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Abstract

Data in the sciences frequently occur as sequences of multidimensional arrays
called tensors. How can hidden, evolving trends in such data be extracted while
preserving the tensor structure? The model that is traditionally used is the linear
dynamical system (LDS) with Gaussian noise, which treats the latent state and
observation at each time slice as a vector. We present the multilinear dynamical
system (MLDS) for modeling tensor time series and an expectation–maximization
(EM) algorithm to estimate the parameters. The MLDS models each tensor obser-
vation in the time series as the multilinear projection of the corresponding member
of a sequence of latent tensors. The latent tensors are again evolving with respect
to a multilinear projection. Compared to the LDS with an equal number of param-
eters, the MLDS achieves higher prediction accuracy and marginal likelihood for
both artificial and real datasets.

1 Introduction

A tenet of mathematical modeling is to faithfully match the structural properties of the data; yet, on
occasion, the available tools are inadequate to perform the task. This scenario is especially common
when the data are tensors, i.e., multidimensional arrays: vector and matrix models are fitted to them
without justification. This is, perhaps, due to the lack of an agreed-upon tensor model. There are
many examples that seem to require such a model: The spatiotemporal grid of atmospheric data in
climate modeling is a time series of n×m× l tensors, where n, m and l are the numbers of latitude,
longitude, and elevation grid points. If k measurements—e.g., temperature, humidity, and wind
speed for k=3—are made, then a time series of n×m× l×k tensors is constructed. The daily high,
low, opening, closing, adjusted closing, and volume of the stock prices of n multiple companies
comprise a time series of 6 × n tensors. A grayscale video sequence is a two-dimensional tensor
time series because each frame is a two-dimensional array of pixels.

Several queries can be made when one is presented with a tensor time series. As with any time
series, a forecast of future data may be requested. For climate data, successful prediction may
spell out whether the overall ocean temperatures will increase. Prediction of stock prices may not
only inform investors but also help to stabilize the economy and prevent market collapse. The
relationships between particular subsets of tensor elements could be of significance. How does the
temperature of the ocean at 8◦N, 165◦E affect the temperature at 5◦S, 125◦W? For stock price data,
one may investigate how the stock prices of electric car companies affect those of oil companies.
For a video sequence, one might expect adjacent pixels to be more correlated than those far away
from each other. Another way to describe the relationships among tensor elements is in terms of
their covariances. Equipped with a tabulation of the covariances, one may read off how a given
tensor element affects others. Later in this paper, we will define a tensor time series model and a
covariance tensor that permits the modeling of general noise relationships among tensor elements.

More formally, a tensor X ∈ RI1×···×IM is a multidimensional array with elements that can each be
indexed by a vector of positive integers. That is, every element Xi1···iM ∈ R is uniquely addressed
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by a vector (i1, · · · , iM ) such that 1 ≤ im ≤ Im for all m. Each of the M dimensions of X is called
a mode and represents a particular component of the data. The simplest tensors are vectors and
matrices: vectors are tensors with only a single mode, while matrices are tensors with two modes.
We will consider the tensor time series, which is an ordered, finite collection of tensors that all share
the same dimensionality. In practice, each member of an observed tensor time series reflects the
state of a dynamical system that is measured at discrete epochs.

We propose a novel model for tensor time series: the multilinear dynamical system (MLDS). The
MLDS explicitly incorporates the dynamics, noise, and tensor structure of the data by juxtaposing
concepts in probabilistic graphical models and multilinear algebra. Specifically, the MLDS gener-
alizes the states of the linear dynamical system (LDS) to tensors via a probabilistic variant of the
Tucker decomposition. The LDS tracks latent vector states and observed vector sequences; this
permits forecasting, estimation of latent states, and modeling of noise but only for vector objects.
Meanwhile, the Tucker decomposition of a single tensor computes a latent “core” tensor but has
no dynamics or noise capabilities. Thus, the MLDS achieves the best of both worlds by uniting
the two models in a common framework. We show that the MLDS, in fact, generalizes LDS and
other well-known vector models to tensors of arbitrary dimensionality. In our experiments on both
synthetic and real data, we demonstrate that the MLDS outperforms the LDS with an equal number
of parameters.

