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Abstract— Tolling in traffic networks offers a popular mea-

sure to minimize overall congestion. Existing toll designs pri-

marily focus on congestion in route-based traffic assignment

models (TAMs), in which travelers make a single route selection

from source to destination. However, these models do not reflect

real-world traveler decisions because they preclude deviations

from a chosen route, and because the enumeration of all routes

is computationally expensive. To address these limitations, our

work focuses on arc-based TAMs, in which travelers sequentially

select individual arcs (or edges) on the network to reach

their destination. We first demonstrate that marginal pricing,

a tolling scheme commonly used in route-based TAMs, also

achieves socially optimal congestion levels in our arc-based

formulation. Then, we use perturbed best response dynamics

to model the evolution of travelers’ arc selection preferences

over time, and a marginal pricing scheme to capture the social

planner’s adaptive toll updates in response. We prove that our

adaptive learning and marginal pricing dynamics converge to

a neighborhood of the socially optimal loads and tolls. We then

present empirical results that verify our theoretical claims.

I. INTRODUCTION

Mitigating congestion on transportation networks is a
key concern in urban planning, since the selfish behavior
of individual drivers often significantly increases driving
time and pollution levels. Congestion pricing (tolling) is
an increasingly popular tool for regulating traffic flows ([1,
2]). The design of tolls that can effectually induce socially
optimal traffic loads requires a realistic traffic assignment
model (TAM) that captures travelers’ routing preferences.

The classical literature on congestion pricing [3–5] often
considers route-based TAMs, in which travelers make a
single route selection at the origin node of the network,
and do not deviate from their selected route until they reach
the destination node. However, route-based modeling often
requires enumerating all routes in a network, which may be
computationally impractical, and do not capture correlations
between the total costs of routes that share arcs. To address
these issues, this work uses an arc-based TAM [6–11] to cap-
ture travelers’ routing decisions. In this framework, travelers
navigate through a traffic network by sequentially selecting
among outgoing edges at each intermediate node. Designing
tolls for arc-based TAMs is relatively under-studied, with the
only exception of [11] where the authors show that, similar
to route based TAMs, marginal tolling also achieves social
optimality in arc-based TAMs.
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The basic philosophy of toll design is to steer the equilib-
rium behavior of agents towards social optimality by adding
external incentives to their utility functions. However, a key
assumption in this setting is that agents always adopt the
equilibrium behavior, regardless of the incentives applied.
This is not realistic, as real-world agents typically update
their strategies from their initial strategies based on repeated
interactions, only eventually converging to an equilibrium
outcome [12]. While there exist learning rules for route-
based TAMs which provably converge to the equilibrium
strategies [13, 14], the development of analogous learning
mechanisms for arc-based TAMs is relatively recent, e.g.,
in [10], which introduces a perturbed best response based
dynamics. Consequently, it is necessary to study tolling in
the presence of such dynamic adaptation rules by travelers.

Many prior works design tolls in dynamic environments by
using reinforcement learning to iteratively update the toll on
each arc. Chen et al. formulated the toll design problem as
a Markov Decision Process (MDP) with high-dimensional
state and action spaces, and apply a novel policy gradient
algorithm to dynamically design tolls [15]. Mirzaei et al.
used policy gradient methods to design incremental tolls on
each link based on the difference between the observed and
free-flow travel times [16]. Qiu et al. cast dynamic tolling
into the framework of cooperative multi-agent reinforcement
learning, and then applies graph convolutional networks to
tractably solve the problem [17]. Likewise, Wang et al.
use a cooperative actor-critic algorithm to tractably update
a dynamic tolling scheme [18]. However, these methods
operate on high-dimensional spaces, and are thus often
computationally expensive. Moreover, they typically lack
theoretical guarantees of convergence. The work most closely
related to ours is [13] which studies dynamic tolling on
parallel-link networks.

In this work, we study tolling in the arc-based TAM
detailed in [10]. We show that there exists a unique toll that
induces socially optimal congestion levels. Furthermore, we
propose an adaptive tolling dynamics that steers the travel-
ers’ routing preferences towards socially optimal congestion
levels on the network. Specifically, we implement marginal

cost tolling, via a discrete-time dynamic tolling scheme that
adjusts tolls on arcs, with the following key features:

1) Tolls are adjusted at each time step towards the direction
of the current marginal cost of travel latency.

