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Abstract-In this paper, we investigate search strategies for 
multi-player pursuit-evasion games, in which a team of pursuers 
try to detect and capture multiple intelligent evaders. These 
are games with incomplete information for which there is no 
complete theory of existence of optimal solutions. We present 
a number of heuristic pursuit strategies and compare their 
performance using capture time as the performance metric. We 
demonstrate that reducing sensing overlap between pursuers 
and avoiding over-assignment of pursuers to target locations 
improve the performance of pursuit policies, and then derive 
some conclusions for their further development. 

I. INTRODUCTION 

This paper presents algorithms for pursuit-evasion games 
(PEG) with multiple pursuers and evaders. In the pursuit- 
evasion game which we consider, a pursuer (or a group of 
pursuers) searches for an evader (or a group of evaders). A 
suitable physical analogy would be a military surveillance 
mission or a public safety operation with Unmanned Aerial 
Vehicles (UAV) and Unmanned Ground Vehicles (UGV) 
serving as the pursuers and evaders respectively. In this 
scenario, the UAVs would be sent to search a region for 
intruding UGVs or people in danger. These are complex 
dynamic games with incomplete information for which there 
is no existence theory for optimal solutions. Consequently 
we design and compare the performance of a number of 
heuristically good strategies. This comparison would be 
useful as a basis for the future “learning” controllers or the 
studies of finite horizon games. 

In our setting, all the players act in a bounded rectangular 
area which we will refer to as a stage. The pursuers can sense 
only a finite region around them, which presents the difficulty 
of partial observability. Based on the history of such limited 
sensing information, the pursuers try to outsmart the evaders 
and eventually capture them. The evaders can either move 
around randomly in this region, or actively try to avoid the 
pursuers. The game ends when all evaders are captured. 
Some work has been done in developing pursuit policies 
assuming accurately mapped environments and considering 
worst-case motion of evaders [l]. Such deterministic policies 
guarantee detection of an evader but can be too conservative 
for many practical applications. The lack of complete infor- 
mation about the world suggests that the problem should be 

This work was done while the first author was a graduate student at UC 
Berkeley. He is now with National ICT Australia (NICTA). 

approached in a probabilistic framework. In [2], we used the 
probability map for searching in partially observable envi- 
ronments, and presented a computationally feasible pursuit 
policy which sends the pursuers to the local maximum point 
of the probability map. In [3], we presented the global-max 
policies in addition to the local-max policies presented in [2]. 
In parallel to this theoretical work, we have been developing 
a platform of UAVs and UGVs as a test-bed of multi-agent 
coordination and control. In [4], a real-time control system 
for regulation and navigation of a UAV was developed. In [ 5 ] ,  
we presented a distributed hierarchical system architecture 
for pursuit-evasion games, described the implementations of 
the navigation, communication and sensing layers of teams 
of UAVs and UGVs, and tested the global-max policies and 
the local-max policies on a team of UAVs and UGVs. 

In this paper, we extend these ideas to the case of multiple 
evaders. To do this, we incorporate overlap-reducing algo- 
rithms into our previous work. These new algorithms will 
reduce the amount of sensing overlap between pursuers, thus 
distributing them more efficiently. Furthermore, the evaders 
follow an evasion policy that actively tries to steer them away 
from pursuers. Because of these new considerations, our 
problem becomes inherently difficult to analyze theoretically. 
Here we develop heuristic algorithms and test the policies 
of pursuers with varying sensing capabilities against faster 
evaders with enhanced intelligence. The focus of our work is 
on pursuit policies. For a detailed discussion of a probabilistic 
approach to map-building and localization, refer to [6].  

The remaining parts of this paper are organized as follows: 
Section II describes our game framework that will be used 
in the development of pursuit-policies. Section III describes 
the pursuit policies. In Section IV, we present the simulation 
results, comparing the performance of globaMoca1 policies 
with/without the consideration of maximizing the collective 
visibility region of pursuers while varying the game parame- 
ters such as the sensing size and number of agents. Section V 
concludes the paper with the future directions. 

11. PROBLEM FORMULATION 

In this section, we consider a system of N robots in a two- 
dimensional environment, searching for a multiple, unknown 
number of evading robots. We abstract the physical world as 
a grid world, and play a general game using the following 
rules and parameters: 
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We have n pursuers and m evaders. 
The pursuers have a square sensing field. Each side of 
the square is d cells long. 
All the pursuers move every other step, and evaders 
move every step. Within each time step, all the moving 
players change locations simultaneously. 
At time steps when pursuers do not move they can still 
detect an evader that lies in their sensing region. 
An evader is captured if it has been sensed by pursuers 
for k times. These steps do not have to be consecutive. 
The game is not symmetric in that pursuers never get 
destroyed, as evaders never attack. 
The game ends when all evaders have been captured. 