2 Tensor algebra

Let N be the set of all positive integers and R be the set of all real numbers. Given I ∈ NM ,
where M ∈ N, we assemble a tensor-product space RI1×···×IM , which will sometimes be written
as RI = R(I1,...,IM ) for shorthand. Then a tensor X ∈ RI1×···×IM is an element of a tensor-product
space. A tensor X may be referenced by either a full vector (i1, . . . , iM ) or a by subvector, using
the • symbol to indicate coordinates that are not fixed. For example, let X ∈ RI1×I2×I3 . Then
Xi1i2i3 is a scalar, X•i2i3 ∈ RI1 is the vector obtained by setting the second and third coordinates
to i2 and i3, and X••i3 ∈ RI1×I2 is the matrix obtained by setting the third coordinate to i3. The
concatenation of two M -dimensional vectors I = (I1, . . . , IM ) and J = (J1, . . . , JM ) is given by
IJ = (I1, . . . , IM , J1, . . . , JM ), a vector with 2M entries.

Let X ∈ RI1×···×IM , M ∈ N. The vectorization vec(X) ∈ RI1···IM is obtained by shaping the
tensor into a vector. In particular, the elements of vec(X) are given by vec(X)k = Xi1···iM , where
k = 1 +

∑M
m=1

∏m−1
n=1 In(im − 1). For example, if X ∈ R2×3×2 is given by

X••1 =

(
1 3 5
2 4 6

)
, X••2 =

(
7 9 11
8 10 12

)
,

then vec(X) = (1 2 3 4 5 6 7 8 9 10 11 12)
T
.

Let I, J ∈ NM ,M ∈ N. The matricization mat(A) ∈ RI1···IM×J1···JM of a tensor A ∈ RIJ

is given by mat(A)kl = Ai1···iM j1···jM , where k = 1 +
∑M

m=1

∏m−1
n=1 In(im − 1) and l = 1 +∑M

m=1

∏m−1
n=1 Jn(jm − 1). The matricization “flattens” a tensor into a matrix. For example, define

A ∈ R2×2×2×2 by

A••11 =

(
1 3
2 4

)
,A••21 =

(
5 7
6 8

)
,A••12 =

(
9 11
10 12

)
,A••22 =

(
13 15
14 16

)
.

Then we have mat(A) =

 1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

 .

The vec and mat operators put tensors in bijective correspondence with vectors and matrices. To
define the inverse of each of these operators, a reference must be made to the dimensionality of the
original tensor. In other words, given X ∈ RI and A ∈ RIJ , where I, J ∈ NM ,M ∈ N, we have
X = vec−1I (vec(X)) and A = mat−1IJ (mat(A)).

Let I, J ∈ NM ,M ∈ N. The factorization of a tensor A ∈ RIJ is given by Ai1···iM j1···jM =∏M
m=1A

(m)
imjm

, where A(m) ∈ RIm×Jm for all m. The factorization exponentially reduces the
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number of parameters needed to express A from
∏M

m=1 ImJm to
∑M

m=1 ImJm. In matrix form, we
have mat(A) = A(M) ⊗ A(M−1) ⊗ · · · ⊗ A(1), where ⊗ is the Kronecker matrix product [1]. Note
that tensors in RIJ are not factorizable in general [2].

The product A ~ X of two tensors A ∈ RIJ and X ∈ RJ , where I, J ∈ NM ,M ∈ N, is given
by (A~ X)i1···iM =

∑
j1···jM Ai1···iM j1···jMXj1···jM . The tensor A is called a multilinear operator

when it appears in a tensor product as above. The product is only defined if the dimensionalities of
the last M modes of A match the dimensionalities of X. Note that this tensor product generalizes
the standard matrix-vector product in the case M = 1.

