†
H. Further,

we might decide to learn RH from a collection of human
demonstrations, but in practice, the robot interacts with

a specific human agent whose true reward function is R†
H,

which can be different from RH due to variations amongst
humans. So when it comes to interacting with different
humans, the learned RH might not perform as expected.

We are motivated to verify if Problem 1 can be solved

in scenarios where the true human reward function R†
H,

unknown to us, deviates a bit from the learned function
RH. We let δ to be the bound between the distance of these
two reward functions:

∀(x0,uR,uH), |RH(x0,uR,uH)−R†
H(x0,uR,uH)| < δ.

(4)
For brevity, we will slightly abuse notation and write this

inequality as |RH −R†
H| < δ.
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Problem 2. (Falsification). For a parameter δ describing
the bound between the human’s true and learned reward
functions (R†

H and RH), compute a falsifying input ũH:

ũH =argmin
uH

RR(x0,u∗
R,uH)

subject to ∃R†
H : uH = argmax

ūH
R†

H(x0,u∗
R, ūH),

|RH −R†
H| < δ.

(5)
Here, u∗

R is computed by solving the nested optimization
in Problem 1, where u∗

H(x0,uR) is the true optimizer of
the learned reward function RH.

Problem 2 looks for the worst case input provided by the
human that violates the specification by minimizing the
reward function of the robot RR, while still remaining in the
set of possible human models, i.e., this input can optimize

an alternative reward R†
H that lies within δ distance of

the learned reward function RH. We now show how we
optimally solve for this falsifying input.

Theorem 1. The optimization in Problem 2 is equivalent
to solving the following:

ũH =argmin
uH

RR(x0,u∗
R,uH)

subject to RH(x0,u∗
R,uH) > R∗

H − 2δ,
(6)

where R∗
H = RH(x0,u∗

R,u∗
H(x0,u∗

R)) is a constant
evaluated at u∗

R and u∗
H(x0,u∗

R). Here, u∗
R is com-

puted by solving Problem 1, which depends on the
function representing the optimal actions of the human
u∗
H(x0,uR). Using this u∗

R, we then find u∗
H(x0,u∗

R) =
argmaxuH RH(x0,u∗

R,uH).

Proof 1. To show the equivalence between equation (5)
and (6), we need to consider the equivalence of the con-
straints.

First, we show ∃R†
H : uH = argmaxūH R†

H(x0,u∗
R, ūH)

will imply the constraint in equation (6).

Since ∃R†
H : uH = argmaxūH R†

H(x0,u∗
R, ūH), we con-

clude that R†
H evaluated at the optimum uH is greater

than R†
H evaluated at any other sequence of human actions

such as u∗
H(x0,u∗

R) (to simplify the notation, we simply
let u∗

H = u∗
H(x0,u∗

R)):

R†
H(x0,u∗

R,uH) ≥ R†
H(x0,u∗

R,u∗
H). (7)

Also, because of the existing bound δ, we can infer the
following:

RH(x0,u∗
R,uH) > R†

H(x0,u∗
R,uH)− δ, (8)

R†
H(x0,u∗

R,u∗
H) > RH(x0,u∗

R,u∗
H)− δ. (9)

Equations (7) and (8) will result in:

RH(x0,u∗
R,uH) > R†

H(x0,u∗
R,u∗

H)− δ. (10)

Finally, equations (9) and (10) provide:

RH(x0,u∗
R,uH) > RH(x0,u∗

R,u∗
H)− 2δ, (11)

which is the same as the constraint in equation (6):

RH(x0,u∗
R,uH) > R∗

H − 2δ. (12)

Now, to complete the proof, we need to show that this
constraint will result in the constraint in equation (5), i.e.,

∃R†
H : uH = argmaxūH R†

H(x0,u∗
R, ūH). Our approach

is to construct the following reward function R†
H so that

Fig. 2. Visualization tool representing 10 queries from the
human. We move right for positive queries (si = +1),
and move up for negative ones (si = −1) over Z2.
The convex hull of this plot provides our maximum
likelihood estimate of the error distribution.

at the optimal uH (i.e. uH = argmaxūH R†
H(x0,u∗

R, ūH)),
we will have:

R†
H(x0,u∗

R,uH) = RH(x0,u∗
R,uH) + δ, (13)

and for any other human actions such as u�
H �= uH, this

function is equal to:

R†
H(x0,u∗

R,u�
H) = RH(x0,u∗

R,u�
H)− δ. (14)