A. Discrete Game Model 
We overlay a grid on top of our stage, which essentially 

divides it into cells of some pre-specified size. Each cell is 
mapped to a node IC on the graph and let X be the set of 
all nodes on the graph. This is demonstrated in Fig. l(a), 
and from now on, we will use the terms cell and node 
interchangeably. 

0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

2 . * B ! D  

>!Lo 0 0 0 0 0 0 0 0 0  ‘9 

Fig. 1 .  Pursuit-evasion game model (a) Mapping cells to nodes, 
(b)Introducing edges to model the motion dynamics 

Players are allowed to move to one-step reachable nodes 
from their current node. In our graph framework, this is 
represented by edges that connect each node to the cells that 
can be reached in one time-step. This definition of one-step 
reachable neighbors also includes the cells in the diagonal, 
as shown in Fig. l(b). In addition, in order to challenge our 
pursuers further, evaders are assumed to move every time- 
step whereas pursuers move every other time-step. 

B. The probability i m p  
We define the measurement history Yt to be the set of all 

the sensing data of each pursuer, along with the locations of 
each pursuer for all time steps up to and including time step 
t. The probability map assigns to each cell the probability of 
an evader being present in the cell and define: 

Pe(G tlut) 
to be the probability of an evader being in cell IC at time t 
given the measurement history Yt. In essence, the probability 
map is a two-dimensional table with positive numbers that 
add up to one. There exist some rules for updating the 
probability map at each time step, and these were presented 
in previous work ( [ 2 ] ,  [SI). 
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C. Multiple evaders-Multiple probability maps 
In the previous work that considered one evader, only one 

probability map was used. A natural extension to the case of 
multiple evaders would be to use multiple probability maps. 
We have implemented this idea in the following way: We 
have one probability map that represents the probability of 
evader presence, assuming that no evader has been detected. 
So, in essence, the question that this map is trying to answer 
is the following: “Provided the pursuers have not detected 
an evader yet, what is the probability that an evader exists 
in the cells they are not currently observing?’ We will call 
this map the general inup and its probability density function 
p,(x, tlYt). Now upon detecting an evader we create another 
probability map, which is specific to that evader. This map 
works in the same way as the general probability map with 
one minor difference: each time the evader is being detected 
in a cell, that cell is assigned a probability equal to 1 and 
the other cells are reset to zero. We define 

to be the probability of evader i being in cell IC at time t given 
the measurement Yt. Every new evader detected is assigned 
its own probability map. Thus at every time step we have the 
general map always present, and one or more evader maps 
active. 

D. Assigning Identities to evaders 
Once pursuers detect an evader they may lose detection for 

a few time steps and then may start detecting it again. How 
can the pursuers tell that the evader they are detecting now 
is the same one that they were detecting before? We assume 
the following: If the evader remains undetected for a time 
period T then the pursuers have technically lost the evader 
so deactivate the probability map we built for it. If it remains 
undetected for less than T time steps then we assume that if 
a pursuer detects the same evader again, it can tell if it is the 
same one that they detected before or if it is a new one. In a 
real physical scenario, this will involve some test concerning 
physical properties of the detected evader such as dynamics 
of motion, color, shape, location, etc. 

E. Combining probability maps 
Assume that at step t the pursuers are detecting k evaders. 

This means, that the pursuers have generated k evader maps 
and one general map. We furthermore assume that the actions 
of evaders are independent, so the presence of one evader in 
one cell does not affect the probability of another evader 
being present in the same cell. Since we never know the 
complete number of evaders, we use the general map as 
the probability map of the k + 1 evader which we suspect 
to be out there but we have not detected yet. Under these 
assumptions, we have k + 1 probability maps which we need 
to combine into one map. This one compact map that we 
aim to produce will function like a reward map. We assume 
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that each pursuer has sufficient power and time to attempt to 
capture all the evaders that lie in one cell. So, provided we 
are being rewarded with rizt units for attempting to capture 
evader i in cell II: at time t, then the total expected reward 
associated with cell z at time t given the measurement history 
yt is given by: 

P(Z, ~ I K )  = ~ g ( z ,  ~ I K )  . T(k+- l )z t  + b e ,  (z, t l ~ t )  * rist] 
i=l ... k 

We assume that the same reward is given for attempting to 
capture any given evader in any given cell at time t and we 
denote this by et. Let I be the set of indices of all evaders 
that the pursuers are currently detecting. Then: 

I P(S, ~ J K )  = et . pg(z, tlyt)+ b e ,  (5, ~IY,)] [ i E I  

The choice of value for et will depend on the real life 
scenario that we are trying to simulate. For the sake of 
simplicity, we will from now on use et as a normalizing 
constant set to &. To avoid confusion with the terminology 
introduced in the next section we will refer to p(s,tlYt) as 
the single cell reward. 

