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Abstract— We consider a single-pursuer-multiple-evader
pursuit-evasion game in which a team of evaders aims to delay
the capture by a faster pursuer. We extend our previous open-
loop formulation (and its solution) of the game to incorporate
more realistic settings: a pursuer with uncertain position and
evaders with limited turning rates. The formulation provides
a guaranteed lower bound on the team survival time. The
survival time performance of the proposed approach is eval-
uated through extensive simulations and compared to that of
the existing approaches. It is shown to be highly effective even
when the evaders can not detect the pursuer. A noticeable trend
of potentially practical importance is that larger teams benefit
more from an increase in turning rates than smaller teams.

I. INTRODUCTION
The capabilities of autonomous vehicles such as un-

manned aerial vehicles (UAVs) and unmanned ground ve-
hicles (UGVs) have been drastically improved in the past
decade. It is now possible for a team of autonomous ve-
hicles to accomplish tasks such as cooperative information
gathering [1], which require a high level of communication
and collaboration from all members of the team. In some
of these applications it might be necessary for the team
of autonomous agents to be deployed in an adversarial
environment where hostile agents can attack the members
of the team. In these scenarios, the team must be able to
respond promptly to the presence of the hostile agents to
enhance its chance of survival.

When the team is facing a single hostile agent, the sce-
nario can be formulated as a single-pursuer-multiple-evader
pursuit-evasion game. Extensive literature exists with various
formulations of this game with different objective functions,
information patterns, and capabilities of the players. For
example, in [2] the evaders aim to maximize the time-
minimal distance to a pursuer with limited sensing range;
in [3] the evaders use a behavior-based approach to evade
the pursuer as a herd; in [4] each of the evaders aims to
minimize its own chance of being the closest evader to a
hidden pursuer. A good overview on the different objective
functions used for single-pursuer-multiple-evader pursuit-
evasion games is provided in [5].

In this work, we focus on a special case of the single-
pursuer-multiple-evader pursuit-evasion game where the
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evaders are trying to evade a faster pursuer for as long as
possible as a team. This problem is coined as the successive
pursuit problem by Breakwell et al. in [6]. It has been
shown that in the fixed-sequence variant of the game, where
the pursuer must capture the evaders in a pre-determined
sequence known to the evaders, the optimal trajectories of the
evaders are straight lines. It has also been shown that if the
pursuer is free to choose any capture sequence, the optimal
trajectories for the evaders must in general be solved by
dynamic programming: an approach that is hardly applicable
for a team with more than 2 evaders due to computational
intractability.

In [7], Chikrii et al. formulate the fixed-sequence prob-
lem as a directional optimization problem and are able to
compute the optimal headings of a team of 3 evaders by
solving the optimization problem numerically. Very recently
in [8], Belousov et al. have proposed a way to convert
the directional optimization problem into a root searching
problem which can be solved very efficiently even for a
team with a large number of evaders. The fixed-sequence
problem is formulated to be conservative towards the pursuer;
it provides the pursuer with a capture sequence that has a
guaranteed upper bound on the capture time of the team.
However, due to the unrealistic assumption that the pursuer
will disclose the capture sequence to the evaders, the fixed-
sequence formulation is not as useful to the evaders.

By adapting the framework of open-loop games proposed
by Takei et al. in [9] and Zhou et al. in [10], we have
proposed a sequence-free open-loop formulation of the suc-
cessive pursuit game that is conservative towards the evaders
in [11]. Although the resulting open-loop optimal trajectories
of the evaders are not always the same as the actual optimal
trajectories, when implemented iteratively with a small up-
date time the resulting team survival time is often very close
to the actual optimal for a 2-evader team.

In this work, we expand the formulation proposed in [11]
to handle uncertainties in the pursuer’s position and also
evaders with limited turning rates, both of which are practical
concerns which often arise in more realistic scenarios.

II. PRELIMINARIES

In this section, a concise introduction to the sequence-
free open-loop formulation for the team evasion problem
proposed in [11] is provided; the work in this paper is built
on this previously proposed framework.