Then, reordering the inequality in equation (5), and using
equation (13) will result in:

RH(x0,u∗
R,uH) + δ > R∗

H − δ

=⇒ R†
H(x0,u∗

R,uH) > R∗
H − δ

(15)

Also, by optimality of R∗
H and equation (14), we know for

any u�
H �= uH:

R†
H(x0,u∗

R,u�
H) = RH(x0,u∗

R,u�
H)− δ ≤ R∗

H − δ (16)

Using the two results in equations (15) and (16), we
conclude:

R†
H(x0,u∗

R,uH) ≥ R†
H(x0,u∗

R,u�
H)

=⇒ uH = argmax
ūH

R†
H(x0,u∗

R, ūH).
(17)

So for the R†
H we have constructed, the constraint in

equation (5) holds. Since the two constraints in (5) and (6)
are equivalent, Theorem 1 holds true.

Through Theorem 1 we have shown we can solve eq. (6),
a much simpler optimization problem, instead of solving
Problem 2 to find the falsifying actions of H for a fixed
given bound δ.

5. LEARNING THE ERROR BOUND

In this section, we provide an efficient algorithm for
computing a reasonable error bound δ, as defined in eq. (4),
which is used in solving Problem 2. We will first learn a
distribution for the error:

Δ(ξ) = RH(ξ)−R†
H(ξ), (18)

and then we upper bound Δ(ξ) by a constant factor δ using
the distribution’s quantiles. In the rest of the paper, we use
Δ instead of Δ(ξ) for brevity. So assuming that Δ ∼ D is
a random variable drawn from a distribution D, our goal
is to efficiently learn D. We propose using a query based
method that efficiently (almost linear time in the number
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of queries, i.e., O(n log n)) finds the maximum likelihood
estimate for D.

Suppose, we query the human H whether she prefers
trajectory ξA or ξB . Then, if the user decides ξA is preferred
over ξB , we can conclude that the true reward function of
trajectory ξA is higher than the true reward function of
trajectory ξB , i.e.,

R†
H(ξA) > R†

H(ξB). (19)

Note, since the trajectory is fully determined by (x0,uH,uR),
we alternatively can write RH as a function of ξ. Using the
error bound we have

RH(ξA) + ΔA > RH(ξB) + ΔB . (20)

We also assume ΔA,ΔB ∼ D are independent random
variables, and so is their difference: χ = ΔA −ΔB . We can
rewrite this as

χ = ΔA −ΔB > RH(ξB)−RH(ξA), (21)

where RH is the learned reward function. Here, we simply
let R = RH(ξB)−RH(ξA).

Therefore, assuming humans are consistent and always
respond with a preference, every query from the human
for a fixed set of two trajectories ξA and ξB will results
in either χ > R or χ < R. Our goal in this section is
to find the maximum likelihood distribution D̄ of χ by
asking queries from the human for a number of times, and
recovering the distribution of the true bound Δ ∼ D.

Remark 2. Here the human responses to the queries only
provide an estimate of the human’s true reward function.
These comparisons allow us to learn the human’s pref-
erences, which can possibly be different from the true
reward function she would optimize in practice Basu et al.
[2017], Sadigh et al. [2017]. However, for the purpose of
falsification in this paper, the preference reward function

is a reasonable estimate of R†
H.

5.1 Learning the Error Distribution
Now, we propose our algorithm to find the distribution D̄
(where χ is drawn from this distribution: χ ∼ D̄) based on
any M given comparison queries χi > Ri or χi < Ri.

Suppose that χ1, . . . , χM are i.i.d. and drawn from some
unknown distribution D̄. Given R1, . . . , RM ∈ R, and the
corresponding signs s1, . . . , sM ∈ {−1,+1}, representing
the observations: si(χi−Ri) > 0, i.e., χi > Ri for si = +1,
and χi < Ri for si = −1, the goal is to find the maximum
likelihood estimate of the distribution D̄.
Without loss of generality, we assume that Ri’s are sorted,
i.e. R1 < R2 < · · · < RM . Now let us define

pi = Pχ∼D̄[χ < Ri]. (22)

Since Ri’s are sorted, the defined pi’s would be sorted:

p1 ≤ p2 ≤ · · · ≤ pM (23)

The likelihood of our observations can be expressed in
terms of pi’s. Note that any increasing sequence of pi’s
that lie in [0, 1] is valid. Our problem of estimating the
distribution reduces to finding the increasing sequence of
p1 ≤ · · · ≤ pM ∈ [0, 1] that maximizes the log-likelihood of
our observations. We now propose our method that finds
pi’s by solving the following constrained optimization:

max
p1,...,pM

log(
∏

i:si=+1

(1− pi)
∏

i:si=−1

pi)

subject to 0 ≤ p1 ≤ p2 ≤ · · · ≤ pM ≤ 1.