The creation of the single cell reward map is demonstrated 
in Fig. 2. Note that the dark areas are areas of higher 
evader presence probability (higher rewards). Fig. 3 shows 
an instance of the game. The solid-filled squares with no 
outer squares represent the evaders, and those with with the 
outer square represent the pursuers, with the outline marking 
their sensing region. Finally, the unfilled outer squares denote 
the boundary of our stage. No pursuer or evader can move 
out of this boundary. 
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Fig. 2. Combining the general map and one evader map to obtain the 
reward map: (a) the general map, (b) an active evader map, and (c) the 
single cell reward map 

111. SEARCH ALGORITHMS 
In this section we formally describe our search policies, 

which correspond to the intelligence of the pursuing agents. 
We define the state-space for both pursuers and evaders to 
be X .  That means that the state of a player is the cell in 
which it exists, i.e. their location. Define spk(t)  to be the 
state of pursuer k at time-step t. Similarly define X e ,  to be 

Fig. 3. An instance of the game between three pursuers and three evaders 

the random variable denoting the state of evader i and let 
ze,(t) be its realization at time step t. 

A. Local-max policy 
This is the simplest of policies, whose property was proved 

in [2]. Let U(z,,(t)) denote the one-step reachable set for 
pursuer k when the pursuer is in cell II: at time t. A reward 
for moving to cell y is defined to be the sum of the single 
cell rewards associated with the sensing area of the pursuer, 
provided the pursuer was centered in cell y. Let S k  (y) denote 
the set of all cells that lie within the sensing area of pursuer 
k located at the cell y. Then the total reward associated with 
pursuer k moving to cell y is given by: 

%I, t )  = [ P k  t + 1IWl 
z E S k ( Y )  

where p(z , t  + 1IYt) is the single cell reward, which was 
defined to be the expected reward associated with cell z at 
time t + 1 given the measurement history Yt . Under the local- 
max policy pursuer k moves to the cell xPl,  (t + 1) that gives 
the highest total reward, that is: 

zpk (t + 1) = arg inax [R(y, t ) ]  
YEU(z,, (t)) 

B. GlobaLmax policy 
This policy attempts to find the evaders using a global 

perspective. Define d(z, y) to be the Manhattan distance 
from cell z to cell y, that is, if cells z and y lie in a 
two-dimensional space with coordinates (21, s z )  and (yl, y2) 
respectively then: 

d(z,y) = max(lz1 - Y l l ,  122 - Yzl) 

The total reward associated with cell y and pursuer k is given 
by: 

Under the global-max policy, pursuer k finds the cell f i p k  (t + 
1) that gives the highest total reward, that is: 

hpk (t  + 1) = arg max [R(y, t )]  

where X is the set of all cells in our grid. Having found 
its target cell, the pursuer moves straight toward it. We call 

Y E X  
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the line joining a pursuer's current location with its target 
location the principal direction. So this policy seeks to move 
the pursuers toward the cells with the maximum distance- 
discounted probability of evader presence. In order to model 
this, we let @be the vector pointing to the principal direction; 
Thus, in a two-dimension_al+space, we will havefi= x1;+~2j 
for some x1 and 2 2  and i ,  j pointing in the increasing column 
and row directions, respectively. Then, x p k  ( t  + 1) will be the 
cell that corresponds to a physical translation of cell xpk ( t )  
by sign(xQ columns and sign(x2) rows. For example, if 
@= 3;- 2 j  then xpk (t + 1) is the cell that lies one column 
to the right and one row below xp,(t). 

C. Local-inax with no overlap 

This is an enhanced version of the local-max policy. In 
this policy pursuers decide on their next move sequentially. 
After a pursuer k has made a choice of action then the 
cells z E S(z,,(t + 1)) are assigned a single cell reward 
of - 1. Hence, for pursuer k + 1, actions that would result in 
moving to a region that has a sensing overlap with pursuer 
k will be heavily penalized. The effect of this is to minimize 
observation overlap. 