2) Tolls are updated at a much slower rate compared to
the rate at which travelers update arc selections at each
non-destination node (timescale separation).

3) The toll update of each arc only depends on “local
information” (in particular, the flow on each arc), and
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does not require the traffic authority to access the
demands of travelers elsewhere on the network.

This form of adaptive tolling was first introduced in [13] to
study dynamic tolling scheme for parallel-link networks. This
work extends the scope of that tolling scheme to bidirectional
traffic networks, in the context of arc-based TAMs.

We show that the tolling dynamics converges to a neigh-
borhood of a fixed toll vector, the corresponding equilibrium
flows of which we prove to be socially optimal. We also show
that the travelers’ arc selections converge to a neighborhood
of this socially optimal equilibrium flow. Our proof is based
on the constant step-size two-timescale stochastic approx-
imation theory [19], which allows us to decouple the toll
and arc selection dynamics, and establish their convergence
via two separate Lyapunov-based proofs. Although marginal
tolling provably leads to socially efficient traffic allocation
in a route-based TAM framework [5], to the best of our
knowledge, this work presents the first marginal tolling
scheme that induces socially optimal traffic flows in an arc-
based setting.

The rest of the paper is outlined as follows: In Section II
we present the transportation network model we consider in
this work and summarize the required preliminaries from
[10] on arc-based TAM. Furthermore, we also introduce
the equilibrium concept we consider in this work, along
with the notion of social optimality. In Section III, we
present properties of the optimal tolls which induce social
optimality in this setup. In Section IV, we introduce the
tolling dynamics and present the convergence results. In
Section V, we present a numerical study which corroborate
the theoretical findings of this paper. Finally we conclude this
paper in VI and present some directions of future research.

Notation: For each positive integer n 2 N, we denote
[n] := {1, · · · , n}. For each i 2 [n] in an Euclidean space
Rn, we denote by ei the i-th standard unit vector. Finally,
let 1{·} denote the indicator function, which returns 1 if the
input is true and 0 otherwise.

II. SETUP

Consider a traffic network described by a directed graph
GO = (IO, AO), where IO and AO denote nodes and arcs,
respectively. An example is shown in Figure 1 (top left);
note that GO can contain bidirectional arcs. Let the origin

nodes and destination nodes be two disjoint subsets of IO.
To simplify our exposition, we assume that IO contains only
one origin o 2 I and one destination d 2 I , although
the results presented below straightforwardly extend to the
multiple origin-destination-pair scenario. Travelers navigate
through the network, from origin o to destination d, by
sequentially selecting arcs at every intermediate node. This
process produces congestion on each arc, which in turn
determines travel times. The cost on each arc is then obtained
by summing the travel time and toll. Specifically, each arc
a 2 AO is associated with a toll pa 2 R|AO|, and a positive,
strictly increasing latency function sa : [0,1) ! [0,1),
which gives travel time as a function of traffic flow. The

Fig. 1: Example of a single-origin single-destination original net-
work GO (top left, with superscript O), and its corresponding
condensed DAG, or CoDAG, representation G (top right, with
superscript C). Arc correspondences between the two networks are
given by Table I, while node correspondences are indicated by color.

cost on arc a 2 AO is then given by:

ca(wa, pa) = sã(wa) + pa.

Finally, let the demand of (infinitesimal) travelers entering
from origin node o be denoted by go.

Note that sequential arc selection on networks with bidi-
rectional arcs can result in a cyclic route. For example,
a traveler navigating the left traffic network in Figure 1
using sequential arc selection may cycle between nodes i

O
2

and i
O
3 . To resolve this issue, we consider arc selection on

the condensed DAG (CoDAG) representation of the original
network GO, a directed acyclic graph (DAG) representation,
as proposed in [10]. The Condensed DAG representation
preserves all acyclic routes from origin o to destination d in
GO, but precludes cyclic routes by design. Details regarding
the construction and properties of CoDAG representations
are provided in [10], Section II.

TABLE I: Arc correspondences between the graphs in Figure 1:
The original network (top left) and the CoDAG (top right).

Original aO1 aO2 aO3 aO4 aO5 aO6 aO7 aO8 aO9
CoDAG aT1 aT2 aT4 aT7 aT5 aT6 aT3 aT11 aT12

aT9 aT8 aT10

We define [·] : A ! AO to be a map from each CoDAG
arc a 2 A to the corresponding arc in the original graph,
[a] 2 AO (as shown in Table I). For each arc a 2 A, let
ia and ja denote the start and terminal nodes, and for each
node i 2 I , let A�

i
, A

+
i
⇢ A denote the set of incoming and

outgoing arcs.

