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Abstract

The parameters of temporal models, such as
dynamic Bayesian networks, may be mod-
elled in a Bayesian context as static or atem-
poral variables that influence transition prob-
abilities at every time step. Particle filters
fail for models that include such variables,
while methods that use Gibbs sampling of
parameter variables may incur a per-sample
cost that grows linearly with the length of the
observation sequence. Storvik (2002) devised
a method for incremental computation of ex-
act sufficient statistics that, for some cases,
reduces the per-sample cost to a constant.
In this paper, we demonstrate a connection
between Storvik’s filter and a Kalman filter
in parameter space and establish more gen-
eral conditions under which Storvik’s filter
works. Drawing on an analogy to the ex-
tended Kalman filter, we develop and ana-
lyze, both theoretically and experimentally, a
Taylor approximation to the parameter pos-
terior that allows Storvik’s method to be ap-
plied to a broader class of models. Our exper-
iments on both synthetic examples and real
applications show improvement over existing
methods.

1. Introduction

Dynamic Bayesian networks are widely used to model
the processes underlying sequential data such as
speech signals, financial time series, genetic sequences,
and medical or physiological signals. State estimation
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The Extended Parameter Filter

Abstract

The parameters of temporal models such as
dynamic Bayesian networks may be viewed in
the Bayesian context as static or atemporal
variables that influence the transition proba-
bilities at every time step. Particle filters fail
for models that include such variables, while
methods that use Gibbs sampling of param-
eter variables may incur a per-sample cost
that grows linearly with the length of the ob-
servation sequence. Storvik (2002) devised a
method for incremental computation of ex-
act sufficient statistics that, for some cases,
reduces the per-sample cost to a constant. In
this paper, we demonstrate a connection be-
tween Storvik’s filter and a Kalman filter in
parameter space and establish more general
conditions under which it works. Drawing
on an analogy to the extended Kalman fil-
ter, we develop and analyze, both theoret-
ically and experimentally, a Taylor approx-
imation to the parameter posterior that al-
lows Storvik’s method to be applied to a
broader class of models. Our experiments
on both synthetic examples and real applica-
tions show improvement over existing meth-
ods.

1. Introduction

Dynamic Bayesian networks are widely used to model
the processes underlying sequential data such as
speech signals, financial time series, genetic sequences,
and medical or physiological signals. State estimation
or filtering—computing the posterior distribution over
the state of a partially observable Markov process from
a sequence of observations—is one of the most widely
studied problems in control theory, statistics and AI.
Exact filtering is intractable except for certain special
cases (linear–Gaussian models and discrete HMMs),
but approximate filtering using the particle filter (a se-
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Figure 1. A state-space model with static parameters θ.
X1:T are latent states, and Y1:T observations.

quential Monte Carlo method) is feasible in many real-
world applications (Arulampalam et al., 2002; Doucet
and Johansen, 2008). In the machine learning con-
text, model parameters may be represented by static
parameter variables that define the transition and sen-
sor model probabilities of the Markov process, but do
not themselves change over time (Figure 1). The pos-
terior parameter distribution (usually) converges to a
delta function at the true value in the limit of infinitely
many observations. Unfortunately, particle filters fail
for such models: the algorithm samples parameter val-
ues for each particle at time t= 0, but these remain
fixed; over time, the particle resampling process re-
moves all but one set of values; and these are highly
unlikely to be correct. The degeneracy problem is es-
pecially severe in high-dimensional parameter spaces,
whether discrete or continuous. Hence, although learn-
ing requires inference, the most successful inference al-
gorithm for temporal models is inapplicable.