We shall primarily work with tensors in their vector and matrix representations. Hence, we appeal
to the following
Lemma 1. Let I, J ∈ NM ,M ∈ N,A ∈ RIJ ,X ∈ RJ . Then

vec(A~ X) = mat(A) vec(X) . (1)

Furthermore, if A is factorizable with matrices A(m), then

vec(A~ X) =
[
A(M) ⊗ · · · ⊗A(1)

]
vec(X) . (2)

Proof. Let k = 1 +
∑M

m=1

∏m−1
n=1 In(im − 1) and l = 1 +

∑M
m=1

∏m−1
n=1 Jn(jm − 1) for some

(j1, . . . , jM ). We have

vec(A~ X)k =
∑

j1···jM

Ai1···iM j1···jMXj1···jM =
∑
l

mat(A)kl vec(X)l = (mat(A) vec(X))k ,

which holds for all 1 ≤ im ≤ Im, 1 ≤ m ≤ M . Thus, (1) holds. To prove (2), we express mat(A)
as the Kronecker product of M matrices A(1), . . . , A(M).

The Tucker decomposition can be expressed using the product ~ defined above. The
Tucker decomposition models a given tensor X ∈ RI1×···×IM as the result of a multilin-
ear transformation that is applied to a latent core tensor Z ∈ RJ1×···×JM : X = A ~ Z.

ZX =
A(2)

A(3)

A(1)

Figure 1: The Tucker decomposi-
tion of a third-order tensor X.

The multilinear operator A is a factorizable tensor such that
mat(A) = A(M)⊗A(M−1)⊗· · ·⊗A(1),. whereA(1), . . . , A(M)

are projection matrices (Figure 1). The canonical decomposi-
tion/parallel factors (CP) decomposition is a special case of the
Tucker decomposition in which Z is “superdiagonal”, i.e., J1 =
· · · = JM = R and only the Zj1···jM such that j1 = · · · = jM
can be nonzero. The CP decomposition expresses X as a sum

X =
∑R

r=1 u
(1)
r ◦ · · · ◦ u(M)

r , where u(m)
r ∈ RIm for all m and r and ◦ denotes the tensor outer

product [3].

To illustrate, consider the caseM = 2 and letX = A~Z, whereX ∈ Rn×m and Z ∈ Rp×q . Then
X = AZBT, where mat(A) = B ⊗ A. If p ≤ n and q ≤ m, then Z is a dimensionality-reduced
version of X: the matrix A increases the number of rows of Z from p to n via left-multiplication,
while the matrix B increases the number of columns of Z from q to m via right-multiplication. To
reconstruct X , we simply apply A~ Z. See Figure 1 for an illustration of the case M = 3.

3 Random tensors

Given I ∈ NM ,M ∈ N, we define a random tensor X ∈ RI1×···×IM as follows. Suppose vec(X)
is normally distributed with expectation vec(U) and positive-definite covariance mat(S), where U ∈
RI and S ∈ RII . Then we say that X has the normal distribution with expectation U ∈ RI and
covariance S ∈ RII and write X ∼ N (U, S). The definition of the normal distribution on tensors
can thus be restated more succinctly as

X ∼ N (U, S) ⇐⇒ vec(X) ∼ N (vecU,mat S) . (3)

Our formulation extends the normal distribution defined in [4], which is restricted to symmetric,
second-order tensors.
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We will make use of an important special case of the normal distribution defined on tensors: the
multilinear Gaussian distribution. Let I, J ∈ NM ,M ∈ N, and suppose X ∈ RI and Z ∈ RJ are
jointly distributed as

Z ∼ N (U,G) and X | Z ∼ N (C~ Z, S) , (4)

where C ∈ RIJ . The marginal distribution of X and the posterior distribution of Z given X are given
by the following result.

Lemma 2. Let I, J ∈ NM ,M ∈ N, and suppose the joint distribution of random tensors X ∈ RI

and Z ∈ RJ is given by (4). Then the marginal distribution of X is

X ∼ N
(
C~ U,C~ G~ CT + S

)
, (5)

where CT ∈ RJI and CT
j1···jM i1···iM = Ci1···iM j1···jM . The conditional distribution of Z given X is

Z | X ∼ N
(
Û, Ĝ

)
, (6)

where Û = vec−1J (µ+W (vec(X)−mat(C)µ)), Ĝ = mat−1JJ (Γ−Wmat(C) Γ), µ = vec(U),

Γ = mat(G), Σ = mat(S), and W = Γmat(C)
T
[
mat(C) Γmat(C)

T
+ Σ

]−1
.