Consider a pursuit-evasion game with N + 1 players: a
single pursuer and N evaders taking place in R2. The goal
of the pursuer is to capture all the evaders as soon as possible



while the goal of the team of evaders is to delay the capture
of the whole team, and hence the last evader, for as long
as possible. The case of interest here is when the pursuer is
faster than all evaders since if any of the evaders is faster
than the pursuer, the team can delay the capture indefinitely.

Throughout this paper, the subscript p is used to indicate
the pursuer and the subscript 1, . . . ,N are used for the N
evaders. The position of agent j at time t is denoted by
x j(t) ∈ R2. The joint position of the agents at time t is
denoted by X(t) = [xp(t),Xe(t)] where xp(t) denotes the po-
sition of the pursuer and Xe(t) = [x1(t), . . . ,xN(t)] denotes the
joint position of all the N evaders. The control of an agent as
a function of time is denoted by u(·) : R→R2. The direction
of u(t) indicates the direction of velocity of the agent at
time t and the length of u(t) indicates the ratio between the
speed of the agent at time t to its maximum speed. Following
this definition, the set of general admissible controls for an
agent is defined as U = {u(·)|‖u(t)‖ ≤ 1, t ∈ [0,∞)}. The
set of admissible joint controls for the N evaders is defined
by UN = {[u1(·), . . . ,uN(·)]|ui(·) ∈ U for i = 1, . . . ,N}. The
maximum speed of agent j is denoted by v j. We assume
that vp = 1 and vi < 1, for i= 1, . . . ,N, indicating that all the
evaders are slower than the pursuer. The agents have simple
motion dynamics that can be described by the following
differential equations:

ẋ j(t) = v ju j(t), for j = p,1, . . . ,N. (1)

In the open-loop formulation proposed in [11], the evaders
make the following assumptions when planning for their joint
control Ue(·)= [u1(·), . . . ,uN(·)]∈UN . The evaders plan their
joint control function at the beginning of the game and then
commit to it. The joint control is revealed to the pursuer and
the pursuer act optimally against the joint control.

The minimum time it takes for a pursuer starting at xp(0)
to capture the N evaders starting at Xe(0) with known joint
control Ue(·) in a specific capture sequence s = [s1, . . . ,sN ] is
defined to be fs(xp(0),Xe(0),Ue(·)). Since the actual capture
sequence the pursuer will take is unknown to the evaders,
the evaders aim to maximize the worst-case capture time of
all the possible capture sequences. The optimal open-loop
survival time of the team of evaders is therefore defined as:

τ
ol?(xp,Xe) = sup

Ue(·)∈UN
inf

s∈SN
fs(xp,Xe,Ue(·)), (2)

where s = [s1, . . . ,sN ] is a capture sequence of N evaders and
SN = {s|si ∈ N>0,si 6= s j for i 6= j,maxi si = N} is the set of
all possible capture sequences of N evaders. The maximizer
of the sup problem, Uol?

e (·), is the optimal open-loop joint
control of the evaders. For a specific Ue(·), the minimizer
of the inf problem, s?, can be solved by comparing the
minimum capture time of all the possible capture sequences.
It is worth noting that there can be multiple optimal capture
sequences for a given Ue(·).

It has been shown in [11] that the optimal open-loop
joint control for the evaders always belongs to the set
UΘe = {[u1(·), . . . ,uN(·)]|ui(·) = [cosθi,sinθi], i = 1, . . . ,N}
where Θe = [θ1, . . . ,θN ] ∈ RN is the joint heading of all

the evaders. In other words, the optimal open-loop controls
for the evaders are always constant headings with maximum
speeds. As a result the admissible joint control set can be
parameterized simply by the joint heading of the evaders
Θe. The optimal open-loop survival time can be written as:

τ
ol?(xp,Xe) = sup

Θe∈RN
inf

s∈SN
fs(xp,Xe,Θe). (3)

This is a finite-dimensional minimax problem that can be
solved numerically with non-linear optimization methods
such as sequential quadratic programming (SQP). The op-
timal open-loop joint control of the evaders with respect to
the initial condition of the game provides a guaranteed open-
loop survival time for the team.