(24)

Suppose p∗1 ≤ · · · ≤ p∗M are the optimizers of eq. (24). We
derive some necessary conditions that p∗1, . . . , p

∗
M need to

satisfy, and conclude that these uniquely determine p∗i .
We can partition p∗i into contiguous maximal subsets of
equal values. For example, p∗a = p∗a+1 = · · · = p∗b represents
such a maximal contiguous subset, i.e., p∗a−1 < p∗a and
p∗b < p∗b+1. We let q represent the common value of this
contiguous subset.

Lemma 1. In the above context, the value of q must be

equal to:
n
[a,b]
−

n
[a,b]
− +n

[a,b]
+

, where n
[a,b]
+ = |{i : si = +1 ∧

i ∈ [a, b]}| and n
[a,b]
− = |{i : si = −1 ∧ i ∈ [a, b]}|.

Proof 2. If we perturb q by a small amount in any direc-
tion, we would still be satisfying the constraint of mono-
tonicity of pi’s. Further, the derivative of the log-likelihood
with respect to q must be 0 at the optimal values q = p∗a.
This means that:

−
∑

i:si=+1∧i∈[a,b]

1

1− q
+

∑
i:si=−1∧i∈[a,b]

1

q
= 0, (25)

which results in q = n
[a,b]
− /(n

[a,b]
− + n

[a,b]
+ ).

We visualize the values n
[a,b]
+ and n

[a,b]
− using the graph

in Fig. 2: consider a path drawn on Z2, and let the path
start from the origin v0 = (0, 0). For each i in the sorted
order of χi, if si = −1, move up one unit, and if si = +1,
move to the right one unit, and call the new point vi. Note,
at the beginning runs, we would move to the right more
frequently, as the sorted data makes si = +1 results more
likely. Fig. 2 shows an example of such a run.

Between every two points va−1 and vb on the plot the

difference in the y-direction is Δy = n
[a,b]
− , and similarly

the difference in the x-direction is Δx = n
[a,b]
+ . Therefore,

the optimal value of the log-likelihood for each maxi-
mal contiguous subset, e.g., [a, b] is q = Δy

Δx+Δy , where

(Δx,Δy) = vb − va−1. We can think of Δy
Δx+Δy as a type

of slope, which we call L-slope. Note, the L-slope is an
increasing function of the real slope (i.e., Δy

Δx ). While the
real slope lies in [0,∞], the L-slope has a monotonic relation

to the real slope and maps it to Δy
Δy+Δx ∈ [0, 1].

So far, we have shown that if we know the maximal
contiguous partitions of pi’s, the optimal values p∗i ’s are
uniquely determined by the L-slopes. Thus, the main
question is how to find such maximal contiguous segments.

First, let’s assume there are k maximal contiguous segments,
and we represent them with a1, . . . , ak, where a1 = v0, and
ak = vM , and all the other aj ’s for j ∈ {1, . . . , k} are
equal to vertices vi that partition the pi’s into maximal
contiguous pieces. We use li to denote the L-slope between
each ai and ai+1. Note that because of ordering of p1 ≤
p2 ≤ · · · ≤ pM , these L-slopes are also in an increasing
order l1 ≤ l2 ≤ · · · ≤ lk−1. Therefore, these L-slopes create
a convex graph, i.e., aj ’s lie in a convex position.

Lemma 2. In the above context, aj ’s are precisely the set
of vertices of the convex hull of the constructed graph.

Proof 3. We prove this by contradiction. Assume that aj ’s
are not the convex hull of the graph. For example in Fig. 2,
this could happen with a1 = v0, a2 = v5, a3 = v10.
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of queries, i.e., O(n log n)) finds the maximum likelihood
estimate for D.