Proof. Lemma 1, (3), and (4) imply that the vectorizations of Z and X given Z follow vec(Z) ∼
N (µ,Γ) and vec(X) | vec(Z) ∼ N (mat(C) vec(Z) ,Σ). By the properties of the multivariate
normal distribution, the marginal distribution of vec(X) and the conditional distribution of vec(Z)

given vec(X) are vec(X) ∼ N (mat(C) vec(U),mat(C) Γmat(C)
T

+ Σ) and vec(Z) | vec(X) ∼
N (vec(Û),mat(Ĝ)). The associativity of ~ implies that mat(C ~ G ~ CT) = mat(C) Γmat(C)

T.
Finally, we apply Lemma 1 once more to obtain (5) and (6).

4 Multilinear dynamical system

The aim is to develop a model of a tensor time series X1, . . . ,XN that takes into account tensor
structure. In defining the MLDS, we build upon the results of previous sections by treating each
Xn as a random tensor and relating the model components with multilinear transformations. When
the MLDS components are vectorized and matricized, an LDS with factorized transition and projec-
tion matrices is revealed. Hence, the strategy for fitting the MLDS is to vectorize each Xn, run the
expectation-maximization (EM) algorithm of the LDS for all components but the matricized transi-
tion and projection tensors–which are learned via an alternative gradient method–and finally convert
all model components back to tensor form.

4.1 Definition

Let I, J ∈ NM ,M ∈ N. The MLDS model consists of a sequence Z1, . . . ,ZN of latent tensors,
where Zn ∈ RJ1×···×JM for all n. Each latent tensor Zn emits an observation Xn ∈ RI1×···×IM .
The system is initialized by a latent tensor Z1 distributed as

Z1 ∼ N (U0,Q0) . (7)

Given Zn, 1 ≤ n ≤ N − 1, we generate Zn+1 according to the conditional distribution

Zn+1 | Zn ∼ N (A~ Zn,Q) , (8)

where Q is the conditional covariance shared by all Zn, 2 ≤ n ≤ N , and A is the transition tensor
which describes the dynamics of the evolving sequence Z1, . . . ,ZN . The transition tensor A is
factorized into M matrices A(m), each of which acts on a mode of Zn. In matrix form, we have
mat(A) = A(M) ⊗ · · · ⊗A(1). To each Zn there corresponds an observation Xn generated by

Xn | Zn ∼ N (C~ Zn,R) , (9)
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... ...

X1

Z1 Z2

X2

Xn

Zn

Xn+1

Zn+1

XN

ZN

Figure 2: Schematic of the MLDS
with three modes.

where R is the covariance shared by all Xn and C is the projec-
tion tensor which multilinearly transforms the latent tensor Zn.
Like the transition tensor A, the projection tensor C is factoriz-
able, i.e., mat(C) = C(M) ⊗ · · · ⊗ C(1). See Figure 2 for an
illustration of the MLDS.

By vectorizing each Xn and Zn, the MLDS becomes an LDS
with factorized transition and projection matrices mat(A) and
mat(C). For the LDS, the transition and projection operators are
not factorizable in general [2]. The factorizations of A and C
for the MLDS not only allow for a generalized dimensionality

reduction of tensors but exponentially reduce the number of parameters of the transition and projec-
tion operators from |ALDS| + |CLDS| =

∏M
m=1 J

2
m +

∏M
m=1 ImJm down to |AMLDS| + |CMLDS| =∑M

m=1 J
2
m +

∑M
m=1 ImJm.

