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Abstract—The main purpose of this paper is to present a new
path planning framework, called directPath, aimed to handle
a priori environment knowledge efficiently. Our algorithm is an
expert system designed to specifically exploit that knowledge, and
then eventually collaborate with other frameworks in order to
improve overall path planning performances.

It performs a forward search with partial heuristic. It is
iterative and can return a partial but safe path when terminated
early. Moreover, unlike classical search algorithms, its design
allows a quick detection of unfeasible problems.

In this paper, we present the framework structure and
illustrate its performances and properties by simulations. We
will show that directPath can complete the planning task very
quickly, with only minor optimality loss.

I. INTRODUCTION

Since the 1980s, a tremendous amount of work has been
done on real-time path planning for autonomous mobile robots.
The classic formulation for a path planning problem is the
following : Given an initial position and orientation of an agent
and a goal position, a path planner will generate a continuous
free path starting at the initial position and orientation termi-
nating at the goal position, if such path exists, and report a
failure otherwise [1].

Two main approaches are used to deal with this classic path
planning problem. There are referred to as global and local
approaches.

Global approaches use a mapping of the entire accessible
environment to solve the path planning problem. That insures
the property of global convergence. The path planning problem
will be solved, if feasible. However, building and eventually
updating a global map is a heavy computational burden to
bear for a robot. That is one of the main challenges for
Simultaneous Localization And Mapping (SLAM), which is
currently heavily studied [2]–[4].

Local sensor-based path planning frameworks, on the other
hand, use latest sensor data to plan future actions in a reac-
tive/adaptive way. Most commonly used approaches include
potential field methods (also known as virtual forces [5] [6]),
behavior-based systems [7] [8] and fuzzy logic approaches [9]
[10].

Although they are usually much simpler to implement
than global ones, local planners may get trapped in a local
minimum and subsequently follow a diverging path or a loop,

while attempting to escape from it. Thus, it is not realistic
to rely only on local planners. As a result, researchers are
commonly combining different approaches to improve overall
performances [11].

Similarly, the directPath algorithm we present here can
be coupled with classical frameworks. Indeed, these aim to
be useful in real application cases, where we often have only
partial or no prior knowledge of the environment. As a result,
it led us toward planning frameworks which do not benefit
from such a priori knowledge when there is some, or at least
not efficiently.

Our algorithm is an expert system designed to specifically
exploit that knowledge, and then eventually collaborate with
other frameworks to optimize overall performances. It aims to
quickly detect unfeasible problems and to reduce computation
time.

II. PROBLEM FORMULATION

We are considering a standard path planning problem in
a known environment. In R2, given a starting point S, a
goal point G, and a set of obstacles O, find the minimum
length path P, string of points that connects S and G without
intersecting with any obstacle. Obstacles are closed polygons.
They can be either convex or non-convex.

To solve this problem, we present a new framework, called
directPath, which efficiently handles a priori environment
knowledge. It is able to complete the path planning task on
its own, or can be used as a support to other frameworks, in
a hybrid manner.

The main notations and functions used in directPath are
listed below :
s Current starting point, for a given iteration ;
g Current goal point, for a given iteration ;
G(c)cw Subgoal defined by (counter)clockwise wall-

following — Refer to Section III-A2 ;
−−→
AB Straight-line segment from point A to point B ;
AB Length of segment

−−→
AB ;

P = {P1, ... , Pn} Path, string of points, vertices of the
path from P1 to Pn, composed of
straight-lines segments

−−−−→
PiPi+1 ;

O = {O1, ... , Om} Set of obstacles in the environment ;
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Figure 1. Only two ways to go around an obstacle.

getIntersection(A,B,O) Returns a pair I = (I,O), where
• I is the closest of the intersec-
tion points between

−−→
AB and O

from point A,
• O is the associated obstacle, if
any.
Returns ∅ otherwise ;

defineSubGoals(s, g, I) Returns the set of subgoal op-
tions : SUBg = { Gcw ; Gccw } ;

chooseSubGoal(s, g,SUBg) Returns chosen subgoal : subg ;
update(s, g,P, I, subg) Returns s and g for next iteration

and extends the current path P ;
closestNeigh(A,O) Returns the closest safe position

around obstacle O from point A ;
wallFollow(A,O, dir) Returns next boundary position

of obstacle O, from point A.
Direction dir can be clockwise
(cw) or counterclockwise (ccw) ;

isV alid(A) Returns 1 if A is a walkable
state. Returns 0 otherwise.