D. Global-max with no overlap 
This is an enhanced version of the global-max policy that 

also tries to reduce sensing overlap between pursuers. Under 
this policy the pursuers choose their target locations exactly 
like in the global-max policy. The difference, however, is that 
they do not necessarily move straight toward that location. In- 
stead, they are given three options: move along the principal 
direction, or move along directions that lie 45" to the left and 
right of the principal direction. The pursuer makes the choice 
between the three directions using the local-max with no 
overlap policy. The 45" angle choice is made to ensure that 
the two extra directions retain forward momentum toward the 
target location. To summarize, under this policy, we employ 
the global-max policy deciding on a target location, and 
the local-max with no overlap policy deciding on how the 
pursuer gets to that target location. 

E. Clobal-subregional 

This policy is very similar to global-max with no overlap 
in the way pursuers move toward their target locations. It 
is much different, though, in the way pursuers select those 
target locations. We divide the gridworld into subregions 
that are as big as the sensing area of each pursuer. This is 
demonstrated in Fig. 4 where we used a 16 x 16 grid and a 
3 x 3 pursuer sensing region. 

Let L denote the set of all these subregions and for each 
subregion 1 E L, let F(Z) denote the set of all cells x that 
lie in subregion 1. Then the total reward associated with 
subregion l at time t is given by: 

R(1, t )  = inax [p(x, t + 1IYt)J 
xEF(1)  

Fig. 4. Dividing the map into subregions 

Once the total reward for each subregion is calculated, we 
assign pursuers to locations in the following manner: Let 1 
be defined to be the subregion with the maximum reward 
value: 

E = arg max [R(I, t ) ]  
IEL 

and let C(E) be the cell in E that has the maximum single 
cell reward: 

C ( l )  = arg max [p(x,t + ~ I Y , ) ]  . xEF(e) 

Then E gets assigned to the nearest pursuer with the 
Manhattan distance of pursuer k from C(E) used as the 
distance metric. Let the identity of the pursuer assigned to 
subregion l be denoted by le. Then: 

It = arg min [d(xp,, (?(e))] 
i E  (1.. . .n) 

We then eliminate l from L and reiterate this assign- 
ment procedure with the remaining subregions and the other 
pursuers except l e  until all pursuers have been assigned to 
locations. Once all assignments are completed, the pursuers 
move to their target locations in the same manner as in the 
global-max with no overlap policy. 

E Evasion Policy 
The evaders actively try to avoid the pursuers and they use 

a potential function to try to stay away from each other, from 
pursuers, and from the inaccessible locations. To enhance 
their ability to do so, we gave the evaders perfect information 
concerning the location of pursuers. At time step t evader k is 
sitting in cell z,, ( t )  and can move to any cell 2 E U(zek  ( t ) ) .  
Each potential next location is given a cost and the evader 
uses a greedy policy to select the cell with the lowest cost 
as its location for the next step. Define the cost associated 
with cell y and evader k at time t to be: 

, 

where the sum is taken over all the cells in the grid and U(.) 
is given by: 

2.0 
0.2 
1.0 

if z lies within the sensing area of a pursuer 
if t contains an evader 
if z contains an obstacle(e.g. boundary wall) 

0 otherwise 

w(z) = 
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Game Parameters 
Grid size Sensing Num. of Num. of 

area pursuers evaders 
size 

2 0 x 2 0  4 x 4  4 3 
2 0 x 2 0  4 x 4  4 5 

Median Capture Time 
Global- Local- Global- Local- Global- 
subregional max no max no max max 

overlap overlap with with 

191 174 266 253 500+ 
214 218 305 383 500+ 

overlap overlap 

2 0 x 2 0  
2 0 x 2 0  

TABLE I 
SIMUI.ATION RESULTS FOR THE FIVE PURSUIT POLICIES 

5 x 5  3 3 162 166 212 345 500+ 
5 x 5  3 5 214 192 264 456 500+ 

Evader IC moves to the cell zek(t  + 1) that minimizes the 
received cost: 

2 0 x 2 0  
2 0 x 2 0  

Fig. 5 shows time shots of a game with three evaders avoiding 
three pursuers that move horizontally towards them. The 
pursuers in this example are not using any of the pursuit 
policies described above (i.e. sweeping the state-space from 
left to right), and the evaders smartly avoid detection. 

2 x 2  8 1 3  I 531 I 435 I512 1000+ 1000+ 
4 x 4  2 1 3  I 1500+ I 863 I 1500+ 1500+ 1500+ 

Fig. 5. Evaders escaping when pursuit strategies are not intelligent. 

IV. SIMULATIONS 

In this section, we evaluate the effectiveness of the pursuit 
policies proposed in Section I n  in simulations. We ran 
simulations in Matlab to compare the performance of the 
five different pursuit policies, with capture time of all evaders 
being the performance metric. We did this for six different 
game settings and for each setting we ran 200 simulations. 
For each simulation we assigned the player’s initial positions 
randomly ensuring, however, that no evader starts in the 
sensing area of a pursuer. Finally, the five policies were tested 
using the same initial conditions for each simulation run. 