A. Cost Model

Below, we assume that every traveler has access to GO,
and to the same CoDAG representation G = (I, A) of GO;
in particular, G is used to perform sequential arc selection
to generate acyclic routes. The travelers’ aggregative arc
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selections generate network congestion. Specifically, for each
a 2 A, let the flow or congestion level on arc a be denoted
by wa, and let the total flow on the corresponding arc in the
original network be denoted, with a slight abuse of notation,
by w[a] :=

P
a02[a] wa01. Travelers perceive the cost on each

arc a 2 A as:

c̃[a](w[a], p[a]) := c[a](w[a], p[a]) + ⌫a

= s[a](w[a]) + p[a] + ⌫a,

where ⌫a is a zero-mean random variable. At each non-
destination node i 2 I\{d}, travelers select among outgoing
nodes a 2 A

+
i

by comparing their perceived cost-to-go
z̃a : R|A| ⇥ R|AO| ! R, given recursively by:

z̃a(w, p) := s̃[a](w[a]) + p[a] + min
a02A

+
ja

z̃a0(w, p), ja 6= d,

(1)
z̃a(w, p) := s̃[a](w[a]) + p[a], ja = d.

Consequently, the fraction of travelers who arrives at i 2
I\{d} and choose arc a 2 A

+
i

is given by:

Pija
:= P(z̃a  z̃a0 , 8a0 2 A

+
i
). (2)

An explicit formula for the probabilities {Pija
: a 2 A

+
i
},

in terms of the statistics of z̃a, is provided by the discrete-
choice theory [20]. In particular, define za(w) := E[z̃a(w)]
and ✏a := z̃a(w) � za(w), and define the latency-to-go at
each node by:

'i({za0(w, p) : a0 2 A
+
i
}) = E

"
min

a02A
+
i

z̃a0(w, p)

#
. (3)

Then, from discrete-choice theory [20]:

Pija
=

@'i

@za
(z), i 2 I\{d}, a 2 A

+
i
, (4)

where, with a slight abuse of notation, we write 'i(z) for
'i({za0 : a0 2 A

+
i
}).

To obtain a closed-form expression of ', we employ
the logit Markovian model [6, 7], under which the noise
terms ✏a are described by the Gumbel distribution with scale
parameter �. As a result, the expected minimum cost-to-go
za : R|A| ⇥ R|AO| ! R, associated with traveling on each
arc a 2 A, assumes the following form:

za(w, p) (5)

= s[a]

 
X

ā2[a]

wā

!
+ p[a] �

1
�
ln

 
X

a02A
+
ja

e
��z

a0 (w,p)

!
.

Note that (5) is well-posed, as za can be recursively
computed from the destination back to the origin ([10],
Section III).

1Unlike existing TAMs, in our model, the latency of arcs in G can be
coupled, since multiple copies of the same arc in GO may exist in G.

B. CoDAG Equilibrium

Here, we define the condensed DAG (CoDAG) equilib-

rium (Definition 1), based on the CoDAG representation of
the original traffic network. Specifically, we show that the
CoDAG equilibrium exists, is unique, and solves a strictly
convex optimization problem (Theorem 1).

Definition 1 (Condensed DAG Equilibrium): Fix a toll
vector p 2 R|AO|, and fix � > 0. We call an arc-flow vector
w̄

�(p) 2 R|A| a Condensed DAG (CoDAG) equilibrium at p

if, for each i 2 I\{d}, a 2 A
+
i

:

w̄
�

a
(p) (6)

=

0

@gi +
X

a02A
+
i

w̄
�

a0(p)

1

A exp(��za(w̄�(p), p))P
a02A

+
ia

exp(��za0(w̄�(p), p))
,

(7)

where gi = g0 · 1(i = o), and w 2 W , where:

W :=

(
w 2 R|A| :

X

a2A
+
i

wa =
X

a2A
�
i

wa, 8 i 6= o, d, (8)

X

a2A
+
o

wa = go, wa � 0, 8a 2 A

)

characterizes the conservation of flow in the CoDAG G. Note
that W is convex and compact.