III. FRAMEWORK DESCRIPTION

This paper aims to present a path planning framework which
efficiently benefits from environment knowledge and that can
quickly detect unfeasible problems.

We will discuss that directPath can either solve the
planning task on its own (Section IV) or be coupled with other
path planning frameworks, in a hybrid manner, to improve
overall path planning performances (Section V).

A. Framework structure
The directPath framework is built on a simple fact. When

one wants to go in a direction and encounters an obstacle,
there are only two options. It can go around the obstacle
clockwise, or counterclockwise. As illustrated in Figure 1, up
to two subgoals can be found, from which the obstacle is no
longer on the way. Ultimately, the path planning task can be
reduced to a succession of choices between subgoal options.
directPath uses that idea to produce a valid path. First, it

tries to go straight to the current goal, g. For any obstacle on its
way, subgoal options are generated and a choice is made. The
chosen subgoal becomes the new current goal to reach. The
previous one is saved and will be retrieved once the subgoal
will be reached. The algorithm iterates until the initial goal,
G, is reached. ALGORITHM 1 is directPath pseudo-code.

In the following, we describe in more details the main
functions called in directPath.
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Figure 2. Subgoals definition method : (a) wallFollow(Istart, O1, cw) ;
(b) SUBg = { Gcw ; Gccw }.

ALGORITHM 1
directPath(S,G,O)

1: s← S ; g ← G ; P = {S,G} ; // Initialization
2: while s 6= G do
3: I← getIntersection(s, g,O) ;
4: if I 6= ∅ then
5: SUBg ← defineSubGoals(s, g, I) ;
6: if SUBg = ∅ then
7: return P = ∅ ; // No valid path can be found
8: else
9: subg ← chooseSubGoal(s, g,SUBg) ;

10: end if
11: end if
12: (s, g,P)← update(s, g,P, I, subg) ;
13: end while
14: return P

1) getIntersection(s, g,O) : This function takes two
points s and g, and a set of obstacles O as inputs. It checks
whether or not −→sg intersects with any obstacles of O. It
returns a pair I = (Iobst, Oind), where Iobst is the closest
intersection point from s (as illustrated in Figure 2(a)). Oind

is the obstacle on the way. If no obstacle lies between s and
g, getIntersection() returns I = ∅.

2) defineSubGoals(s, g, I) : This function takes s, g and
I as inputs and returns the set of subgoal options : SUBg =
{ Gcw ; Gccw }. Details are shown in ALGORITHM 2.

Notice that the function takes I (and not O) as input. It
implies that only Oind (the first obstacle on the way) is
considered while defining subgoals (e.g., in Figure 2 case,
obstacle O2 is ignored). It means that once one reaches a
subgoal, it will be able to go straight from it to g if no other
obstacle is on the rest of the way. If there are, the algorithm
will iterate to reach g, and ultimately to reach the initial goal,
G. Refer to ALGORITHM 1.

In some cases, the wallFollow() function might fail to
find a valid subgoal. For instance, if wallFollow() takes the
agent outside of the environment boundaries, or in a non-
accessible location (e.g., a too narrow corridor). This is how
the algorithm detects unfeasible problems. If both clockwise
and counterclockwise wall-followings fail, directPath will
return an empty path : the obstacle on the way is unpassable.
Refer to lines 5-7 in ALGORITHM 1.



ALGORITHM 2
defineSubGoals(s, g, I)

1: Istart ← closestNeigh(Iobst, Oind) ;

2: Icw0 ← Istart ; k ← 0 ; // cw wall-following
3: repeat
4: Icwk+1 ← wallFollow(Icwk , Oind, cw) ; k ← k + 1 ;
5: until ( getIntersection(Icwk , g,O) = ∅

or /isV alid(Icwk ) )
6: if isV alid(Icwk ) then
7: Gcw ← Icwk ;
8: else
9: Gcw is undefined ;

10: end if

11: Iccw0 ← Istart ; k ← 0 ; // ccw wall-following
12: repeat
13: Iccwk+1 ← wallFollow(Iccwk , Oind, cw) ; k ← k + 1 ;
14: until ( getIntersection(Iccwk , g,O) = ∅

or /isV alid(Iccwk ) )
15: if isV alid(Iccwk ) then
16: Gccw ← Iccwk ;
17: else
18: Gccw is undefined ;
19: end if

20: return SUBg = { Gcw ; Gccw }

3) chooseSubGoal(s, g,SUBg) : This function takes s, g
and the set SUBg as inputs and returns the next subgoal to go
to : subg . When both Gcw and Gccw have been successfully
defined, we need to make a choice : Which subgoal should
we try to reach before heading again to g ?