III. PROBLEM FORMULATION

The goal of this work is to expand the previously pro-
posed open-loop formulation to handle uncertainties in the
pursuer’s position and evaders with limited turning rates to
accommodate more realistic scenarios. Firstly, the original
formulation requires that the exact position of the pursuer be
known to the evaders. In reality, the pursuer’s position must
be measured and estimated by the evaders and hence uncer-
tainties arise. We deal with a specific kind of uncertainty
where the pursuer can be anywhere within a circular disk
with a specific center and radius. Secondly, while the original
formulation assumes that the evaders have unlimited turning
rates, autonomous agents in practice, such as fixed-wing
aerial vehicles and wheeled ground vehicles, have limited
turning rates due to physical constraints. These vehicles are
often modeled as Dubins vehicles that travel in constant
speeds and have limited turning rates. The formulation is
modified so that the admissible control set of the evaders
reflects the limitation on the turning rates of the evaders.

The modified open-loop survival time of the cooperative
team evasion problem is defined as follows:

τ
ol?(D(xc,r),Xe,Θ

0
e ,Ω) =

sup
Θe(·)∈U

Ω,Θ0
e

inf
s∈SN

inf
xp∈D(xc,r)

fs(xp,Xe,Θ
0
e ,Θe(·)). (4)

The joint state of the evaders with finite turning rate is
specified by the current joint position Xe and the current
joint heading of N evaders Θ0

e = [θ 0
1 , . . . ,θ

0
N ]. Since Dubins

evaders always travel with constant speeds, it is sufficient
to use the heading of an evader as a function of time
θ(·) : R → R to specify the control of an evader. Given
a heading θ(·), the control u(·) can be generated via
u(·) = [cosθ(·),sinθ(·)]. The joint heading of the evaders
is denoted by Θe(·) = [θ1(·), . . . ,θN(·)]. Here, the evaders’
headings come with an additional turning rate constraint
despite sharing the same notation as in the previous section.
The admissible heading control set of a Dubins evader with
an initial heading θ 0 and a maximum turning rate ω is
defined as Uω,θ 0 = {θ(·)|θ(0) = θ 0, |θ̇(t)| ≤ ω for t > 0}.
The joint admissible Dubins control set for the N evaders is
defined as U

Ω,Θ0
e
= {[θ1(·), . . . ,θN(·)]|θi(·) ∈ U

ωi,θ
0
i

for i =
1, . . . ,N} with Ω = [ω1, . . . ,ωN ] being the joint maximum



turning rate of the N evaders. The minimum time it takes for
a pursuer starting at xp to capture the N evaders with joint
initial position Xe, joint initial heading Θ0

e , and joint heading
control Θe(·) according to the capture sequence s is denoted
by fs(xp,Xe,Θ

0
e ,Θe(·)). Note that (4) is a sup-inf-inf problem

with the inner-most inf problem being the pursuer picking its
position xp from the circular disk D(xc,r) = {xp|‖xp− xc‖ ≤
r}. In the inf problem over s∈ SN , the pursuer picks a capture
sequence that results in the minimum capture time given the
current positions and joint control of the evaders.

The inf over xp ∈ D(xc,r) in (4) comes after the inf over
s ∈ SN , implying that the evaders assume that the pursuer
can be at different positions within the disk when different
capture sequences are considered. Additionally, since the
sup over Θe(·) comes first, the pursuer’s decisions on the
capture sequence and the position are made after knowing
the exact joint control of the evaders. Both of these factors
contribute to the conservatism of this formulation towards the
evaders. As a result the optimal open-loop survival time, τol?,
is a lower bound on the team survival time. By following
the optimal open-loop joint control, Θol?

e (·), the evaders are
guaranteed to survive at least for τol? against an optimal
pursuer that can be anywhere within the disk D(xc,r).

IV. SOLUTION METHODS

In this section, the procedures used to solve the proposed
open-loop problem are presented in detail.