Kantas et al. (2009); Carvalho et al. (2010) describe
several algorithms that have been proposed to solve
this degeneracy problem, but the issue remains open
because known algorithms either suffer from bias or
computational inefficiency. For example, the “artifi-
cial dynamics” approach (Liu and West, 2001) intro-
duces a stochastic transition model for the parameter
variables, allowing exploration of parameter space, but
this may result in biased estimates. Online EM algo-
rithms (Andrieu et al., 2005) provide only point esti-
mates of static parameters, may converge to local op-
tima, and are biased unless used with the full smooth-
ing distribution. The particle MCMC algorithm (An-

Figure 1. A state-space model with static parameters θ.
X1:T are latent states and Y1:T are observations.

or filtering—computing the posterior distribution over
the state of a partially observable Markov process from
a sequence of observations—is one of the most widely
studied problems in control theory, statistics and AI.
Exact filtering is intractable except for certain special
cases (linear–Gaussian models and discrete HMMs),
but approximate filtering using the particle filter (a se-
quential Monte Carlo method) is feasible in many real-
world applications (Arulampalam et al., 2002; Doucet
& Johansen, 2011). In the machine learning context,
model parameters may be represented by static pa-
rameter variables that define the transition and sen-
sor model probabilities of the Markov process, but do
not themselves change over time (Figure 1). The pos-
terior parameter distribution (usually) converges to a
delta function at the true value in the limit of infinitely
many observations. Unfortunately, particle filters fail
for such models: the algorithm samples parameter val-
ues for each particle at time t= 0, but these remain
fixed; over time, the particle resampling process re-
moves all but one set of values; and these are highly
unlikely to be correct. The degeneracy problem is es-
pecially severe in high-dimensional parameter spaces,
whether discrete or continuous. Hence, although learn-
ing requires inference, the most successful inference al-
gorithm for temporal models is inapplicable.

Kantas et al. (2009) and Carvalho et al. (2010) de-
scribe several algorithms that have been proposed to
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solve this degeneracy problem, but the issue remains
open because known algorithms either suffer from bias
or computational inefficiency. For example, the “ar-
tificial dynamics” approach (Liu & West, 2001) intro-
duces a stochastic transition model for the parameter
variables, allowing exploration of the parameter space,
but this may result in biased estimates. Online EM al-
gorithms (Andrieu et al., 2005) provide only point es-
timates of static parameters, may converge to local op-
tima, and are biased unless used with the full smooth-
ing distribution. The particle MCMC algorithm (An-
drieu et al., 2010) converges to the true posterior, but
requires computation growing with T , the length of
the data sequence.

The resample-move algorithm (Gilks & Berzuini, 2001)
includes Gibbs sampling of parameter variables—that
is, in Figure 1, P (θ | X1, . . . , XT ). This method re-
quires O(T ) computation per sample, leading Gilks
& Berzuini to propose a sampling rate proportional
to 1/T to preserve constant-time updates. Storvik
(2002) and Polson et al. (2008) observe that a fixed-
dimensional sufficient statistic (if one exists) for θ can
be updated in constant time. Storvik describes an al-
gorithm for a specific family of linear-in-parameters
transition models.

We show that Storvik’s algorithm is a special case of
the Kalman filter in parameter space and identify a
more general class of separable systems to which the
same approach can be applied. By analogy with the
extended Kalman filter, we propose a new algorithm,
the extended parameter filter (EPF), that computes
a separable approximation to the parameter poste-
rior and allows a fixed-dimensional (approximate) suf-
ficient statistic to be maintained. The method is quite
general: for example, with a polynomial approxima-
tion scheme such as Taylor expansion any analytic pos-
terior can be handled.

Section 2 briefly reviews particle filters and Storvik’s
method and introduces our notion of separable models.
Section 3 describes the EPF algorithm, and Section 4
discusses the details of a polynomial approximation
scheme for arbitrary densities, which Section 4.2 then
applies to estimate posterior distributions of static pa-
rameters. Section 5 provides empirical results compar-
ing the EPF to other algorithms. All details of proofs
are given in the supplementary material.

2. Background

In this section, we review state-space dynamical mod-
els and the basic framework of approximate filtering
algorithms.

2.1. State-space model and filtering

Let Θ be a parameter space for a partially observable
Markov process {Xt}t≥0 , {Yt}t≥0 as shown in Figure 1
and defined as follows:

X0 ∼ p(x0 |θ) (1)

Xt |xt−1 ∼ p(xt |xt−1, θ) (2)

Yt |xt ∼ p(yt |xt, θ) (3)

Here the state variables Xt are unobserved and the ob-
servations Yt are assumed conditionally independent of
other observations given Xt. We assume in this section
that states Xt, observations Yt, and parameters θ are
real-valued vectors in d, m, and p dimensions respec-
tively. Here both the transition and sensor models are
parameterized by θ. For simplicity, we will assume in
the following sections that only the transition model is
parameterized by θ; however, the results in this paper
can be generalized to cover sensor model parameters.