4.2 Parameter estimation

Given a sequence of observations X1, . . . ,XN , we wish to fit the MLDS model by estimating
θ = (U0,Q0,Q,A,R,C). Because the MLDS model contains latent variables Zn, we cannot di-
rectly maximize the likelihood of the data with respect to θ. The EM algorithm circumvents this
difficulty by iteratively updating (E(Z1), . . . ,E(ZN )) and θ in an alternating manner until the ex-
pected, complete likelihood of the data converges [5]. The normal distribution of tensors (3) will
facilitate matrix and vector computations rather than compel us to work directly with tensors. In
particular, we can express the complete likelihood of the MLDS model as

L (θ | Z1,X1, . . . ,ZN ,XN ) = L (vec θ | vecZ1, vecX1, . . . , vecZN , vecXN ) , (10)
where vec θ = (vecU0,matQ0,matQ,matA,matR,matC). It follows that the vectorized MLDS
is an LDS that inherits the Kalman filter updates for the E-step and the M-step for all parameters
except matA and matC. See [6] for the EM algorithm of the LDS.

Because A and C are factorizable, an alternative to the standard LDS updates is required. We
locally maximize the expected, complete log-likelihood by computing the gradient with respect to
the vector v = [vecC(1)T · · · vecC(M)T]T ∈ R

∑
m ImJm , which is obtained by concatenating the

vectorizations of the projection matrices C(m). The expected, complete log-likelihood (with terms
constant with respect to C deleted) can be written as

l(v) =tr
{

Ωmat(C)
[
Ψmat(C)

T − 2ΦT
]}

, (11)

where Ω = mat(R̂)−1, Ψ =
∑N

n=1 E(vecZnvecZT
n), and Φ =

∑N
n=1 vec (Xn)E(vecZn)T. Now

let k correspond to some C(m)
ij and let ∆ij ∈ RIm×Jm be the indicator matrix that is one at the

(i, j)th entry and zero elsewhere. The gradient∇l(v) ∈ R
∑

m ImJm is given elementwise by

∇l(v)k = 2tr
{

Ω∂vkmat(C)
[
Ψmat(C)

T − ΦT
]}

, (12)

where ∂vkmat(C) = C(M)⊗· · ·⊗∆ij ⊗· · ·⊗C(1) [1]. If m = M , then we can exploit the sparsity
of ∂vkmat(C) by computing the trace of the product of two submatrices each with

∏
n6=M In rows

and
∏

n 6=M Jn columns:

∇l(v)k = 2tr
{[
C(M−1) ⊗ · · · ⊗ C(1)

]T
Λij

}
, (13)

where Λij is the submatrix of Ω [mat(C) Ψ− Φ] with row indices (1, . . . ,
∏

n6=M In) shifted by∏
n 6=M In(i− 1) and column indices (1, . . . ,

∏
n 6=M Jn) shifted by

∏
n 6=M Jn(j − 1). If m 6= M ,

then the ordering of the modes can be replaced by 1, . . . ,m− 1,m+ 1, . . . ,M,m and the rows and
columns of Ω [mat(C) Ψ− Φ] can be permuted accordingly. In other words, the original tensors Xn

are “rotated” so that the mth mode becomes the M th mode.

The M-step for A can be computed in a manner analogous to that of C by replacing I by J , replacing
mat(C) by mat(A), and substituting v = [vec(A(1))T · · · vec(A(M))T]T, Ω = mat(Q)

−1, Ψ =∑N−1
n=1 E

[
vec(Zn) vec(Zn)

T
]
, and Φ =

∑N−1
n=1 E

[
vec(Zn+1) vec(Zn)

T
]

into (11).
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4.3 Special cases of the MLDS and their relationships to existing models

It is clear that the MLDS is exactly an LDS in the case M = 1. Certain constraints on the MLDS
also lead to generalizations of factor analysis, probabilistic principal components analysis (PPCA),
the CP decomposition, and the matrix factorization model of collaborative filtering (MF). Let p =∏M

m=1 Im and q =
∏M

m=1 Jm. If A = 0, U0 = 0, and Q0 = Q, then the Xn of the MLDS become
independent and identically distributed draws from the multilinear Gaussian distribution. Setting
mat(Q) = Idq and mat(R) to a diagonal matrix results in a model that reduces to factor analysis
in the case M = 1. A further constraint on R, mat(R) = ρ2Idp, yields a multilinear extension of
PPCA. Removing the constraints on R and forcing mat(Zn) = Idq for all n results in a probabilistic
CP decomposition in which the tensor elements have general covariances. Finally, the constraint
M = 2 yields a probabilistic MF.