A. Single Parameter Dubins Path

The joint admissible Dubins control set U
Ω,Θ0

e
in the sup

problem in (4) is an infinite dimensional set containing all
the joint admissible Dubins heading controls. To solve (4)
efficiently, the search of the optimizer has to be restricted to
a finite-dimensional subset of U

Ω,Θ0
e
.

In Dubins’ seminal paper [12], it was pointed out that
the minimum length Dubins trajectory between two position-
heading pairs in R2 can be composed by two kinds of ele-
mentary paths: paths with curvatures equal to the maximum
curvature everywhere, and straight lines. In other words, the
admissible heading control set can be limited to {θ(·)|θ(0)=
θ 0, |θ̇(t)|=ω or 0, for t > 0} without affecting the optimal-
ity. Since the orientation at which an evader is captured does
not affect the team survival time, we choose to further limit
the individual admissible heading control set to the set:

Ûω,θ 0 = {θ(·)|θ(0) = θ
0,∃tc ≥ 0 such that

|θ̇(t)|= ω for t ∈ [0, tc) and θ̇(t) = 0 for t ∈ [tc,∞)}. (5)

An evader adopting a control in this set starts from the
initial heading θ 0, turns with maximum turning rate ω in
one direction for a finite amount of time tc and then keeps
in constant heading thereafter. For given θ 0 and ω , a heading
control in Ûω,θ 0 can be uniquely specified by the direction
of the turn and the goal heading φ = θ(tc). In this work,
the direction of the turn is picked to be the direction that
can reach the goal heading in the minimum amount of time.
Figure 1a shows a heading control θ(·) specified by an initial

(a) Heading control (b) Resulting trajectory

Fig. 1. Example of Dubins heading control and resulting trajectory

heading θ 0, a maximum turning rate ω , and a goal heading
φ . The turning direction is picked to be counter-clockwise
in this case. Figure 1b shows the resulting trajectory of an
evader adopting this heading control. Since the joint initial
heading Θ0

e and the joint maximum turning rate Ω are given
as a part of the initial condition, the joint heading control
within the set U

Ω,Θ0
e

can be parameterized by the joint goal
heading Φ = [φ1, . . . ,φN ] ∈ RN . With this parameterization
of the search space, the optimization problem in (4) can be
re-written as:

τ
ol?(D(xc,r),Xe,Θ

0
e ,Ω) =

sup
Φ∈RN

inf
s∈SN

inf
xp∈D(xc,r)

fs(xp,Xe,Θ
0
e ,Ω,Φ), (6)

where fs(xp,Xe,Θ
0
e ,Ω,Φ) is the minimum time it takes a

pursuer starting at xp to capture the evaders under the
prescribed parameters Xe, Θ0

e , Ω, Φ and s. We drop the
dependence on the maximum speeds of the players for
notational simplicity. Note that the search space for the sup
problem is now finite-dimensional. The optimal open-loop
joint goal heading of the evaders is defined as the optimizer
of (6) and denoted by Φol?(D(xc,r),Xe,Θ

0
e ,Ω).

B. Solving for the Optimal Open-loop Solution

To solve the optimization problem in (6),
infxp∈D(xc,r) fs(xp,Xe,Θ

0
e ,Ω,Φ) must be computed. For

the single evader case where the pursuer with maximum
speed vp can be anywhere within a circular disk D(xc,r),
and the evader with state and control specified by xe, θ 0,
ω , and φ , the minimum capture time t? is the minimum
positive real root of

‖xe(t?)− xc‖= vpt?+ r, (7)

where xe(·) denotes the resulting trajectory of the evader
given the prescribed parameters and heading control. The
computation of t? is simple if the capture happens after the
evader starts to travel in a straight line at time tc. As shown
in Fig. 2, at time tc the evader is at xe(tc) and will travel in
the direction of eφ = [cosφ ,sinφ ] for all t ≥ tc; the pursuer
can be anywhere within the disk D(xc,r+ vptc). A closed-
form solution for t? exists when xe(tc) /∈ D(xc,r+ vptc). For
cases where xe(tc) ∈D(xc,r+vptc), t? is smaller than tc and
must be solved with a root searching routine on (7).