The filtering density p(xt | y0:t, θ) obeys the following
recursion:

p(xt |y0:t, θ) =
p(yt |xt, θ)p(xt |y0:t−1, θ)

p(yt |y0:t−1, θ)

=
p(yt |xt, θ)

p(yt |y0:t−1, θ)

∫
p(xt−1 |y0:t−1, θ)p(xt |xt−1, θ)dxt−1

(4)

where the update steps for p(xt | y0:t−1, θ) and p(yt |
y0:t−1, θ) involve the evaluation of integrals that are
not in general tractable.

2.2. Particle filtering

With known parameters, particle filters can approxi-
mate the posterior distribution over the hidden state
Xt by a set of samples. The canonical example is the
sequential importance sampling-resampling algorithm
(SIR) (Algorithm 1).

The SIR filter has various appealing properties. It is
modular, efficient, and easy to implement. The filter
takes constant time per update, regardless of time T ,
and as the number of particles N →∞, the empirical
filtering density converges to the true marginal poste-
rior density under suitable assumptions.

Particle filters can accommodate unknown parame-
ters by adding parameter variables into the state vec-
tor with an “identity function” transition model. As
noted in Section 1 this approach leads to degeneracy
problems—especially for high-dimensional parameter
spaces. To ensure that some particle has initial pa-
rameter values with bounded error, the number of par-
ticles must grow exponentially with the dimension of
the parameter space.



The Extended Parameter Filter

Algorithm 1: Sequential importance sampling-
resampling (SIR)

Input: N : number of particles;
y0, . . . , yT : observation sequence
Output: x̄1:N1:T

initialize
{
xi0
}

;
for t = 1, . . . , T do

for i = 1, . . . , N do
sample xit ∼ p(xt |xit−1);
wit ← p(yt |xit);

sample
{

1
N , x̄

i
t

}
←Multinomial

{
wit, x

i
t

}
;{

xit
}
←
{
x̄it
}

;

Algorithm 2: Storvik’s filter.

Input: N : number of particles;
y0, . . . , yT : observation sequence
Output: x̄1:N1:T , θ1:N

initialize
{
xi0
}

;
for t = 1, . . . , T do

for i = 1, . . . , N do
sample θi ∼ p(θ|xi0:t−1);
sample xit ∼ p(xt|xit−1, θi);
wi ← p(yt|xit);

sample
{

1
N , x̄

i
t

}
←Multinomial

{
wit, x

i
t

}
;{

xit
}
←
{
x̄it
}

;

2.3. Storvik’s algorithm

To avoid the degeneracy problem, Storvik (2002) mod-
ifies the SIR algorithm by adding a Gibbs sampling
step for θ conditioned on the state trajectory in each
particle (see Algorithm 2). The algorithm is devel-
oped in the SIS framework and consequently inherits
the theoretical guarantees of SIS. Storvik considers
unknown parameters in the state evolution model and
assumes a perfectly known sensor model. His analysis
can be generalized to unknown sensor models.

Storvik’s approach becomes efficient in an on-line set-
ting when a fixed-dimensional sufficient statistic St ex-
ists for the static parameter (i.e., when p(θ|x0:t) =
p(θ|St) holds). The important property of this algo-
rithm is that the parameter value simulated at time
t does not depend on the values simulated previously.
This property prevents the impoverishment of the pa-
rameter values in particles.

One limitation of the algorithm is that it can only
be applied to models with fixed-dimensional sufficient
statistics. However, Storvik (2002) analyze the suffi-
cient statistics for a specific family.