5 Experimental results

To determine how well the MLDS could model tensor time series, the fits of the MLDS were com-
pared to those of the LDS for both synthetic and real data. To avoid unnecessary complexity and
highlight the difference between the two models—namely, how the transition and projection oper-
ators are defined—the noises in the models are isotropic. The MLDS parameters are initialized so
that U0 is drawn from the standard normal distribution, the matricizations of the covariance ten-
sors are identity matrices, and the columns of each A(m) and C(m) are the first Jm eigenvectors of
singular-value-decomposed matrices with entries drawn from the standard normal distribution. The
LDS parameters are initialized in the same way by setting M = 1.

The prediction error and convergence in likelihood were measured for each dataset. For the
synthetic dataset, model complexity was also measured. The prediction error εMn of a given
model M for the nth member of a tensor time series X1, . . . ,XN is the relative Euclidean dis-
tance

∣∣∣∣Xn − XMn
∣∣∣∣ / ||Xn||, where ||·|| = ||vec(·)||2. Each estimate XMn is given by XMn =

vec−1I

(
mat
(
CM

)
mat
(
AM

)n
vec
(
E
[
ZMNtrain

]))
, where E

[
ZMNtrain

]
is the estimate of the latent state

of the last member of the training sequence. The convergence in likelihood of each model is deter-
mined by monitoring the marginal likelihood as the number of EM iterations increases. Each model
is allowed to run until the difference between consecutive log-likelihood values is less than 0.1%
of the latter value. Lastly, the model complexity is determined by observing how the likelihood
and prediction error of each model vary as the model size |θM| increases. Aside from the model
complexity experiment, the LDS latent dimensionality is always set to the smallest value such that
the number of parameters of the LDS is greater than or equal to that of the MLDS.

5.1 Results for synthetic data

The synthetic dataset is an MLDS with dimensions I = (7, 11), J = (3, 5), and N = 1100 and
parameters initialized as described in the first paragraph of this section. For the prediction error and
convergence analyses, the latent dimensionality of the MLDS for fitting was set to J = (3, 5) as
well. Each model was trained on the first 1000 elements and tested on the last 100 elements of the
sequence. The results are shown in Figure 3. According to Figure 3(a), the prediction error of MLDS
matches that of the true model and is below that of the LDS. Furthermore, the MLDS converges to
the likelihood of the true model, which is greater than that of the LDS (see Figure 3(b)). As for
model complexity, the model size needed for the MLDS to match the likelihood and prediction error
of the true model is much smaller than that of the LDS (see Figure 3(c) and (d)).

5.2 Results for real data

We consider the following datasets:
SST: A 5-by-6 grid of sea-surface temperatures from 5◦N, 180◦W to 5◦S, 110◦W recorded hourly
from 7:00PM on 4/26/94 to 3:00AM on 7/19/94, yielding 2000 epochs [7].
Tesla: Opening, closing, high, low, and volume of the stock prices of 12 car and oil companies
(e.g., Tesla Motors Inc.), from 6/29/10 to 5/10/13 (724 epochs).
NASDAQ-100: Opening, closing, adjusted-closing, high, low, and volume for 20 randomly-
chosen NASDAQ-100 companies, from 1/1/05 to 12/31/09 (1259 epochs).
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Figure 3: Results for synthetic data. Prediction error εMn =
∣∣∣∣Xn − XM

n

∣∣∣∣ / ||Xn|| is shown as a function of
the time slice n in (a), convergence of marginal log-likelihood is shown in (b), marginal log-likelihood as a
function of model size is shown in (c), and cumulative prediction error

∑Ntrain+Ntest
n=Ntrain+1

εMn as a function of model
size is shown in (d) for LDS, MLDS, and the true model.

