
Proceedings of the 42nd WEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003 TuM08-4

Pursuit-Evasion Strategies for Teams of Multiple Agents with Incomplete Information

Adonis Antoniades H. Jin Kim Shankar Sastry
Department of Electrical Engineering & Computer Sciences

University of California at Berkeley
Berkeley, CA 94720, USA

{adonis,jin,sastry}@eecs.berkeley.edu

Abstract-In this paper, we investigate search strategies for
multi-player pursuit-evasion games, in which a team of pursuers
try to detect and capture multiple intelligent evaders. These
are games with incomplete information for which there is no
complete theory of existence of optimal solutions. We present
a number of heuristic pursuit strategies and compare their
performance using capture time as the performance metric. We
demonstrate that reducing sensing overlap between pursuers
and avoiding over-assignment of pursuers to target locations
improve the performance of pursuit policies, and then derive
some conclusions for their further development.

I. INTRODUCTION

This paper presents algorithms for pursuit-evasion games
(PEG) with multiple pursuers and evaders. In the pursuit-
evasion game which we consider, a pursuer (or a group of
pursuers) searches for an evader (or a group of evaders). A
suitable physical analogy would be a military surveillance
mission or a public safety operation with Unmanned Aerial
Vehicles (UAV) and Unmanned Ground Vehicles (UGV)
serving as the pursuers and evaders respectively. In this
scenario, the UAVs would be sent to search a region for
intruding UGVs or people in danger. These are complex
dynamic games with incomplete information for which there
is no existence theory for optimal solutions. Consequently
we design and compare the performance of a number of
heuristically good strategies. This comparison would be
useful as a basis for the future “learning” controllers or the
studies of finite horizon games.

In our setting, all the players act in a bounded rectangular
area which we will refer to as a stage. The pursuers can sense
only a finite region around them, which presents the difficulty
of partial observability. Based on the history of such limited
sensing information, the pursuers try to outsmart the evaders
and eventually capture them. The evaders can either move
around randomly in this region, or actively try to avoid the
pursuers. The game ends when all evaders are captured.
Some work has been done in developing pursuit policies
assuming accurately mapped environments and considering
worst-case motion of evaders [l]. Such deterministic policies
guarantee detection of an evader but can be too conservative
for many practical applications. The lack of complete infor-
mation about the world suggests that the problem should be

This work was done while the first author was a graduate student at UC
Berkeley. He is now with National ICT Australia (NICTA).

approached in a probabilistic framework. In [2], we used the
probability map for searching in partially observable envi-
ronments, and presented a computationally feasible pursuit
policy which sends the pursuers to the local maximum point
of the probability map. In [3], we presented the global-max
policies in addition to the local-max policies presented in [2].
In parallel to this theoretical work, we have been developing
a platform of UAVs and UGVs as a test-bed of multi-agent
coordination and control. In [4], a real-time control system
for regulation and navigation of a UAV was developed. In [5] ,
we presented a distributed hierarchical system architecture
for pursuit-evasion games, described the implementations of
the navigation, communication and sensing layers of teams
of UAVs and UGVs, and tested the global-max policies and
the local-max policies on a team of UAVs and UGVs.

In this paper, we extend these ideas to the case of multiple
evaders. To do this, we incorporate overlap-reducing algo-
rithms into our previous work. These new algorithms will
reduce the amount of sensing overlap between pursuers, thus
distributing them more efficiently. Furthermore, the evaders
follow an evasion policy that actively tries to steer them away
from pursuers. Because of these new considerations, our
problem becomes inherently difficult to analyze theoretically.
Here we develop heuristic algorithms and test the policies
of pursuers with varying sensing capabilities against faster
evaders with enhanced intelligence. The focus of our work is
on pursuit policies. For a detailed discussion of a probabilistic
approach to map-building and localization, refer to [6].

The remaining parts of this paper are organized as follows:
Section II describes our game framework that will be used
in the development of pursuit-policies. Section III describes
the pursuit policies. In Section IV, we present the simulation
results, comparing the performance of globaMoca1 policies
with/without the consideration of maximizing the collective
visibility region of pursuers while varying the game parame-
ters such as the sensing size and number of agents. Section V
concludes the paper with the future directions.