Storvik (2002) shows how to obtain a sufficient statis-
tic in the context of what he calls the Gaussian system
process, a transition model satisfying the equation

xt = FTt θ + εt, εt ∼ N(0,Q) (5)

where θ is the vector of unknown parameters with
a prior of N(θ0,C0) and Ft = F(xt−1) is a ma-
trix where elements are possibly nonlinear functions
of xt−1. An arbitrary but known observation model
is assumed. Then the standard theory states that
θ |x0:t ∼ N(mt,Ct) where the recursions for the mean
and the covariance matrix are as follows:

Dt = FTt Ct−1Ft + Q

Ct = Ct−1 −Ct−1FtD
−1
t FTt Ct−1

mt = mt−1 + Ct−1FtD
−1
t (xt − FTt mt−1) (6)

Thus, mt and Ct constitute a fixed-dimensional suffi-
cient statistic for θ.

These updates are in fact a special case of Kalman fil-
tering applied to the parameter space. Matching terms
with the standard KF update equations (Kalman,
1960), we find that the transition matrix for the KF
is the identity matrix, the transition noise covariance
matrix is the zero matrix, the observation matrix for
the KF is Ft, and the observation noise covariance
matrix is Q. This correspondence is of course what
one would expect, since the true parameter values are
fixed (i.e., an identity transition). See the supplemen-
tary material for the derivation.

2.4. Separability

In this section, we define a condition under which there
exist efficient updates to parameters. Again, we focus
on the state-space model as described in Figure 1 and
Equation (3). The model in Equation (3) can also be
expressed as

xt = fθ(xt−1) + vt

yt = g(xt) + wt (7)

for some suitable fθ, g, vt, and wt.

Definition 1. A system is separable if the transi-
tion function fθ(xt−1) can be written as fθ(xt−1) =
l(xt−1)Th(θ) for some l(·) and h(·) and if the stochas-
tic i.i.d. noise vt has log-polynomial density.

Theorem 1. For a separable system, there exist fixed-
dimensional sufficient statistics for the Gibbs density,
p(θ | x0:T ).

The proof is straightforward by the Fisher–Neyman
factorization theorem; more details are given in the
supplementary material.
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The Gaussian system process models defined in Equa-
tion (5) are separable, since the transition func-
tion FTt θ = (Ft)

T θ, but the property—and therefore
Storvik’s algorithm—applies to a much broader class
of systems. Moreover, as we now show, non-separable
systems may in some cases be well-approximated by
separable systems, constructed by polynomial density
approximation steps applied to either the Gibbs dis-
tribution p(θ | x0:t) or to the transition model.

3. The extended parameter filter

Let us consider the following model.

xt = fθ(xt−1) + vt; vt ∼ N(0,Σ) (8)

where x ∈ Rd,θ ∈ Rp and fθ(·) : Rd → Rd is a vector-
valued function parameterized by θ. We assume that
the transition function fθ may be non-separable. Our
algorithm will create a polynomial approximation to
either the transition function or to the Gibbs distribu-
tion, p(θ | x0:t).
To illustrate, let us consider the transition model
fθ(xt−1) = sin(θxt−1). It is apparent that this tran-
sition model is non-separable. If we approximate the
transition function with a Taylor series in θ centered
around zero

fθ(xt−1) ≈ f̂θ(xt−1) = xt−1θ −
1

3!
x3t−1θ

3 + . . . (9)

and use f̂ as an approximate transition model, the sys-
tem will become separable. Then, Storvik’s filter can
be applied in constant time per update. This Taylor
approximation leads to a log-polynomial density of the
form of Equation (12).

Our approach is analogous to that of the extended
Kalman filter (EKF). EKF linearizes nonlinear tran-
sitions around the current estimates of the mean and
covariance and uses Kalman filter updates for state
estimation (Welch & Bishop, 1995). Our proposed al-
gorithm, which we call the extended parameter filter
(EPF), approximates a non-separable system with a
separable one, using a polynomial approximation of
some arbitrary order. This separable, approximate
model is well-suited for Storvik’s filter and allows for
constant time updates to the Gibbs density of the pa-
rameters.