Fig. 2. Minimum capture time of a Dubins path given a pursuer in a
circular disk

Algorithm 1 infxp∈D(xc,r0) fs(xp,Xe,Θ
0
e ,Ω,Φ)

1: τ ← 0, xp← xc, r← r0

2: for i = 1, . . . ,N do
3: xsi(·)← traj(xsi ,θ

0
si
,ωsi ,φsi)

4: xtra j(t)← xsi(t + τ), for t ∈ [0,∞)
5: τ ← τ +mincap(D(xp,r),xtra j(·))
6: if i = N then return τ

7: else
8: r← 0
9: xp← xsi(τ)

10: end if
11: end for

We introduce two routines: mincap(D(xc,r),xe(·)) re-
turns the minimum capture time it takes a pursuer that can
be anywhere within the disk D(xc,r) to capture an evader
traversing the trajectory xe(·); traj(xe,θ

0,ω,φ) returns
the trajectory of an evader starting at xe and follows the
heading control specified by θ 0, ω , and φ . With those two
routines, infxp∈D(xc,r0) fs(xp,Xe,Θ

0
e ,Ω,Φ) can be computed

by Algorithm 1 for a given capture sequence s = [s1, . . . ,sN ].
The radius of the pursuer disk is always set to zero once
the first evader is captured since the pursuer must be at
the capture position and must start pursuing the remaining
evaders from that position. Also, the algorithm proposed in
[11] is a special case of this algorithm with r0 = 0 and Ω=∞.

With the ability to efficiently compute the minimum team
survival time, the sup-inf-inf problem in (6) is now a sup-inf
problem in standard max-i-min form where the max player
is trying to maximize the point-wise minimum over a finite
number of continuous functions. There are N! functions cor-
responding to the N! possible capture sequences for a team of
N evaders. The minimax problem is then transformed into
a constrained non-linear optimization problem and solved
by sequential quadratic programming (SQP) routines. The
MATLAB function fminimax is used to transform and
solve the max-i-min problem.

C. Iterative Open-loop Approach against a Hidden Pursuer

In the open-loop (OL) approach, (6) is solved for the
open-loop joint optimal goal heading Φol?(D(xc,r),Xe,Θ

0
e)

where D(xc,r), Xe, and Θ0
e are the pursuer disk, joint evader

position, and joint evader heading taken from the initial
conditions of the game respectively. The evaders then keep
this joint heading until they are all captured. While this does

provide a guaranteed lower bound on the team survival time,
the survival time can be further improved by employing the
iterative open-loop (iOL) approach.

In the iOL approach, the evaders still solve (6) for the
optimizer Φol?(D(xc,r),Xe,Θ

0
e). However, the initial condi-

tions, D(xc,r),Xe, and Θ0
e , are taken from the most recent

state of the game instead of the initial state of the game.
The evaders only keep their joint goal heading for a pre-
determined amount of time before resolving (6) with the
most current state of the game and adjust their joint heading.
This iteration continues until all the evaders are captured. An
evader at xe is considered captured when xe ∈D(xc,r). At the
end of an iteration if no evader is inside the pursuer disk, the
radius of the disk is increased by vp∆t, which is the distance
the pursuer can travel within time ∆t; the center of the disk
xc is kept at the same position. If one or more of the evaders
are within the pursuer disk, the pursuer can choose to capture
one of the evaders within the disk. The center of the disk,
xc, is then moved to the capture point and the radius of the
disk is set to zero.

The resulting survival time of the team against a hidden
pursuer given initial states D(xc,r),Xe,Θ

0
e , and Ω is denoted

by τ iOL?(D(xc,r),Xe,Θ
0
e ,Ω). Unlike the visible pursuer case,

this survival time can be obtained without specifying a
heading control of the pursuer. Since the pursuer is hid-
den, the actual position of the pursuer within the disk
does not affect the actions of the evaders. The value of
τ iOL?(D(xc,r),Xe,Θ

0
e ,Ω) only depends on the actual cap-

ture sequence. The uncertainties in the pursuer’s position
introduce additional conservatism towards the evaders in the
open-loop formulation, the effect of which will be further
discussed in the next section.