Suppose, we query the human H whether she prefers
trajectory ξA or ξB . Then, if the user decides ξA is preferred
over ξB , we can conclude that the true reward function of
trajectory ξA is higher than the true reward function of
trajectory ξB , i.e.,

R†
H(ξA) > R†

H(ξB). (19)

Note, since the trajectory is fully determined by (x0,uH,uR),
we alternatively can write RH as a function of ξ. Using the
error bound we have

RH(ξA) + ΔA > RH(ξB) + ΔB . (20)

We also assume ΔA,ΔB ∼ D are independent random
variables, and so is their difference: χ = ΔA −ΔB . We can
rewrite this as

χ = ΔA −ΔB > RH(ξB)−RH(ξA), (21)

where RH is the learned reward function. Here, we simply
let R = RH(ξB)−RH(ξA).

Therefore, assuming humans are consistent and always
respond with a preference, every query from the human
for a fixed set of two trajectories ξA and ξB will results
in either χ > R or χ < R. Our goal in this section is
to find the maximum likelihood distribution D̄ of χ by
asking queries from the human for a number of times, and
recovering the distribution of the true bound Δ ∼ D.

Remark 2. Here the human responses to the queries only
provide an estimate of the human’s true reward function.
These comparisons allow us to learn the human’s pref-
erences, which can possibly be different from the true
reward function she would optimize in practice Basu et al.
[2017], Sadigh et al. [2017]. However, for the purpose of
falsification in this paper, the preference reward function

is a reasonable estimate of R†
H.

5.1 Learning the Error Distribution
Now, we propose our algorithm to find the distribution D̄
(where χ is drawn from this distribution: χ ∼ D̄) based on
any M given comparison queries χi > Ri or χi < Ri.

Suppose that χ1, . . . , χM are i.i.d. and drawn from some
unknown distribution D̄. Given R1, . . . , RM ∈ R, and the
corresponding signs s1, . . . , sM ∈ {−1,+1}, representing
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i.e. R1 < R2 < · · · < RM . Now let us define

pi = Pχ∼D̄[χ < Ri]. (22)

Since Ri’s are sorted, the defined pi’s would be sorted:

p1 ≤ p2 ≤ · · · ≤ pM (23)

The likelihood of our observations can be expressed in
terms of pi’s. Note that any increasing sequence of pi’s
that lie in [0, 1] is valid. Our problem of estimating the
distribution reduces to finding the increasing sequence of
p1 ≤ · · · ≤ pM ∈ [0, 1] that maximizes the log-likelihood of
our observations. We now propose our method that finds
pi’s by solving the following constrained optimization:

max
p1,...,pM

log(
∏

i:si=+1

(1− pi)
∏

i:si=−1

pi)

subject to 0 ≤ p1 ≤ p2 ≤ · · · ≤ pM ≤ 1.

(24)

Suppose p∗1 ≤ · · · ≤ p∗M are the optimizers of eq. (24). We
derive some necessary conditions that p∗1, . . . , p

∗
M need to

satisfy, and conclude that these uniquely determine p∗i .
We can partition p∗i into contiguous maximal subsets of
equal values. For example, p∗a = p∗a+1 = · · · = p∗b represents
such a maximal contiguous subset, i.e., p∗a−1 < p∗a and
p∗b < p∗b+1. We let q represent the common value of this
contiguous subset.

Lemma 1. In the above context, the value of q must be

equal to:
n
[a,b]
−

n
[a,b]
− +n

[a,b]
+

, where n
[a,b]
+ = |{i : si = +1 ∧

i ∈ [a, b]}| and n
[a,b]
− = |{i : si = −1 ∧ i ∈ [a, b]}|.

Proof 2. If we perturb q by a small amount in any direc-
tion, we would still be satisfying the constraint of mono-
tonicity of pi’s. Further, the derivative of the log-likelihood
with respect to q must be 0 at the optimal values q = p∗a.
This means that:

−
∑

i:si=+1∧i∈[a,b]

1

1− q
+

∑
i:si=−1∧i∈[a,b]

1

q
= 0, (25)

which results in q = n
[a,b]
− /(n

[a,b]
− + n

[a,b]
+ ).

We visualize the values n
[a,b]
+ and n

[a,b]
− using the graph

in Fig. 2: consider a path drawn on Z2, and let the path
start from the origin v0 = (0, 0). For each i in the sorted
order of χi, if si = −1, move up one unit, and if si = +1,
move to the right one unit, and call the new point vi. Note,
at the beginning runs, we would move to the right more
frequently, as the sorted data makes si = +1 results more
likely. Fig. 2 shows an example of such a run.