To save time, the simulation was stopped at 500 simulation 
steps in the first four game settings, and at 1000 and 1500 

steps in the more challenging fifth and sixth settings. To 
account for this truncation, the median capture time was used 
as the performance metric of the policies. The results are 
summarized in Table I. 

A. Best performing policies 
The results suggest that the global-subregional and the 

local-max with no overlap policy perform the best among 
the five suggested pursuit policies, with the local-max with 
no overlap policy winning in the last two more challeng- 
ing scenarios. The overall better performance of these two 
policies can be attributed to two factors: 

1) They reduce sensing overlap between pursuers. 
2) They do not over-assign pursuers to target locations. 
The first point follows from comparing the local-max and 

global-max policies with overlap to their counterparts with no 
overlap. It is readily seen that the provision for reducing sens- 
ing overlap significantly improved their performance. The 
second point is demonstrated in Fig. 6(a) through Fig. 6(c). 
As shown in Fig. 6(a), the global-max with no overlap policy 
assigns all the pursuers to one specific target area, thus under- 
utilizing resources. 

B. Local versus global policies 
In the last two game settings we can see that the local-max 

with no overlap policy outperforms the global-subregional. 
This is a result of an unfavorable property of global policies: 
they assign pursuers to target locations of high reward, but 
they cannot predict if that reward will remain high until the 
time the pursuer gets there. The local-max policy, however, 
ensures that the predicted reward will be received on the 
next time step. In the global-subregional policy, two adjacent 
subregions 11 and 12 of high reward value will be assigned to 
two different pursuers, p l  and p2 respectively. If pl happens 
to be much closer to 11 than p2 is to Z2 then p l  will complete 
searching 11, and on the next time step it will be assigned 
to 12 as it is the closest pursuer to it. Meanwhile, p2 was 
traveling towards 12 and now will have to be assigned to 
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(a) Global-max with no over!ap 

(b) Global-subregional 

(c) Local-max with no overlap 

Fig. 6.  Three pursuers versus three evaders under different pursuit policies, 
(a) Global-max with no overlap, (b) Global-subregional, and (c) Local-max 
with no overlap 

another location. This constant reassignment practice results 
in a resource allocation inefficiency, which accounts for the 
worse performance of the global-subregional policy. 

C. Time costs and other observations 
Comparing the algorithms behind the policies, we see that 

the  local-max policies are computationally less expensive. In 
the case of the global-max and global-subregional policies 
we need to search over the whole state-space X in order to 
find the desired target areas. The local-max policy, however, 
only searches in U ( z C p k ( t ) )  which is a small subset of X .  
Furthermore, U(z,, ( t ) )  is of fixed size so the computational 
complexity does not increase with the dimensions of the grid- 
world. 

Another interesting conclusion can be inferred from the 
last two game settings in which we have the same total 
sensing power of 32 cells distributed among eight and 
two pursuers, respectively. The simulation results indicate 
that distributing sensing power among a greater number of 
pursuers significantly decreases capture time. 

V. CONCLUSIONS AND FUTURE WORK 
A. Conclusions 

In this paper, we presented a number of pursuit algorithms 
for solving complex multi-player pursuit-evasion games. In 
the games we consider, a team of pursuers try to detect and 
capture multiple evaders that actively try to avoid capture. 
It was demonstrated that reducing sensing overlap between 
pursuers and avoiding over-assignment of pursuers to target 
locations improve the performance of pursuit policies in 
terms of capture time. The strategies were heuristic because 
we do not as yet have theory to support the existence of 
solutions to multi-player games with partial information. Our 

analysis, however, will be useful as a basis for developing 
policy classes for the future “learning” controllers or the 
study of finite horizon games. 

B. Future Work 
We expect that incorporating concepts of lookahead hori- 

zons and discounts in determining target locations will 
further improve the performance of our pursuit policies. 
In developing the heuristic algorithms, we assumed that a 
pursuer has access to perfect information concerning the 
sensing data of all other pursuers. As a result, we were 
able to develop a centralized probability map that was 
used by pursuers to better organize information and assign 
target areas. This assumption will be greatly challenged in 
a real-life scenario with UAVs and UGVs, as in most cases 
perfect communication between agents is not possible. Sen- 
sor network approaches can remedy this limitation and [7] 
describes a promising framework for adding sensor networks 
to distributed pursuit-evasion games. 
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