At a CoDAG equilibrium w̄
�(p), the fraction of travelers at

any intermediate node i 2 I\{d} who selects an arc a 2 A
+
i

is given by ⇠̄
�
a
(p), as defined below:

⇠̄
�

a
(p) :=

w̄
�
a
(p)

P
a02A

+
i

w̄
�

a0(p)
.

The CoDAG equilibrium bears some resemblance to the
Markovian Traffic Equilibrium (MTE) introduced in Baillon
and Cominetti [7]. However, the CoDAG formulation by
design precludes the possibility of assigning cyclic routes,
and is capable of capturing couplings between arcs in the
CoDAG G that correspond to the same arc in the original
network GO (see [10], Remark 6).

Below, we show that, given any CoDAG representation
G of an original network GO and any fixed toll vector
p 2 R|AO|, the CoDAG equilibrium exists and is unique.
Specifically, the CoDAG equilibrium is the unique minimizer
of a strictly convex optimization problem over a compact
set. This characterization provides powerful insight into the
mathematical properties of the CoDAG equilibrium flow, and
its dependence on the toll vector. These properties will be
used in our work to establish the existence of an optimal toll
(Theorem 2) and the convergence of our discrete-time toll
dynamics to the optimal toll (Theorem 3).

For each [a] 2 AO, define F : W ⇥ R|AO| ! R by:

F (w, p)

=
X

[a]2AO

Z
w[a]

0

⇥
s[a](u) + p[a]

⇤
du
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+
1
�

X

i 6=d

"
X

a2A
+
i

wa lnwa �
 
X

a2A
+
i

wa

!
ln

 
X

a2A
+
i

wa

!#
.

(9)

Theorem 1: For each fixed toll vector p 2 R|AO|, the
corresponding CoDAG equilibrium w̄

�(p) 2 W exists, is
unique, and is the unique minimizer of F (·, p) over W .

Proof: (Proof Sketch) The proof parallels that of [10],
Theorem 1 and Lemma 1. For details, please see [10],
Section III and Appendix B.

C. Social Optimality

We now describe the socially optimal flow which would
lead to the most efficient use of the transportation network.
More specifically, we define below the notion of perturbed

social optimality considered in our work.
Definition 2 (Perturbed Socially Optimal Flow): We de-

fine a perturbed socially optimal flow with regularization
parameter � > 0 to be a minimizer of the following convex
optimization problem:

min
w2W

X

[a]2AO

w[a] · s[a](w[a])

+
1
�

X

i 6=d

"
X

a2A
+
i

wa lnwa �
 
X

a2A
+
i

wa

!
ln

 
X

a2A
+
i

wa

!#
,

with W given by (8), and w[a] :=
P

a02[a] wa0 , as defined
above.

In words, perturbed social optimality is characterized as
the total latency experienced by travelers on each arc of the
CoDAG G, augmented by an entropy term with regulariza-
tion parameter � which captures stochasticity in the travelers’
arc selections.

III. OPTIMAL TOLL: EXISTENCE AND
UNIQUENESS

Below, we characterize the optimal toll p̄ 2 R|AO| for
which the corresponding CoDAG equilibrium w̄

�(p̄) is per-
turbed socially optimal (see Definition 2). Throughout the
rest of the paper, we call p̄ the optimal toll.

Theorem 2: There exists a unique toll vector p̄ 2 R|A0|

that satisfies the following fixed-point equation:

p̄[a] = w̄
�

[a](p̄) ·
ds[a]

dw
w̄

�

[a](p̄), 8a 2 A. (10)

Moreover, w̄�(p̄), the CoDAG equilibrium flow distribution
corresponding to p̄, is the perturbed socially optimal flow
with regularization �.

To prove Theorem 2, we first show that w̄
�(p) is con-

tinuous and monotonic in the toll p (Lemmas 1 and 2).
Then, we use these properties to establish the existence and
uniqueness of a toll vector p̄ 2 R|AO| satisfying the fixed-
point equation (10) (Lemma 3). Finally, we prove that the
CoDAG equilibrium flow allocation w̄

�(p̄) corresponding to
p̄ is perturbed socially optimal (Lemma 4).

Below, we begin by establishing that the CoDAG equilib-
rium w̄

�(p) is a continuously differentiable and monotonic
function of the toll p 2 R|AO|.

Lemma 1: w̄
�(p) is continuously differentiable in p.