Between every two points va−1 and vb on the plot the

difference in the y-direction is Δy = n
[a,b]
− , and similarly

the difference in the x-direction is Δx = n
[a,b]
+ . Therefore,

the optimal value of the log-likelihood for each maxi-
mal contiguous subset, e.g., [a, b] is q = Δy

Δx+Δy , where

(Δx,Δy) = vb − va−1. We can think of Δy
Δx+Δy as a type

of slope, which we call L-slope. Note, the L-slope is an
increasing function of the real slope (i.e., Δy

Δx ). While the
real slope lies in [0,∞], the L-slope has a monotonic relation

to the real slope and maps it to Δy
Δy+Δx ∈ [0, 1].

So far, we have shown that if we know the maximal
contiguous partitions of pi’s, the optimal values p∗i ’s are
uniquely determined by the L-slopes. Thus, the main
question is how to find such maximal contiguous segments.

First, let’s assume there are k maximal contiguous segments,
and we represent them with a1, . . . , ak, where a1 = v0, and
ak = vM , and all the other aj ’s for j ∈ {1, . . . , k} are
equal to vertices vi that partition the pi’s into maximal
contiguous pieces. We use li to denote the L-slope between
each ai and ai+1. Note that because of ordering of p1 ≤
p2 ≤ · · · ≤ pM , these L-slopes are also in an increasing
order l1 ≤ l2 ≤ · · · ≤ lk−1. Therefore, these L-slopes create
a convex graph, i.e., aj ’s lie in a convex position.

Lemma 2. In the above context, aj ’s are precisely the set
of vertices of the convex hull of the constructed graph.

Proof 3. We prove this by contradiction. Assume that aj ’s
are not the convex hull of the graph. For example in Fig. 2,
this could happen with a1 = v0, a2 = v5, a3 = v10.
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Scenario 2: 
Autonomous car 
crossing an 
intersection.

Autonomous Vehicle Human Driven Vehicle

(a) (b) (c)

Scenario 1: 
Autonomous car 
making a lane 
change.

(a) (b) (c)

Fig. 3. Falsification in driving scenarios. Each row represents a scenario, where the cars start from the initial positions
shown on the left, then (a) shows the optimal actions of human based on RH. In (b) and (c), we illustrate the
optimal actions of the vehicles if H follows a perturbed reward function. The perturbation in (b) is not enough for
violation of the safety property; however, in (c) with enough perturbation the two vehicles collide.

(a) (b)

Fig. 4. Robot Reward function of scenario 1 shown in (a), and scenario 2 in (b) with respect to δ. The violation threshold
in (a) is δ = 0.11, and in (b) is δ = 0.025.

Because aj ’s are not the convex hull, there exists an index
i and a point on the graph c such that c lies under the
line segment between ai and ai+1 (e.g., let c = v2 in the
segment connecting a1 = v0 to a2 = v5).

Consider the probabilities corresponding to the line seg-
ment from ai to ai+1. These would be pr, pr+1, . . . , ps,
if ai = vr−1 and ai+1 = vs; note that we have already
shown all of them must be equal to the L-slope between
ai and ai+1, i.e., pr = · · · = ps = li. We partition these
probabilities into two contiguous segments pr, . . . , pj and
pj+1, . . . , ps, where j is the index for which c = vj .

We perturb the first segment, pr, . . . , pj by a small amount
� in the negative direction, and perturb the second seg-
ment, pj+1, . . . , ps by � in the positive direction. Since we
decrease the first segment and increase the second, this
does not violate our ordering constraint p1 ≤ · · · ≤ pM .
Then, by a similar argument as in the proof of Lemma 1,
we can conclude that this small perturbation increases the
log-likelihood; in other words, the derivative of the log-
likelihood with respect to the first segment is negative
and the derivative with respect to the second segment is

positive. We conclude that when aj ’s form the optimal
partition, no such point c can be found, and therefore the
aj ’s form the convex hull of the graph.

Theorem 2. The optimization problem in eq. (24) can be
solved in O(M log(M)) time.

Proof 4. Sorting the Ri’s takes O(M log(M)) time. As
we have shown in Lemma 2, the optimal partition is
determined by the convex hull of the constructed graph.
The graph can be constructed in linear time, and the
convex hull can be computed in linear time as well. Finally,
the values pi’s are determined by the L-slopes, each of
which can be computed in O(1) time. Thus the bottleneck
is in the initial sort, and the whole computation takes
O(M log(M)) time.

This method enables us to efficiently recover an estimate
of the CDF of distribution D̄.