Although we have described an analogy to the EKF, it
is important to note that the EPF can effectively use
higher-order approximations instead of just first-order
linearizations as in EKF. In EKF, higher order approx-
imations lead to intractable integrals. The prediction

Algorithm 3: Extended Parameter Filter

Result: Approximate the Gibbs density
p(θ | x0:t, y0:t) with the log-polynomial
density p̂(θ | x0:t, y0:t)

Output: x̃1 . . . x̃N

initialize
{
xi0
}

and Si0 ← 0;
for t = 1, . . . , T do

for i = 1, . . . , N do
Sit = update(Sit−1, xt−1) ; // update

statistics for polynomial

approximation log(p̂(θ|x̄0:t−1, y0:t−1))
sample θi ∼ p̂(θ | x̄i0:t−1, y0:t−1) = p̂(θ | Sit) ;
sample xit ∼ p(xt | x̄it−1, θi) ;
wi ← p(yt | xit, θi);

sample
{

1
N , x̄

i
t, S̄

i
t

}
←Multinomial

{
wit, x

i
t, S

i
t

}
;{

xit, S
i
t

}
←
{
x̄it, S̄

i
t

}
;

integral for EKF

p(xt | y0:t−1) =

∫
p(xt−1 | y0:t−1)p(xt | xt−1)dxt−1

can be calculated for linear Gaussian transitions, in
which case the mean and the covariance matrix are
the tracked sufficient statistic. However, in the case of
quadratic transitions (or any higher-order transitions),
the above integral is no longer analytically tractable.

In the case of EPF, the transition model is the identity
transition and hence the prediction step is trivial. The
filtering recursion is

p(θ | x0:t) ∝ p(xt | xt−1, θ)p(θ | x0:t−1). (10)

We approximate the transition p(xt | xt−1, θ) with
a log-polynomial density p̂ (log-polynomial in θ), so
that the Gibbs density, which satisfies the recursions
in equation 10, has a fixed log-polynomial structure at
each time step. Due to the polynomial structure, the
approximate Gibbs density can be tracked in terms of
its sufficient statistic (i.e., in terms of the coefficients
of the polynomial). The log-polynomial structure is
derived in Section 4.2. Pseudo-code for EPF is shown
in Algorithm 3.

Note that the approximated Gibbs density will be
a log-multivariate polynomial density of fixed order
(proportional to the order of the polynomial ap-
proximation). Sampling from such a density is not
straightforward but can be done by Monte Carlo sam-
pling. We suggest slice sampling (Neal, 2003) or
the Metropolis-Hastings algorithm (Robert & Casella,
2005) for this purpose. Although some approximate
sampling scheme is necessary, sampling from the ap-
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proximated density remains a constant-time operation
when the dimension of p̂ remains constant.

It is also important to note that performing a poly-
nomial approximation for a p-dimensional parameter
space may not be an easy task. However, we can re-
duce the computational complexity of such approxima-
tions by exploiting locality properties. For instance, if
fθ(·) = hθ1,...,θp−1

(·) + gθp(·), where h is separable and
g is non-separable, we only need to approximate g.

In section 4, we discuss the validity of the approxima-
tion in terms of the KL-divergence between the true
and approximate densities. In section 4.1, we analyze
the distance between an arbitrary density and its ap-
proximate form with respect to the order of the poly-
nomial. We show that the distance goes to zero super-
exponentially. Section 4.2 analyzes the error for the
static parameter estimation problem and introduces
the form of the log-polynomial approximation.

4. Approximating the conditional
distribution of parameters

In this section, we construct approximate sufficient
statistics for arbitrary one–dimensional state space
models. We do so by exploiting log-polynomial ap-
proximations to arbitrary probability densities. We
prove that such approximations can be made arbitrar-
ily accurate. Then, we analyze the error introduced by
log-polynomial approximation for the arbitrary one–
dimensional model.

4.1. Taylor approximation to an arbitrary
density

Let us assume a distribution p (known only up to a
normalization constant) expressed in the form p(x) ∝
exp(S(x)), where S(x) is an analytic function on the
support of the distribution. In general we need a
Monte Carlo method to sample from this arbitrary
density. In this section, we describe an alternative,
simpler sampling method. We propose that with a
polynomial approximation P (x) (Taylor, Chebyshev
etc.) of sufficient order to the function S(x), we may
sample from a distribution p̂ ∝ exp(P (x)) with a sim-
pler (i.e. log-polynomial) structure. We show that the
distance between the distributions p and p̂ reduces to
0 as the order of the approximation increases.