Proof: (Proof Sketch) For each fixed toll vector
p 2 R|AO|, the corresponding CoDAG equilibrium w̄

�(p)
uniquely solves the KKT conditions of the optimization
problem of minimizing F (·, p) over W (Theorem 1). We
write these KKT conditions as an implicit function J :
R|A| ⇥ R|AO| ! R|A| of the flow and tolls (w, p):

J(w, p) = 0,

where 0 denotes the |A|-dimensional zero vector. We can
then derive an explicit expression for dw̄

�

dp
(p) at each p 2

R|AO| by proving that:

@J

@w

�
w̄

�(p), p
�
2 R|A|⇥|A|

is non-singular for each fixed p, and invoking the Implicit
Function Theorem. For details, please see Appendix A.1
[21].

Lemma 2: For any p, p
0 2 R|A0|:

X

a2A

⇣
w̄

�

a
(p0)� w̄

�

a
(p)
⌘
(p0[a] � p[a])  0.

Proof: (Proof Sketch) By Theorem 1, the CoDAG
equilibrium w̄

�(p) is the unique minimizer of the strictly
convex function F (·, p) : W ! R defined by (9). Thus,
w̄

�(p) can be characterized by the first-order optimality
conditions of this optimization problem. This in turn allows
us to establish monotonicity. For details, please see Appendix
A.2 [21].

We then use the above lemmas to prove that the fixed-point
equation (10) yields a unique solution.

Lemma 3: There exists a unique p̄ 2 R|AO| satisfying
(10):

p̄[a] = w̄
�

[a](p̄) ·
ds[a]

dw

�
w̄

�

[a](p̄)
�
, 8 [a] 2 AO.

Proof: (Proof Sketch) Existence follows from the
Brouwer fixed point theorem, since w̄

�(p) is continuous
in p (Lemma 1). Uniqueness follows via a contradiction
argument; we show that the existence of two distinct fixed
points of (10) would violate the monotonicity established by
Lemma 2. For details, please see Appendix A.3 [21].

Finally, we prove that the CoDAG equilibrium flow cor-
responding to p̄ 2 R|AO| is perturbed socially optimal.

Lemma 4: w̄
�(p̄) is perturbed socially optimal.

Proof: (Proof Sketch) This follows by comparing the
KKT conditions satisfied by w̄

�(p̄) (Theorem 1) with the
KKT conditions of the optimization problem that defines the
perturbed socially optimal flow in Definition 2. For details,
please see Appendix A.4 [21].

Together, Lemmas 1, 2, 3, and 4 prove Theorem 2.

IV. DYNAMICS AND CONVERGENCE
A. Discrete-time Dynamics

Here, we present discrete-time stochastic dynamics that
describes the evolution of the traffic flow and tolls on the
network. Formally, go units of traveler flow enter the network
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at the origin node o at each time step n � 0. At each non-
destination node i 2 I\{d}, a ⇠a[n] fraction of travelers
chooses an outgoing arc a 2 A

+
i

. We shall refer to ⇠a[n]
as the aggregate arc selection probability. Consequently, the
flow induced on any arc a 2 A satisfies:

Wa[n] =

 
gia +

X

a02A
+
ia

Wa0 [n]

!
· ⇠a[n]. (11)

At the conclusion of every time step n, travelers reach the
destination node d and observe a noisy estimate of the cost-
to-go values and tolls on all arcs in the network (including
arcs not traversed during that time step). Let Ki > 0 denote
node-dependent constants, and let {⌘i[n + 1] 2 R : i 2
I, n � 0} be independent bounded random variables2 in
[µ, µ], with 0 < µ < µ < µ < 1/max{Ki : i 2 I\{d}}
and E[⌘ia [n+ 1]] = µ at each node i 2 I and discrete time
index n � 0. At each time n + 1 and non-destination node
i 2 I\{d}, a ⌘i[n + 1] · Ki fraction of travelers at node
i 2 I observes the latencies on each arc, and decides to
switch to the outgoing arc that minimizes the (stochastic)
observed cost-to-go. Meanwhile, 1� ⌘i[n+ 1] ·Ki fraction
of travelers selects the same arc they used at time step n.
Thus, the arc selection probabilities evolve according to the
following perturbed best-response dynamics:

⇠a[n+ 1] (12)
= ⇠a[n] + ⌘ia [n+ 1] ·Kia

·
 

� ⇠a[n] +
exp(��

⇥
za(W [n], P [n])

⇤
)

P
a02A

+
ia

exp(��
⇥
za0(W [n], P [n])

⇤
)

!
.