Remark 3. In practice, the CDF might be approximated
well by a Gaussian. Finding the parameters of the Gaus-
sian can again be formulated as a similar optimization in
eq. (24), where the objective is still the log-likelihood of
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the observed data, but the variables are replaced by the
parameters of the Gaussian.

5.2 Recovering the Error Distribution

To recover the distribution of the error Δ ∼ D, we
need to make a further assumption that the distribution
D̄ is symmetric. 1 Assuming we successfully find the
distribution of χ ∼ D̄, we can use moment generating
functions Mχ(t) = E[etχ] to recover D. Given

χ = ΔA −ΔB , where χ ∼ D̄ and ΔA,ΔB ∼ D (26)

Mχ(t) =MΔA−ΔB
(t) = MΔA

(t) ·M−ΔB
(t)

=MΔA
(t) ·MΔB

(−t).
(27)

Since ΔA and ΔB are drawn from the same distribution,
their moment generating function is the same. Further,
Δ is drawn from a symmetric distribution, i.e., MΔ(t) =
MΔ(−t), so: Mχ(t) = MΔ(t)

2. Assuming we have com-
puted χ ∼ D̄, we now can use this relation to find the
distribution of Δ ∼ D.

Remark 4. If we are only interested in solving eq. (6), we
do not need to extract D from D̄. We can simply replace
the 2δ bound by a number drawn from the quantiles of
the distribution D̄. The reason for this is that even if we
replace |R†

H −RH| ≤ δ by the weaker assumption:

∀ξA, ξB : |(R†
H(ξA)−R†

H(ξB))−(RH(ξA)−RH(ξB))| ≤ 2δ,

Theorem 1 would still hold (with essentially the same
proof). Note that the above quantity is simply: |χ| = |ΔA−
ΔB |, whose distribution is given by D̄.

Remark 5. We select 2δ from the quantiles of D̄ in such
a way that: Prχ∼D̄(|χ| > 2δ) < �, where � ∈ [0, 1] is the
tolerated error (1− � is the confidence level). Our method
enables us to provide statistical verification guarantees for
the learned reward function.

6. CASE STUDIES

In this section, we demonstrate our falsification algorithm
for two autonomous driving scenarios. We also efficiently
learn an error distribution for human’s reward function
based on the proposed query-based method. We solved the
constrained optimizations using the package Ipopt Wächter
and Biegler [2006]. Our falsification algorithm is solved in
less than a second (0.25s on average) when run on a 2.3
GHz Intel Core i7 processor.

Both vehicles follow a simple point-mass dynamics model.

We let x = [x y θ v]
�
denote the state of this dynamical

system, where x and y are the position of the vehicle on
the map, θ is its heading, and v is its velocity. Further, the

control input u = [u1 u2]
�

includes the steering input u1,
and acceleration u2. Therefore, we define the dynamics of
the vehicle (eq. (1)) to be:[

xt+1 yt+1 θt+1 vt+1
]
=

[
xt yt θt vt

]
+

dt [v · cos(θ) v · sin(θ) v · u1 u2 − α · v] .
Here, α is the friction coefficient. We illustrate the two
case studies in Fig. 3. The top row corresponds to the

1 Since we only observe the difference between two samples from this
distribution, we can only have information about the even moments
of the distribution. Hence, we have to make an assumption about
the odd moments, i.e., they have to be zero, which is equivalent to
assuming the distribution is symmetric.

autonomous car (white car) changing lane (the running ex-
ample), and the bottom row corresponds to the autonomous
car crossing an intersection. For both cases, the reward
function includes collision avoidance between the vehicles,
which we represent by a non-symmetric Gaussian centered
at the other vehicle.

Scenario 1: Falsifying Collision Avoidance in a
Lane Change. In this scenario, the autonomous car (white
car in Fig. 3) optimizes for changing lanes, while avoiding
collisions. Assuming that H fully follows the learned reward
function RH, no collisions occur and the autonomous car
safely changes lanes (Fig. 3(a)). However, the orange car
might not exactly follow RH, so for a perturbation of RH by
δ = 0.025, the two cars take a riskier maneuver (Fig. 3(b)),
and finally for a sufficiently large δ = 0.15, we find a
falsifying set of actions for the human (Fig. 3(c)), which
clearly ends in a collision.

We demonstrate RR with respect to δ in Fig. 4(a) with
respect to the reward, where RR < 0 corresponds to
collisions. So the safety property of collision avoidance

will be violated for any model of human R†
H that lies in a

range that is at least δ = 0.11 away from RH.