Depending on the situation, this is performed either by the
use of a heuristic or by considering previous choices made.
For every obstacle, the first subgoal is always picked by
heuristic(). If more than one subgoal is needed to get pass
the same obstacle, then history() is used. Both sub-fuctions
are described below :

a) heuristic(s, g,SUBg) : This function takes s, g
and SUBg as inputs and returns a pair of path lengths
H = (Hcw ; Hccw). These lengths are estimates of the
euclidean length of paths {s,G(c)cw, g}, which we want to
minimize. They are computed as follows :

H(c)cw = l
(c)cw
1 + d(c)cw + l

(c)cw
2

Where l
(c)cw
1 = sG(c)cw and l

(c)cw
2 = G(c)cwg. d(c)cw is

presented in the next paragraph.
It turns out that l(c)cw1 is not sufficient to provide a good

estimate of the final length of {s,G(c)cw}. As illustrated in
Figure 3, it does not take into account that we have to go
around the obstacle to reach G(c)cw. d(c)cw is added to the
heuristic to solve that problem. It is defined as the maximal
distance we get away from −→sg during the wall-followings
performed in defineSubGoals(). It is an estimate of the

�

�

����

���

������

�����

��
��

��
��

��
���

��
���

(a)

�

�

���

������

����

��
��

��
��

��
���

��
���

���

����

(b)

Figure 3. Heuristic definition : (a) Definition of l(c)cw1 and l
(c)cw
2 ; (b)

Definition of d(c)cw .

penalty for having to go around the obstacle, instead of going
straight to G(c)cw. This is illustrated in Figure 3(b).

Simulations have shown this heuristic to be sufficient to pick
the best subgoal.

b) history() : This function takes previous choices
made as inputs and returns subg . When several subgoals are
needed to get pass the same obstacle, the algorithm makes
choices consistent with the previous ones.

For example, consider Figure 3(b) case. If we were to
choose Gccw (which is not optimal since Hcw < Hccw), we
would need to pick another subgoal afterwards to reach it.
Then directPath would keep getting pass the obstacle coun-
terclockwise, to provide consistency to the choosing strategy.
This avoids to get trapped in a local minimum, which, in our
case, would be a loop, a cyclic choices of the same subgoals.

In a maze, one will ultimately get out by always turning in
the same direction. Similarly, our strategy assure to get pass
any obstacle, if it can be.

Consequences of this approach in term of completeness
and optimality will be further discussed in CONCLUSIONS
(Section VI).

4) update(s, g,P, I, subg) : This function takes s, g, P, I
and subg as inputs. It returns s and g for the next iteration
(while loop line 2 of ALGORITHM 1). Eventually, it extends
the current path P.

Let us assume the current path is :

P = {S, wp1, . . .
s︷︸︸︷

wpk ,

g︷ ︸︸ ︷
wpk+1, wpk+2, . . . , G}

a) If I = ∅ : No obstacle lies between s and g. We only
have to increment current starting point s and goal point g.{

s ←− wpk+1

g ←− wpk+2



⇒ P = {S, wp1, . . . wpk,
s︷ ︸︸ ︷

wpk+1,

g︷ ︸︸ ︷
wpk+2, . . . , G}

b) If I 6= ∅ : An obstacle is on the way and a
subgoal subg ∈ {Gcw ; Gccw} has been returned by
chooseSubGoal(). In that case, the current starting point s
remains, subg is set as new current goal point and the path is
extended. {

s ←− wpk
g ←− subg

⇒ P = {S, wp1, . . .
s︷︸︸︷

wpk ,

g︷︸︸︷
subg, wpk+1, wpk+2, . . . , G}

B. Overview of framework properties

In the last section, we described the main functions called
in directPath. Here, we highlight the main properties of that
framework.