We assume that ⇠a[0] > 0 for each a 2 A, i.e., each arc has
some strictly positive initial traffic flow. This captures the
stochasticity in travelers’ perception of network congestion
that causes each arc to be assigned a nonzero probability of
being selected.

At each time step n+ 1 � 0, the tolls P[a][n] 2 R|AO| on
each arc [a] 2 AO are updated by interpolating between the
tolls implemented at time step n, and the marginal latency
of that arc given the flow at time step n. That is:

P[a][n+ 1] (13)

=P[a][n] + �

✓
�P[a][n] +W[a][n] ·

ds[a]

dw
(W[a][n])

◆
,

with � 2 (0, 1)3, where with a slight abuse of notation, we
denote W[a] :=

P
a02[a] Wa0 . Note that the update (13) is

distributed, i.e., for each arc in the original network, the
updated toll depends only on the flow of that arc, and not
on the flow of any other arc. Moreover, we assume that
� ⌧ µ, i.e., the toll updates (13) occur at a slower timescale
compared to the arc selection probability updates (12).

To simplify our study of the convergence of the dynamics
(12) and (13), we assume that the arc latency functions are
affine in the congestion on the link.

2The random variables {⌘a[n] : a 2 A,n � 0} are assumed to be
independent of travelers’ perception uncertainties.

3Our result also holds if � is a random variable with bounded support.

Assumption 1: Each arc latency function s[a] is affine,
i.e.,:

s[a](w[a]) = ✓ã,1w[a] + ✓[a],0, (14)

for some ✓[a],1, ✓[a],0 > 0.
Under Assumption 1, the toll dynamics (13) can be

alternatively written as follows

P[a][n+ 1] = P[a][n] + �
�
�P[a][n] +W[a][n] · ✓[a],1

�
.

(15)

B. Convergence Results

In this subsection, we show that the arc selection probabil-
ity and toll updates (12)-(15) converge in the neighborhood
of the socially optimal flow w̄

�(p̄) and the corresponding
toll p̄ respectively.

Theorem 3: The joint evolution of arc selection probabil-
ity and toll updates (12)-(15) satisfies

lim sup
n!1

E
⇥
k⇠[n]� ⇠̄

�(p̄)k22 + kP [n]� p̄k22
⇤

=O

✓
µ+

�

µ

◆
.

Consequently, for each � > 0:

lim sup
n!1

P
�
k⇠[n]� ⇠̄

�(p̄)k22 + kP [n]� p̄k22 � �
�

=O

✓
µ

�
+

�

�µ

◆
.

To prove Theorem 3, we employ the theory of two-
timescale stochastic approximation [22]. Consequently, the
asymptotic behavior of (12)-(15) can be characterized by
studying the convergence properties of the corresponding
continuous-time dynamical system. Since the tolls are up-
dated at a slower rate compared to the traffic flows (� ⌧ µ),
we consider the evolution of continuous-time flows w(t)
under a fixed toll p 2 R|AO|, and continuous-time tolls
p(t) with flow converged at the corresponding CoDAG
equilibrium w̄

�(p(t)) at each time. Specifically, for any fixed
toll p 2 R|AO|, on each arc a 2 A, the arc selection
probabilities evolve as follows:

wa(t) = ⇠a(t) ·
 
gia +

X

a02A
�
ia

wa0(t)

!
, (16)

⇠̇a(t) = Kia ·
 
�⇠a(t) +

exp(�� · za(w(t), p))P
a02A

+
ia

exp(�� · za0(w(t), p))

!
.

(17)

Meanwhile, on each arc [a] 2 AO in the original network,
we consider the following continuous-time toll dynamics:

ṗ[a](t) = �p[a](t) + w̄
�

[a](p(t)) · ✓[a],1. (18)

We prove that, for each fixed toll p 2 R|AO|, the corre-
sponding continuous-time ⇠-dynamics (17) globally asymp-
totically converges to the corresponding CoDAG equilibrium
w̄

�(p) 2 R|A|. Moreover, the continuous-time toll dynamics
(18) globally converges to the optimal toll p̄ 2 R|AO|.