The following theorem is based on Taylor approxima-
tions; however, the theorem can be generalized to han-
dle any polynomial approximation scheme. The proof
is given in the supplementary material.

Theorem 2. Let S(x) be a M + 1 times differen-
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Figure 2. Approximated PDFs to the order M .

tiable function with bounded derivatives, and let P (x)
be its M -th order Taylor approximation. Then the KL-
divergence between distributions p and p̂ converges to
0, super-exponentially as the order of approxima-
tion M →∞.

We validate the Taylor approximation approach for the
log-density S(x) = −x2+5 sin2(x). Figure 2 shows the
result for this case.

4.2. Online approximation of the Gibbs
density of the parameter

In our analysis, we will assume the following model.

xt = fθ(xt−1) + vt, vt ∼ N(0, σ2)

yt = g(xt) + wt, wt ∼ N(0, σ2
o)

The posterior distribution for the static parameter is

p(θ|x0:T ) ∝ p(θ)
T∏
t=1

p(xt|xt−1, θ).

The product term, which requires linear time, is the
bottleneck for this computation. A polynomial ap-
proximation to the transition function fθ(·) (the Tay-
lor approximation around θ = 0) is:

fθ(xt−1) = h(xt−1, θ) =

M∑
i=0

1

i!

dih(xt−1, θ
i)

dθ

∣∣
θ=0︸ ︷︷ ︸

Hi(xt−1)

θi +RM (θ)

=

M∑
i=0

Hi(xt−1)θi +RM (θ) = f̂(θ) +RM (θ)

where RM is the error for the M -dimensional Taylor
approximation. We define coefficients J ixt−1

to satisfy(∑M
i=0H

i(xt−1)θi
)2

= J2M
xt−1

θ2M + · · ·+ J0
xt−1

θ0.

Let p̂(θ | x0:T ) denote the approximation to p(θ | x0:T )
obtained by using the polynomial approximation to fθ
introduced above.
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Theorem 3. p̂(θ | x0:T ) is in the exponential family
with the log-polynomial density

log p(θ)+ (12)

θ1

...
θM

θM+1

...
θ2M



T

︸ ︷︷ ︸
T (θ)T

.



1
σ2

∑T
k=1 xkH

1(xk−1)− 1
2σ2

∑T
k=1 J

1
xk−1

...
1
σ2

∑T
k=1 xkH

M (xk−1)− 1
2σ2

∑T
k=1 J

M
xk−1

− 1
2σ2

∑T
k=1 J

M+1
xk−1

...

− 1
2σ2

∑T
k=1 J

2M
xk−1


︸ ︷︷ ︸

η(x0,...,xt)

The proof is given in the supplementary material.

This form has finite dimensional sufficient statistics.
Standard sampling from p(θ | x0:t) requires O(t) time,
whereas with the polynomial approximation we can
sample from this structured density of fixed dimension
in constant time (given that sufficient statistics were
tracked). We can furthermore prove that sampling
from this exponential form approximation is asymp-
totically correct.

Theorem 4. Let pT (θ | x0:T ) denote the Gibbs distri-
bution and p̂T (θ | x0:T ) its order M exponential family
approximation. Assume that parameter θ has support
Sθ and finite variance. Then as M →∞, T →∞, the
KL divergence between pT and p̂T goes to zero.

lim
M,T→∞

DKL(pT || p̂T ) = 0

The proof is given in the supplementary material.
Note that the analysis above can be generalized to
higher dimensional parameters. The one dimensional
case is discussed for ease of exposition.

In the general case, an order M Taylor expansion for a
p dimensional parameter vector θ will have Mp terms.
Then each update of the sufficient statistics will cost
O(Mp) per particle, per time step, yielding the total
complexity O(NTMp). However, as noted before, we
can often exploit the local structure of fθ to speed up
the update step. Notice that in either case, the update
cost per time step is fixed (independent of T ).