Most importantly, if the planning task is unfeasible,
directPath terminates as soon as the unpassable element
(e.g., an absolute barrier or a too narrow corridor) is en-
countered. If defineSubGoals() returns an empty set, the
algorithm stops and returns an empty path without wasting
any more time.

Moreover, the algorithm plans in a forward manner. Once
first segments of the path are returned, they will be on the
final path. Then, even if the rest of the path is computing, the
agent can start tracking the beginning of the path, without any
efficiency loss.

Finally, since it is completely built on geometry,
directPath is deterministic. This avoids problems that might
occur with biased random methods, in which randomness
sometimes produces unexpected long computation times.

In the next section, we present an empirical evaluation of
some properties and performances of directPath.

IV. EMPIRICAL EVALUATION

Simulations have been performed to illustrate and evaluate
two key performances of the framework : computation speed
and path efficiency. We used a basic scenario, described in
the following, to compare directPath with a standard A?

framework [12].

A. Simulation scenario

Given a 2 dimensional squared grid world (later referred to
as a field) and set of obstacles O, an agent has to find its way
between a starting point S and goal point and G. The field
is a room-like environment. The agent cannot go out of the
boundaries. Allowed actions are cardinal and diagonal moves.

In this scenario, agent shape is not considered : it is limited
to a simple dot, which gives a 2 dimensional problem (X
and Y coordinates, the agent orientation can be omitted due
to that assumption). This model is sufficient since obstacle
boundaries can be arbitrary expended to compensate for an
agent of nonzero size [13]. Moreover, the dimensional loss
doesn’t matter since we mainly want to compare performances
of directPath and A?.

Figure 4. Example of scenario : N = 250 and hval ≈ 0.35

Among others, we focus on two important parameters : the
number of walkable states in the field, N (the size of the state
space), and the heuristic value of a scenario, later referred to
as hval. It is defined as the ratio of the euclidean distance and
the length of the shortest path between S and G :

hval =
SG

length of the optimal path

Therefore, the smaller the hval, the harder the scenario is to
solve. If hval = 1, there is no obstacle between S and G.

Fields were extracted from an open repository of room
maps, mazes and random maps [14]. From 150 different maps,
we kept parts of different size (e.g., 20 by 20, 100 by 100,
...) to get a wide range of N values. S and G were picked
randomly. Path lengths are measured with diagonal moves
having cost

√
2 and cardinal ones having cost 1.

To ease the results analysis, we regrouped data points into
buckets. Each bucket represents an interval of N and hval
(e.g., 1.104 < N < 5.105 and 0.4 < hval < 0.5) and contains
at least 10 data points.

B. Framework evaluation

We evaluate directPath performances through two key
features : the average computation time to solve the path
planning problem, and the efficiency of the returned path, later
referred to as η. Simulation results are allocated into N and
hval buckets. Figures show mean values over the buckets.

Our framework is compared with a basic A? algorithm,
which uses euclidean distance to the goal as heuristic, no
tie-breaking rule and no embedded way of using a priori
information about obstacles shape and location.

Simulations were run with an Intel Core i7-3740QM,
2.70GHz CPU and 8GB RAM.

1) Computation time : Computation time results are pre-
sented in Figure 5.

The blue lines, associated to the left-hand Y-axis, represent
the mean computation time for directPath to solve the
problem. Red bars represent standard deviation over each
bucket. The green doted-lines, associated to the right-hand Y-
axis, represent the time ratio between directPath and A?.



Figure 5. Computation time for different hval and six classes of state space size N

When the ratio is smaller than one, directPath is faster than
A?.

From these results, we can say that directPath completes
fairy quickly. For instance, it takes no more than 0.4 second to
find a path in fields of 10000 states, even for the most difficult
scenario (when hval is very small).

Standard deviation is higher for difficult scenario. This is
mainly because we do not consider the optimal path length
of a scenario while allocating it in a bucket. In most difficult
scenario, path lengths can vary a lot, and so the computation
time. Optimal path length would be a pertinent third parameter
for further performances evaluation.

Naturally, both algorithms require more time when difficulty
increases (when N grows and hval drops). However, time
ratio illustrates how the computation time of both algorithms
evolves with scenario challenge. It shows that directPath
performs better, compared to A?, when N grows (up to 20
times faster when N > 105 ) ; but this benefit diminishes
with hval.