Lemma 5 (Informal): Suppose w(0) 2 W , i.e., the initial
flow satisfies flow continuity. Under the continuous-time flow
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dynamics (17) and (16), if Ki ⌧ Ki0 whenever `i < `i0 ,
the continuous-time traffic allocation w(t) globally asymp-
totically converges to the corresponding CoDAG equilibrium
w̄

�(p).
Proof: (Proof Sketch) The following proof sketch paral-

lels that of [10], Lemma 2, and is included for completeness.
Recall that Theorem 1 establishes w̄

�(p) as the unique
minimizer of the map F (·, p) : W ! R, defined by (9). We
show that F (·, p) is a Lyapunov function for the continuous-
time flow dynamics induced by (17). To this end, we first
unroll the dynamics (17) using (16), as follows:

ẇa(t)

= �Kia ·
 
1� 1

Kia

·

P
a02A

�
ia

ẇa0(t)
P

â2A
+
ia

wâ(t)

!
wa(t)

+Kia ·
X

a02A
�
ia

wa0(t) · exp(��za(w(t), p))P
a02A

+
ia

exp(��za0(w(t), p))
.

Next, we establish that if w(0) 2 W , then for each t � 0:

Ḟ (t) = ẇ(t)>rwF (w(t))  0.

The proof then follows from LaSalle’s Theorem (see [23,
Proposition 5.22]). For a precise statement of Lemma 5,
please see Appendix B.1 [21]; for the proof of the analogous
theorem in [10], please see [10] Appendix C.1.

Lemma 6: The continuous-time toll dynamics (18) glob-
ally exponentially converges to the CoDAG equilibrium
w̄

�(p̄) corresponding to the optimal toll p̄.
Proof: Define D 2 R|AO|⇥|AO| to be the diagonal

and symmetric positive definite matrix whose [a]-th diagonal
element is given by:

ds[a]

dw

�
w̄

�

[a](p̄)
�
= ✓[a],1 > 0,

for each [a] 2 AO. Note that D is independent of the toll
p. Now, consider the Lyapunov function V : R|AO| ! R,
defined by:

V (p) :=
1

2
(p� p̄)>D�1(p� p̄).

The trajectory of the continuous-time toll dynamics (18),
starting at p(0), satisfies:

V̇ (p(t))

= (p(t)� p̄)>D�1
ṗ(t)

=
X

[a]2AO

(p[a](t)� p̄[a])

✓[a],1
·
⇣
�p[a](t) + ✓[a],1w̄

�

[a](p(t))
⌘

=
X

[a]2AO

(p[a](t)� p̄[a])

✓[a],1

·
⇣
�p[a](t) + p̄[a] � p̄[a] + ✓[a],1w̄

�

[a](p(t))
⌘

= �2V (p(t))

+
X

[a]2AO

(p[a](t)� p̄[a])
⇣
w̄

�

[a](p(t))� w̄
�

[a](p̄)
⌘

 �2V (p(t)),

where the final inequality follows due to the monotonicity
of the map w̄

�(·) (Lemma 2).
To conclude the proof of Theorem 3, it remains to

check that the discrete-time dynamics (12)-(15), and the
continuous-time dynamics (17)-(18), satisfy the technical
conditions in Lemmas 7 and 8. In particular, Lemma 7
establishes that flows and tolls are uniformly bounded across
the arc and time indices, while Lemma 8 asserts that the
continuous-time flow and toll dynamics maps are Lipschitz
continuous.

Lemma 7: The continuous-time flow and toll dynamics
induced by (12)-(15) satisfy:

1) For each a 2 A: {Ma[n + 1] : n � 0} is a martingale
difference sequence with respect to the filtration Fn :=
�
�
[a2A (Wa[1], ⇠[1], p[1], · · · ,Wa[n], ⇠[n], p[n])

�
.

2) There exist Cw, Cm, Cp > 0 such that, for each a 2 A

and each n � 0, we have Wa[n] 2 [Cw, go], Pa[n] 2
[0, Cp], and |Ma[n]|  Cm.

Likewise, the continuous-time flow and toll dynamics in-
duced by (17) and (18) satisfy:

3) For each a 2 A, t � 0, we have wa(t) 2 [Cw, go] and
pa(t) 2 [0, Cp].
Proof: Please see Appendix B.2 [21].

Lemma 8: The continuous-time flow dynamics (16) and
toll dynamics (18) satisfy:

1) The map ⇠̄
� : R|AO| ! R|A| is Lipschitz continuous.