Scenario 2: Falsifying Collision Avoidance in an
Intersection. In this scenario, our goal is to find the
falsifying actions for the human-driven car (orange car)
when the autonomous car (white car) plans to cross an
intersection as shown in Fig. 3. Similar to the previous
scenario, following RH, results in a collision-free outcome
(Fig. 3(b)). However, with a slightly perturbed reward
function of the human with δ = 0.015, the orange car gets
closer to the autonomous car, and for a slightly higher
δ = 0.05 the two cars collide as shown in Fig. 3(c).

Similar to the previous case, we have shown the reward
function RR with respect to δ in Fig. 4, which demonstrates
the violation threshold is δ = 0.025. We hypothesize that
the bumps in the reward function (Fig. 4(b)) in this scenario
are due to the system falling into local optima in solving
the falsification problem.

Learning Human’s Error. Using our query-based
method, we learn a distribution for Δ, and find an ap-
propriate bound δ. As shown in Fig. 5(a), we have done
100 queries from H asking the human to compare two
provided trajectories. The blue line in Fig. 5(a) represents
the walk over Z2 based on the sorted queries, where each
horizontal line represents a positive query (si = +1), and
each vertical line represents a negative query (si = −1)
(similar to Fig. 2). The orange line is the convex hull of the
graph facilitating estimation of the distribution of Δ.

In Fig. 5(b), we have found the maximum likelihood
estimate of the CDF of the distribution from the convex
hull in Fig. 5(a). Similarly, we can fit a Gaussian instead
as shown in purple. Using the estimated CDF, we choose
δ = 0.1 for confidence level of � = 0.74 as discussed in
Remark 5. Note, with this confidence level and bound
δ = 0.1, we would have violated the specification for the
second case study (crossing an intersection), while still
satisfying collision avoidance in the first scenario (lane
change) based on the thresholds found in Fig. 4.
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the observed data, but the variables are replaced by the
parameters of the Gaussian.

5.2 Recovering the Error Distribution

To recover the distribution of the error Δ ∼ D, we
need to make a further assumption that the distribution
D̄ is symmetric. 1 Assuming we successfully find the
distribution of χ ∼ D̄, we can use moment generating
functions Mχ(t) = E[etχ] to recover D. Given

χ = ΔA −ΔB , where χ ∼ D̄ and ΔA,ΔB ∼ D (26)

Mχ(t) =MΔA−ΔB
(t) = MΔA

(t) ·M−ΔB
(t)

=MΔA
(t) ·MΔB

(−t).
(27)

Since ΔA and ΔB are drawn from the same distribution,
their moment generating function is the same. Further,
Δ is drawn from a symmetric distribution, i.e., MΔ(t) =
MΔ(−t), so: Mχ(t) = MΔ(t)

2. Assuming we have com-
puted χ ∼ D̄, we now can use this relation to find the
distribution of Δ ∼ D.

Remark 4. If we are only interested in solving eq. (6), we
do not need to extract D from D̄. We can simply replace
the 2δ bound by a number drawn from the quantiles of
the distribution D̄. The reason for this is that even if we
replace |R†

H −RH| ≤ δ by the weaker assumption:

∀ξA, ξB : |(R†
H(ξA)−R†

H(ξB))−(RH(ξA)−RH(ξB))| ≤ 2δ,

Theorem 1 would still hold (with essentially the same
proof). Note that the above quantity is simply: |χ| = |ΔA−
ΔB |, whose distribution is given by D̄.

Remark 5. We select 2δ from the quantiles of D̄ in such
a way that: Prχ∼D̄(|χ| > 2δ) < �, where � ∈ [0, 1] is the
tolerated error (1− � is the confidence level). Our method
enables us to provide statistical verification guarantees for
the learned reward function.

6. CASE STUDIES

In this section, we demonstrate our falsification algorithm
for two autonomous driving scenarios. We also efficiently
learn an error distribution for human’s reward function
based on the proposed query-based method. We solved the
constrained optimizations using the package Ipopt Wächter
and Biegler [2006]. Our falsification algorithm is solved in
less than a second (0.25s on average) when run on a 2.3
GHz Intel Core i7 processor.

Both vehicles follow a simple point-mass dynamics model.