1850 1900 1950 2000
0

20

40

60

Time slice

E
rr

o
r

 

 

LDS

MLDS

(a) SST

705 710 715 720
0.2

0.4

0.6

0.8

1

Time slice

E
rr

o
r

 

 

LDS

MLDS

(b) Tesla

1210 1230 1250
0.2

0.4

0.6

0.8

1

Time slice

E
rr

o
r

 

 

LDS

MLDS

(c) NASDAQ-100

1050 1100 1150
0

50

100

150

Time slice

E
rr

o
r

 

 

LDS

MLDS

(d) Video

5 10 15 20 25
−8

−6

−4
x 10

4

Number of EM iterations

L
o

g
−

lik
e

lih
o

o
d

 

 

LDS

MLDS

(e) SST

10 20 30 40
−8

−6

−4

−2
x 10

4

Number of EM iterations

L
o

g
−

lik
e

lih
o

o
d

 

 

LDS

MLDS

(f) Tesla

20 40 60
−3

−2

−1

0
x 10

5

Number of EM iterations

L
o

g
−

lik
e

lih
o

o
d

 

 

LDS

MLDS

(g) NASDAQ-100

20 40 60
−1.5

−1

−0.5
x 10

5

Number of EM iterations

L
o

g
−

lik
e

lih
o

o
d

 

 

LDS

MLDS

(h) Video

Figure 4: Results for LDS and MLDS applied to real data. The first row corresponds to prediction error εMn
as a function of the time slice n, while the second corresponds to convergence in log-likelihood. Sea-surface
temperature, Tesla, NASDAQ-100, and Video results are given by the respective columns.

Video: 1171 grayscale frames of ocean surf during low tide. This dataset was chosen because it
records a quasiperiodic natural scene.

For each dataset, MLDS achieved higher prediction accuracy and likelihood than LDS. For the SST
dataset, each model was trained on the first 1800 epochs; occlusions were filled in using linear
interpolation and refined with an extra step during the learning that replaced the estimates of the
occluded values by the conditional expectation given all the training data. For results when the
MLDS dimensionality is set to (3, 3), see Figure 4(a) and (e). For the Tesla dataset, each time series
((X1)ij , . . . , (XN )ij) were normalized prior to learning by subtracting by the mean and dividing by
the standard deviation. Each model was trained on the first 700 epochs. See Figure 4(b) and (f) for
results when the MLDS dimensionality is set to (5, 2). For the NASDAQ-100 dataset, each model
was trained on the first 1200 epochs. The data were normalized in the same way as with the Tesla
dataset. For results when the MLDS dimensionality is set to (10, 3), see Figure 4(c) and (g). For the
Video dataset, a 100-by-100 patch was selected, spatially downsampled to a 10-by-10 patch for each
frame, and normalized as before. Each model was trained on the first 1000 frames. See Figure 4(d)
and (h) for results when the MLDS dimensionality is set to (5, 5).

6 Related work

Several existing models can be fitted to tensor time series. If each tensor is “vectorized”, i.e., reex-
pressed as a vector so that each element is indexed by a single positive integer, then an LDS can be
applied [8, 6]. An obvious limitation of the LDS for modeling tensor time series is that the tensor
structure is not preserved. Thus, it is less clear how the latent vector space of the LDS relates to the
various tensor modes. Further, one cannot postulate a latent dimension for each mode as with the
MLDS. The net result, as we have shown, is that the LDS requires more parameters than the MLDS
to model a given system (assuming it does have tensor structure).