2) For each a 2 A, the restriction of the cost-to-go map
za : W ⇥R|AO| ! R to the set of realizable flows and
tolls, i.e., W 0 ⇥ [0, Cp]|AO|, is Lipschitz continuous.

3) The map from the probability transitions ⇠ 2Q
i2I\{d} �(A+

i
) and the traffic flows w 2 W is

Lipschitz continuous.
4) For each a 2 A, the restriction of the continuous

dynamics transition map ⇢a : R|A| ⇥ R|AO| ! R|A|,
defined recursively as follows for each a 2 A:

⇢a(⇠, p) := �⇠a +
exp(��za(w, p))P

a02A
+
ia

exp(��za0(w, p))

to the set of realizable flows and tolls, i.e., W 0 ⇥
[0, Cp]|AO|, is Lipschitz continuous.

5) For each a 2 A, the map r[a] : R|AO| ⇥ R|AO|, defined
as follows for each a 2 A:

r[a](p) := �p[a] + w̄
�

[a](p) ·
ds[a]

dw
(w̄�

[a](p)),

is Lipschitz continuous.
Proof: Please see Appendix B.3 [21].

V. EXPERIMENT RESULTS
This section presents experiments that validate the theoret-

ical convergence results of Section IV. We present simulation
results illustrating that, under (12)-(15), the traffic flows and
tolls converge to a neighborhood of the socially optimal
values, as claimed by Theorem 3.

Consider the network presented in Figure 1, following
affine latency functions (14) with parameters given in Table
II. To validate Theorem 3, we evaluate and plot the traffic
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TABLE II: Parameters for simulation.

Notation Default value

✓ã,0 0, 1, 0, 1, 1, 0, 1, 1, 1 (ordered by edge index)
✓ã,1 2, 1, 1, 1, 1, 1, 2, 2, 2 (ordered by edge index)
g1 1
� 10
� 0.02
⌘ia [n] Uniform(0, 0.1), 8a 2 A, i 2 I\{d}

Fig. 2: Steady state traffic flow on each arc for the original network
before (left) and after (right) tolls. Flows on arcs emerging from
the same node are represented in the same color.

flow values Wa[n] and toll values Pa[n] on each arc a 2 A

with respect to discrete time index n � 0. Figure 2 presents
traffic flow values at the condensed DAG equilibrium (i.e.,
w

�) for the original network before and after tolls. Mean-
while, Figure 3 and 4 illustrate that w and p converge to the
condensed DAG equilibrium in approximately 300 iterations.
As in [10], flow convergence to the optimal allocation occurs
even when the constants {Ki : i 2 I} are simply all set to
1. While the original traffic distribution is more concentrated
on a few routes, tolls can distribute the traffic more evenly.
This shows that tolls can improve overall social welfare by
reducing congestion in over-utilized routes.

Fig. 3: Traffic flow W vs. time index n for the condensed DAG in
Figure 1.

Fig. 4: Toll P vs. time index n for the condensed DAG in Figure
1.

VI. CONCLUSION AND FUTURE WORK
This work introduces a discrete-time adaptive tolling

scheme to minimize the total travel latency in a general
traffic network with bidirectional edges. Our model assumes
that, at each time, players near-instantaneously react via
perturbed best response to the announced tolls. Accordingly,
we formulate a two-timescale stochastic dynamical system
that describes the joint evolution of traffic flow and tolls.
We prove that the fixed point of these dynamics is unique
and corresponds to the optimal traffic flow allocation from
the perspective of minimizing the total travel time. More-
over, we prove that the stochastic dynamics converges to a
neighborhood of the unique fixed point with high probability.
Finally, we present simulation results that corroborate our
theoretical findings.

Interesting avenues of future research include: (1) Extend-
ing our theoretical analysis to the setting where the latency
function of each arc is not necessarily affine, (2) Developing
tolling dynamics for the setting in which the central authority
must learn the network latency functions and entropy regular-
ization parameter � > 0 while simultaneously implementing
an adaptive tolling scheme that converges to the optimal
toll, and (3) Designing robust tolls for traffic networks in
which some fraction of the population behaves unexpectedly
or adversarially.
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APPENDIX

Please use the following link to access the ArXiv version
with the appendix [21] (https://arxiv.org/pdf/
2307.05466.pdf). The authors will make certain that this
link stays active.
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