5. Experiments

The algorithm is implemented for three specific cases.
Note that the models discussed do not satisfy the
Gaussian process model assumption of Storvik (2002).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−3

θ

p
d

f

 

 
T=16

T=32

T=64

T=128

T=256

T=512

T=1024

Figure 3. Sinusoidal dynamical model (SIN). Shrinkage of
the Gibbs density p(θ | x0:T ) with respect to time duration
T . Note that as T grows, the Gibbs density converges to
the true parameter value.
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Figure 4. Sinusoidal dynamical model (SIN). (a) Conver-
gence of the approximate densities to the Gibbs density
p(θ | x0:1024) with respect to the approximation order M ;
(b) KL-divergence DKL(p | p̂) with respect to duration T
and approximation order M .

5.1. Single parameter nonlinear model

Consider the following model with sinusoid transition
dynamics (SIN):

xt = sin(θxt−1) + vt, vt ∼ N(0, σ2)

yt = xt + wt, wt ∼ N(0, σ2
obs) (13)

where σ = 1, σobs = 0.1 and the Gaussian prior for
parameter θ is N(0, 0.22). The observation sequence is
generated by sampling from SIN with true parameter
value θ = 0.7.

Figure 3 shows how the Gibbs density p(θ | x0:t)
shrinks with respect to time, hence verifying identi-
fiability for this model. Notice that as T grows, the
densities concentrate around the true parameter value.

A Taylor approximation around θ = 0 has been applied
to the transition function sin(θxt). Figure 4(a) shows
the approximate densities for different polynomial or-
ders for T = 1024. Notice that as the polynomial
order increases, the approximate densities converge to
the true density p(θ | x0:1024).

The KL-divergence DKL(p || p̂) for different polyno-
mial orders (N) and different data lengths (T) is illus-
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(a) Particle filter (SIR)
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(b) Liu–West filter
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Figure 5. Sinusoidal dynamical model (SIN). (a): Particle filter (SIR) with N = 50000 particles. Note the failure to
converge to the true value of parameter θ (0.7, shown as the blue line). (b): Liu–West filter with N = 50000 particles.
(c): EPF with N = 1000 particles and 7-th order approximation. Note both SIR and Liu–West do not converge, while
the EPF converges quickly even with orders of magnitude fewer particles.

trated in Figure 4(b). The results are consistent with
the theory developed in Section 4.1.

The degeneracy of a bootstrap filter with N = 50000
particles can be seen from figure 5(a). The Liu–
West approach with N = 50000 particles is shown
in 5(b). The perturbation is θt = ρθt−1 + (1 −
ρ)θ̄t−1+

√
1− ρ2 std(θt−1)N(0, 1), where ρ = 0.9. No-

tice that even with N = 50000 particles and large per-
turbations, the Liu–West approach converges slowly
compared to our method. Furthermore, for high-
dimensional spaces, tuning the perturbation param-
eter ρ for Liu–West becomes difficult.

The EPF has been implemented on this model with
N = 1000 particles with a 7-th order Taylor ap-
proximation to the posterior. The time complexity
is O(NT ). The mean and the standard deviation of
the particles are shown in figure 5(c).

5.2. Cauchy dynamical system

We consider the following model.

xt = axt−1 + Cauchy(0, γ) (14)

yt = xt +N(0, σobs) (15)

Here Cauchy is the Cauchy distribution centered at 0
and with shape parameter γ = 1. We use a = 0.7,
σobs = 10, where the prior for the AR(1) parameter is
N(0, 0.22). This model represents autoregressive time
evolution with heavy-tailed noise. Such heavy-tailed
noises are observed in network traffic data and click-
stream data. The standard Cauchy distribution we
use is

fv(v; 0, 1) =
1

π(1 + v2)
= exp

(
− log(π)− log(1 + v2)

)
.

We approximate log(1 + v2) by v2 − v4/2 + v6/3 −
v8/4 + . . . (the Taylor approximation at 0).

Figure 6(a) shows the simulated hidden state and the
observations (σobs = 10). Notice that the simulated
process differs substantially from a standard AR(1)
process due to the heavy-tailed noise. Storvik’s filter
cannot handle this model since the necessary sufficient
statistics do not exist.

Figure 6(b) displays the mean value estimated by a
bootstrap filter with N = 50000 particles. As before
the bootstrap filter is unable to perform meaningful
inference. Figure 6(c) shows the performance of the
Liu–West filter with both N = 100 and N = 10000
particles. The Liu–West filter does not converge for
N = 100 particles and converges slowly for N = 10000
particles. Figure 6(d) demonstrates the rapid conver-
gence of the EPF for only N = 100 particles with 10th
order approximation. The time complexity is O(NT ).