V. RESULTS & DISCUSSIONS

We set the following parameters. The maximum speed of
the pursuer and the evaders are 1 and 0.25 units per second
respectively. The maximum turning rates of the evaders are
π/2 radians per second. The update time of the iterative
approaches, ∆t, is 0.01 second. It’s worth noting that our
formulation is able to handle a team of evaders with different
maximum speeds and maximum turning rates as long as
the pursuer is faster than all evaders. We choose the above-
mentioned to simulate a team of fixed-wing unmanned aerial
vehicles (UAVs) evading from a faster and more agile UAV.

A. Resulting Behavior

In this section, the resulting trajectories of the agents using
the iOL approach against a hidden pursuer are illustrated.
Figure 3 shows four snapshots taken from a simulation of
a team of evaders using the iOL approach against a hidden
pursuer. It’s important to note that the actual position and the
intended capture sequence of the pursuer are not revealed to
the evaders; they are shown in the figures to help visualizing
the intention of the players only.

The game starts at t = 0 (Fig. 3a); the first evader is
captured by the pursuer at the origin. Before this, the team
of evaders is not aware of the presence of the pursuer since



(a) t = 0 sec (b) t = 0.5 sec

(c) t = 0.7 sec (d) t = 0.8 sec

Fig. 3. Snapshots of a simulation. The dark triangle marks the position of
the pursuer and the solid blue circles mark the positions of the evaders. The
gray disk represents the pursuer disk D(xc,r) and the center of the disk is
marked by a cross. The solid lines are the trajectories of the players starting
from t = 0 while the dashed lines represent the planned future trajectories
of the players. The hollow circles are the predicted capture points of the
evaders. For clarity, only the predicted trajectories that are associated with
one of the optimal capture sequence are shown in the figures.

they can not detect it. After the first evader is captured, the
5 remaining evaders then know the pursuer and its position.
The evaders start to evade the pursuer using the iOL approach
with the pursuer disk centered at the origin with r = 0.
Figure 3b shows the state of the game at t = 0.5 sec. The
uncertainty in the pursuer’s position has grown with time
and the pursuer can now be anywhere within a circular disk
centered at the origin with r = 0.5. Figure 3c shows the state
of the game at t = 0.7 sec. An evader is captured at this time,
revealing the position of the pursuer to the team; the center
of the disk is moved to the capture point with its radius set
to 0. Figure 3d shows that at time t = 0.8 sec the center of
the disk is at the last known position of the pursuer and the
radius of the disk has been increased to 0.1. The resulting
trajectories of the rest of the game coincide with the predicted
trajectories shown in Fig. 3d.

B. Survival Time Performance Against a Hidden Pursuer

In this section, the survival time performance of the team
against a hidden pursuer is compared to that against a visible
pursuer. The initial positions of the evaders are sampled
uniformly from a unit square centered at the origin with the
initial headings set to be away from the origin. To simulate
a capture that happens at the origin at time t = 0, the initial
position of the pursuer is set to the origin and is known to the
evaders at the beginning of the game. The difference between

evading a visible pursuer and a hidden pursuer lies in how
the center and radius of the pursuer disk are updated. Against
a visible pursuer, the radius of the disk is always zero and
the center of the disk is moved to the actual pursuer position
at every update time. Against a hidden pursuer, when no
capture happens, the center of the disk is kept at the last
known position of the pursuer and the radius of the disk
increases with time according to the speed of the pursuer;
when a capture happens the center of the disk is moved to
the capture position with the radius set to zero.

In the simulations the pursuer uses a near optimal strategy
against the iOL evaders as proposed in [11]: At every update
time, the pursuer computes the optimal trajectory against
the current optimal open-loop trajectories of the evaders
assuming that the evaders will stick to their current plan.
The pursuer follows this open-loop optimal trajectory until
the next update time when the evaders update their joint
control. This pursuer strategy has been shown to be near
optimal against iOL evaders in [11]. The pursuer can capture
an evader when the evader is within or on the boundary
of the pursuer disk. When there are multiple such evaders
the pursuer can only choose to capture one of them. There
are two important implications of this capture mechanism.
Firstly, the actual position of the hidden pursuer does not
affect the team survival time since the actions of the evaders
only depend on the center and the radius of the pursuer disk.
Secondly, the resulting team survival time is a lower bound
of the minimum team survival time against a hidden pursuer.
This will be discussed in detail later in this section.