2) Path efficiency η : Another key feature of a path plan-
ning framework is the optimality of the paths it returns —
with respect to a given cost function. In our case, we want
to minimize the total length of the path. We define the path
efficiency η as :

η =
length of the optimal path

length of returned path

The optimal path length is obtained by using A?, which is
proven to be optimal [12]. So η provides a good metrix for
optimality.

Simulation results are presented in Figure 6.
As expected, the efficiency of directPath decreases with

the problem challenge. We mentioned in Section III that
suboptimality mainly comes from the decision making process.
So naturally, the more decisions directPath makes, the more
likely it is to return a suboptimal path.

However, Figure 6 shows a fairly small loss of optimality
(most of the time below 5%). The average efficiency of
returned paths remains close to 1, which correspond to the
optimal path returned by the A? algorithm.

We can also note that η seems higher when hval is very
small. This is because smaller hval scenario mainly come from

Figure 6. Path efficiency η for different hval and six classes of state space
size N

mazes, in which there are in general only few options to reach
the goal. Ultimately, if there were only one way to get to the
goal, directPath would necessarily return the optimal path,
since no suboptimal decisions can lead to the goal.

V. POSSIBLE HYBRID USE OF directPath

Simulations presented in the last section allow us to say that
directPath can provide valid paths quickly, with only small
optimality loss. In this section, we point out some possible
benefit for a hybrid use of directPath with other classical
frameworks.

A. Quick detection of unfeasible problems

As presented in Section III, a key property of directPath
design is its ability to quickly detect unfeasible problems.

This can be very useful when the state space size grows.
Indeed, for search algorithms like A?, time to detect unfeasi-
bility is at least of the order of the number of reachable states
from the starting point. Which can be huge.

B. Hybrid use with A?

Consider using directPath to obtain a succession of sub-
goals from S to G. Then, instead of asking A? to produce
the complete path, subdivide the planning task, asking for a
path to the first subgoal, and iterate until the initial goal G is
reached.



This is to say that we use a new (inconsistent) heuristic
in a A? framework. It would be the euclidean distance to
next subgoal. It can also be considered as a scale reduction
approach.

That would allow to deal with higher dimensional problems.
For instance directPath would return directions for X and
Y coordinates of the agent while A? would handle its shape
and orientation. However, it would inherit the suboptimality
of directPath.

C. Hybrid use with a potential field approach

Consider using the original path returned by directPath as
a guide to avoid local minimum in a potential field framework.

That could be very interesting in applications with complex
motion constrains (e.g., kinematics plus dynamics) and in
dynamic environments, both aspects well-handled by potential
field approaches.

These claims are no proof for a general benefit of using
directPath in hybrid frameworks. However, it seems fair
to say that further studies on this subject are worth being
considered.

VI. CONCLUSIONS

directPath aims to efficiently benefit from a priori envi-
ronment knowledge. Therefore, speed is a key feature of the
algorithm. We showed in Section IV that the path planning
task is completed fairly quickly. Moreover, directPath can
quickly detect unfeasible problems. The order of directPath
completion time is O(n × l), where n is the number of
obstacles and l the order of their perimeter. This has not be
discussed here because of space limitation. Eventually, this
would make it suitable for on-line planning.

However, it returns suboptimal paths. As presented in
Section III, this comes from both the subgoal defini-
tion method (defineSubGoals()) and the choosing strategy
(chooseSubGoal()). Indeed, when subgoals are defined, in
order to have simpler sub-problems to solve, we only consider
the first obstacle on the way and focus on getting pass this one.
That relative myopia can yield to suboptimal decisions. The
other main source of suboptimality is the use of history() to
choose a subgoal. However, this provides consistency to the
choosing strategy of directPath. Consistency is commonly
used in wall-following based approaches [15] [16] and is
known to be a good assurance for completeness (which is the
property of solving any feasible problem). It has been proven
for similar frameworks [17] [18]. Completeness of directPath
remains to be analytically proven. However, during the heavy
benchmarking we performed, it always succeeded in complete
the planning task, which makes us confident about directPath
completeness.

Finally, in Section V, we suggested potential benefits of
combining directPath with other frameworks. More gen-
erally, it might be worth considering to couple directPath
with any framework specially aimed to produce kinematic
constrained paths [19] [20].
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