Our empirical results confirm that the EPF proves use-
ful for models with heavy-tailed stochastic perturba-
tions.

5.3. Smooth Transition AR model

The smooth transition AR (STAR) model is a smooth
generalization of the self-exciting threshold autoregres-
sive (SETAR) model, (van Dijk et al., 2002). It is
generally expressed in the following form.

xt = (a1xt−1 + a2xt−2 + · · ·+ apxt−p) [1−G(xt−d; γ, c)]

+ (b1xt−1 + b2xt−2 + · · ·+ bpxt−p) [G(xt−d; γ, c)] + εt

where εt is i.i.d. Gaussian with mean zero and variance
σ2 and G(·) is a nonlinear function of xt−d, where d >
0. We will use the logistic function

G(yt−d; γ, c) =
1

1 + exp (−γ(xt−d − c))
(16)

For high γ values, the logistic function converges to
the indicator function, I(xt−d > c), forcing STAR to
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(b) Particle filter (SIR)
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Figure 6. Cauchy dynamical system. (a): Example sequences for hidden states and observations. (b): Particle filter
estimate with 50000 particles. (c): Liu–West filter with 100 and 10000 particles. (d): EPF using only 100 particles and
10th order approximation. Note EPF converges to the actual value of parameter a (=0.7, in blue line) while SIR does
not even with orders of magnitude more particles, neither does Liu–West with the same number of particles.
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Figure 7. STAR model. (a): Shrinkage of the Gibbs density p(γ, c | x0:t) with respect to time. (b): Liu–West filter using
50000 particles. (c): EPF using 100 particles and 9th order approximation. Note the EPF’s estimates for both parameters
converge to the actual values quickly even with only 100 particles, while Liu–West does not converge at all.

converge to SETAR (SETAR corresponds to a switch-
ing linear–Gaussian system). We will use p = 1 = d,
where a1 = 0.9 and b1 = 0.1 and σ = 1 (correspond-
ing to two different AR(1) processes with high and low
memory). We attempt to estimate parameters γ, c of
the logistic function, which have true values γ = 1 and
c = 3. Data (of length T = 1000) is generated from
the model under fixed parameter values and with ob-
servation model yt = xt + wt, where wt is additive
Gaussian noise with mean zero and standard devia-
tion σobs = 0.1. Figure 7(a) shows the shrinkage of
the Gibbs density p(γ, c | x0:T ), verifying identifiabil-
ity.

The non-separable logistic term is approximated as

1

1 + exp (−γ(xt−1 − c))

≈ 1

2
− 1

4
γ(c− xt−1) +

1

48
γ3(c− xt−1)3 + . . .

Figure 7(b) displays the failure of the Liu–West fil-
ter for N = 50000 particles. Figure 7(c) shows the
mean values for γ, c from EPF for only N = 100 par-
ticles with 9th order Taylor approximation. Sampling
from the log-polynomial approximate density is done
through the random-walk Metropolis–Hastings algo-

rithm. For each particle path, at each time step t, the
Metropolis–Hastings sampler is initialized from the pa-
rameter values at t − 1. The burn-in period is set to
be 0, so only one MH step is taken per time step (i.e.,
if a proposed sample is more likely it is accepted, else
it is rejected with a specific probability). The whole
filter has time complexity O(NT ).

6. Conclusion

Learning the parameters of temporal probability mod-
els remains a significant open problem for practical
applications. We have proposed the extended parame-
ter filter (EPF), a novel approximate inference algo-
rithm that combines Gibbs sampling of parameters
with computation of approximate sufficient statistics.
The update time for EPF is independent of the length
of the observation sequence. Moreover, the algorithm
has provable error bounds and handles a wide variety
of models. Our experiments confirm these properties
and illustrate difficult cases on which EPF works well.

One limitation of our algorithm is the complexity of
Taylor approximation for high-dimensional parameter
vectors. We noted that, in some cases, the process can
be decomposed into lower-dimensional subproblems.
Automating this step would be beneficial.
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