7



Dynamic tensor analysis (DTA) and Bayesian probabilistic tensor factorization (BPTF) are explicit
models of tensor time series [9, 10]. For DTA, a latent, low-dimensional “core” tensor and a set of
projection matrices are learned by processing each member Xn ∈ RI1×···×IM of the sequence as
follows. For each mode m, the tensor is flattened into a matrix X

(m)
n ∈ R(

∏
k 6=m Ik)×Im and then

multiplied by its transpose. The result X(m)T
n X

(m)
n is added to a matrix S(m) that has accumulated

the flattenings of the previous n − 1 tensors. The eigenvalue decomposition UΛUT of the updated
S(m) is then computed and the mth projection matrix is given by the first rank

(
S(m)

)
columns of

U . After this procedure is carried out for each mode, the core tensor is updated via the multilinear
transformation given by the Tucker decomposition. Like the LDS, DTA is a sequential model. An
advantage of DTA over the LDS is that the tensor structure of the data is preserved. A disadvantage
is that there is no straightforward way to predict future terms of the tensor time series. Another
disadvantage is that there is no mechanism that allows for arbitrary noise relationships among the
tensor elements. In other words, the noise in the system is assumed to be isotropic.

Other families of isotropic models have been devised that “tensorize” the time dimension by con-
catenating the tensors in the time series to yield a single new tensor with an additional temporal
mode. These models include multilinear principal components analysis [11], the memory-efficient
Tucker algorithm [12], and Bayesian tensor analysis [13]. For fitting to data, such models rely on
alternating optimization methods, such as alternating least squares, which are applied to each mode.

BPTF allows for prediction and more general noise modeling than DTA. BPTF is a mul-
tilinear extension of collaborative filtering models [14, 15, 16] that concatenates the mem-
bers of the tensor time series (Xn),Xn ∈ RI1×···×IM , to yield a higher-order tensor R ∈
RI1×···×IM×K , where K is the sequence length. Each element of R is independently distributed
as Ri1···iMk ∼ N (〈u(1)i1

, . . . , u
(M)
iM

, Tk〉, α−1), where 〈·, . . . , ·〉 denotes the tensor inner product
and α is a global precision parameter. Bayesian methods are then used to compute the canonical-
decomposition/parallel-factors (CP) decomposition of R: R =

∑R
r=1 u

(1)
r ◦· · ·◦u(M)

r ◦Tr, where ◦ is
the tensor outer product. Each u(m)

r is independently drawn from a normal distribution with expec-
tation µm and precision matrix Λm, while each Tr is recursively drawn from a normal distribution
with expectation Tr−1 and precision matrix ΛT . The parameters, in turn, have conjugate prior distri-
butions whose posterior distributions are sampled via Markov-chain Monte Carlo for model fitting.
Though BPTF supports prediction and general noise models, the latent tensor structure is limited.

Other models with anisotropic noise include probabilistic tensor factorization (PTF) [17], tensor
probabilistic independent component analysis (TPICA) [18], and generalized coupled tensor factor-
ization (GCTF) [19]. As with BPTF, PTF and TPICA utilize the CP decomposition of tensors. PTF
is fit to tensor data by minimizing a heuristic loss function that is expressed as a sum of tensor inner
products. TPICA iteratively flattens the tensor of data, executes a matrix model called probabilistic
ICA (PICA) as a subroutine, and decouples the factor matrices of the CP decomposition that are em-
bedded in the “mixing matrix” of PICA. GCTF relates a collection of tensors by a hidden layer of
disconnected tensors via tensor inner products, drawing analogies to probabilistic graphical models.

7 Conclusion

We have proposed a novel probabilistic model of tensor time series called the multilinear dynamical
system (MLDS), based on a tensor normal distribution. By putting tensors and multilinear operators
in bijective correspondence with vectors and matrices in a way that preserves tensor structure, the
MLDS is formulated so that it becomes an LDS when its components are vectorized and matricized.
In matrix form, the transition and projection tensors can each be written as the Kronecker product of
M smaller matrices and thus yield an exponential reduction in model complexity compared to the
unfactorized transition and projection matrices of the LDS. As noted in Section 4.3, the MLDS gen-
eralizes the LDS, factor analysis, PPCA, the CP decomposition, and low-rank matrix factorization.
The results of multiple experiments that assess prediction accuracy, convergence in likelihood, and
model complexity suggest that the MLDS achieves a better fit than the LDS on both synthetic and
real datasets, given that the LDS has the same number of parameters as the MLDS.
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