We let x = [x y θ v]
�
denote the state of this dynamical

system, where x and y are the position of the vehicle on
the map, θ is its heading, and v is its velocity. Further, the

control input u = [u1 u2]
�

includes the steering input u1,
and acceleration u2. Therefore, we define the dynamics of
the vehicle (eq. (1)) to be:[

xt+1 yt+1 θt+1 vt+1
]
=

[
xt yt θt vt

]
+

dt [v · cos(θ) v · sin(θ) v · u1 u2 − α · v] .
Here, α is the friction coefficient. We illustrate the two
case studies in Fig. 3. The top row corresponds to the

1 Since we only observe the difference between two samples from this
distribution, we can only have information about the even moments
of the distribution. Hence, we have to make an assumption about
the odd moments, i.e., they have to be zero, which is equivalent to
assuming the distribution is symmetric.

autonomous car (white car) changing lane (the running ex-
ample), and the bottom row corresponds to the autonomous
car crossing an intersection. For both cases, the reward
function includes collision avoidance between the vehicles,
which we represent by a non-symmetric Gaussian centered
at the other vehicle.

Scenario 1: Falsifying Collision Avoidance in a
Lane Change. In this scenario, the autonomous car (white
car in Fig. 3) optimizes for changing lanes, while avoiding
collisions. Assuming that H fully follows the learned reward
function RH, no collisions occur and the autonomous car
safely changes lanes (Fig. 3(a)). However, the orange car
might not exactly follow RH, so for a perturbation of RH by
δ = 0.025, the two cars take a riskier maneuver (Fig. 3(b)),
and finally for a sufficiently large δ = 0.15, we find a
falsifying set of actions for the human (Fig. 3(c)), which
clearly ends in a collision.

We demonstrate RR with respect to δ in Fig. 4(a) with
respect to the reward, where RR < 0 corresponds to
collisions. So the safety property of collision avoidance

will be violated for any model of human R†
H that lies in a

range that is at least δ = 0.11 away from RH.

Scenario 2: Falsifying Collision Avoidance in an
Intersection. In this scenario, our goal is to find the
falsifying actions for the human-driven car (orange car)
when the autonomous car (white car) plans to cross an
intersection as shown in Fig. 3. Similar to the previous
scenario, following RH, results in a collision-free outcome
(Fig. 3(b)). However, with a slightly perturbed reward
function of the human with δ = 0.015, the orange car gets
closer to the autonomous car, and for a slightly higher
δ = 0.05 the two cars collide as shown in Fig. 3(c).

Similar to the previous case, we have shown the reward
function RR with respect to δ in Fig. 4, which demonstrates
the violation threshold is δ = 0.025. We hypothesize that
the bumps in the reward function (Fig. 4(b)) in this scenario
are due to the system falling into local optima in solving
the falsification problem.

Learning Human’s Error. Using our query-based
method, we learn a distribution for Δ, and find an ap-
propriate bound δ. As shown in Fig. 5(a), we have done
100 queries from H asking the human to compare two
provided trajectories. The blue line in Fig. 5(a) represents
the walk over Z2 based on the sorted queries, where each
horizontal line represents a positive query (si = +1), and
each vertical line represents a negative query (si = −1)
(similar to Fig. 2). The orange line is the convex hull of the
graph facilitating estimation of the distribution of Δ.

In Fig. 5(b), we have found the maximum likelihood
estimate of the CDF of the distribution from the convex
hull in Fig. 5(a). Similarly, we can fit a Gaussian instead
as shown in purple. Using the estimated CDF, we choose
δ = 0.1 for confidence level of � = 0.74 as discussed in
Remark 5. Note, with this confidence level and bound
δ = 0.1, we would have violated the specification for the
second case study (crossing an intersection), while still
satisfying collision avoidance in the first scenario (lane
change) based on the thresholds found in Fig. 4.
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(a) (b)

Fig. 5. Learning Human’s Error Distribution. In (a) we visualize the comparison queries from H, and find the convex
hull of the graph allowing us to find the CDF of the error distribution as shown in orange in (b). Using different
quantiles of the CDF, we set an appropriate bound for δ.

7. CONCLUSION
We have formalized the problem of falsification for human-
cyber-physical systems and provided an optimization-based
approach for solving it. Our autonomous driving case
studies provide evidence of the utility of this approach.
For future work, we plan to expand the application of
this methodology to a broader class of human behavior
models and human-cyber-physical systems. We note that
our high-level approach might be more broadly applicable
to algorithmically analyzing the behavior of other kinds of
systems involving models learned from data.
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