Figure 4 is the histogram of the ratio of the team survival
time against a hidden pursuer to the survival time against a
visible pursuer. The results are gathered from 500 different
initial conditions for a 3-evader team and a 5-evader team.
To measure the survival time ratio consistently, each initial
condition is simulated twice: once with a visible pursuer
and once with a hidden pursuer. The capture sequence taken
by the hidden pursuer is set to be the same as that of the
visible pursuer. The evaders do not know which sequence
the pursuer will take during the simulation. Note that in
Fig. 4a most of the initial conditions with 3 evaders have
a survival time ratio of 1, indicating that the team can often
survive roughly the same time against both a hidden pursuer
and a visible pursuer. As shown in Fig. 4b, the 5-evader
team achieves a survival time ratio of 1 in 200 out of the
500 initial conditions. (It is consistently above 0.9 for the
rest.) This high ratio demonstrates the effectiveness of the
iOL approach. Knowing the pursuer’s maximum speed, the
inability to detect the pursuer does not degrade the survival
time performance of the team against a near optimal pursuer
by much. This result also shows that the near optimal strategy
for the pursuer against iOL evaders proposed in [11] is very
close to the optimal because it achieves the lower bound of
the minimum team survival time most of the time.

Figure 4 also shows that against a hidden pursuer, the
survival time of the 5-evader team degrades more than that of
the 3-evader team. This is due to the additional conservatism
towards the evaders introduced by the uncertain pursuer
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Fig. 4. Distribution of the ratio of team survival time against a hidden
pursuer to the survival time against a visible pursuer.

Fig. 5. Averaged ratio of team survival time of different maximum turning
rates. N is the number of evaders in the team.

position in the open-loop formulation in (6). In the open-
loop formulation, the evaders plan their joint control with the
conservative assumption that the pursuer can be at different
positions within the pursuer disk when different capture
sequences are considered. A team with more evaders has
more capture sequences to consider and hence will act more
conservatively in response to a hidden pursuer compared to
a smaller team.

C. Effects of the Turning Rates on the Team Survival Time

To exam the effect of the maximum turning rates of
the evaders on the team survival time, 500 random initial
conditions are generated for teams with 2 to 5 evaders.
Each initial condition is simulated with the maximum turning
rates of the evaders being π/4, π/2, π , and 2π rad/sec. For
each team size, the average team survival time of different
turning rates are compared to that of the lowest turning rate,
π/4 rad/sec. As shown in Fig. 5, the team survival time
increases with the turning rates of the evaders. However,
this gain in survival time gradually diminishes as the turning
rate gets higher. This is to be expected since even a team
of evaders with unlimited turning rates will be captured in
finite time by a faster pursuer. Another trend to be noticed
from the result is that a bigger team benefits more in terms
of the team survival time from the increase in turning rates.

VI. CONCLUSION & FUTURE WORK

In this paper we have proposed an open-loop solution
to the single-pursuer-multiple-evader pursuit-evasion game

where the team of evaders with limited turning rates coop-
erate to delay the capture of the whole team by a hidden
pursuer that is faster than all evaders. Due to the additional
conservatism introduced by the uncertainties in the position
of the pursuer, the team survival time does degrade gradually
as the size of the team increases. However, the approach is
shown to be highly effective in that the team survival time
against a hidden pursuer is similar to that against a visible
pursuer. Also, the results demonstrate that a bigger team can
benefit more in terms of the team survival time from an
increase in the turning rate of the evaders.

In the future, the authors would like to improve the
computation time and scalability of the proposed approach
by approximating the nonlinear optimization problem with
a linear one and making use of the column generation tech-
nique in [13]. Another interesting direction is to investigate
evaders’ strategies under different objective functions such
as the sum or expected value of the survival time of all the
evaders.
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