11. PROBLEM FORMULATION

In this section, we consider a system of N robots in a two-
dimensional environment, searching for a multiple, unknown
number of evading robots. We abstract the physical world as
a grid world, and play a general game using the following
rules and parameters:

0-7803-7924-1/03/$17.00 02003 IEEE 756

mailto:adonis,jin,sastry}@eecs.berkeley.edu

We have n pursuers and m evaders.
The pursuers have a square sensing field. Each side of
the square is d cells long.
All the pursuers move every other step, and evaders
move every step. Within each time step, all the moving
players change locations simultaneously.
At time steps when pursuers do not move they can still
detect an evader that lies in their sensing region.
An evader is captured if it has been sensed by pursuers
for k times. These steps do not have to be consecutive.
The game is not symmetric in that pursuers never get
destroyed, as evaders never attack.
The game ends when all evaders have been captured.

A. Discrete Game Model
We overlay a grid on top of our stage, which essentially

divides it into cells of some pre-specified size. Each cell is
mapped to a node IC on the graph and let X be the set of
all nodes on the graph. This is demonstrated in Fig. l(a),
and from now on, we will use the terms cell and node
interchangeably.

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2 . * B ! D

>!Lo 0 0 0 0 0 0 0 0 0 ‘9

Fig. 1 . Pursuit-evasion game model (a) Mapping cells to nodes,
(b)Introducing edges to model the motion dynamics

Players are allowed to move to one-step reachable nodes
from their current node. In our graph framework, this is
represented by edges that connect each node to the cells that
can be reached in one time-step. This definition of one-step
reachable neighbors also includes the cells in the diagonal,
as shown in Fig. l(b). In addition, in order to challenge our
pursuers further, evaders are assumed to move every time-
step whereas pursuers move every other time-step.

B. The probability i m p
We define the measurement history Yt to be the set of all

the sensing data of each pursuer, along with the locations of
each pursuer for all time steps up to and including time step
t. The probability map assigns to each cell the probability of
an evader being present in the cell and define:

Pe(G tlut)
to be the probability of an evader being in cell IC at time t
given the measurement history Yt. In essence, the probability
map is a two-dimensional table with positive numbers that
add up to one. There exist some rules for updating the
probability map at each time step, and these were presented
in previous work ([2] , [SI).

75

C. Multiple evaders-Multiple probability maps
In the previous work that considered one evader, only one

probability map was used. A natural extension to the case of
multiple evaders would be to use multiple probability maps.
We have implemented this idea in the following way: We
have one probability map that represents the probability of
evader presence, assuming that no evader has been detected.
So, in essence, the question that this map is trying to answer
is the following: “Provided the pursuers have not detected
an evader yet, what is the probability that an evader exists
in the cells they are not currently observing?’ We will call
this map the general inup and its probability density function
p,(x, tlYt). Now upon detecting an evader we create another
probability map, which is specific to that evader. This map
works in the same way as the general probability map with
one minor difference: each time the evader is being detected
in a cell, that cell is assigned a probability equal to 1 and
the other cells are reset to zero. We define

to be the probability of evader i being in cell IC at time t given
the measurement Yt. Every new evader detected is assigned
its own probability map. Thus at every time step we have the
general map always present, and one or more evader maps
active.

D. Assigning Identities to evaders
Once pursuers detect an evader they may lose detection for

a few time steps and then may start detecting it again. How
can the pursuers tell that the evader they are detecting now
is the same one that they were detecting before? We assume
the following: If the evader remains undetected for a time
period T then the pursuers have technically lost the evader
so deactivate the probability map we built for it. If it remains
undetected for less than T time steps then we assume that if
a pursuer detects the same evader again, it can tell if it is the
same one that they detected before or if it is a new one. In a
real physical scenario, this will involve some test concerning
physical properties of the detected evader such as dynamics
of motion, color, shape, location, etc.

E. Combining probability maps
Assume that at step t the pursuers are detecting k evaders.

This means, that the pursuers have generated k evader maps
and one general map. We furthermore assume that the actions
of evaders are independent, so the presence of one evader in
one cell does not affect the probability of another evader
being present in the same cell. Since we never know the
complete number of evaders, we use the general map as
the probability map of the k + 1 evader which we suspect
to be out there but we have not detected yet. Under these
assumptions, we have k + 1 probability maps which we need
to combine into one map. This one compact map that we
aim to produce will function like a reward map. We assume

7

that each pursuer has sufficient power and time to attempt to
capture all the evaders that lie in one cell. So, provided we
are being rewarded with rizt units for attempting to capture
evader i in cell II: at time t, then the total expected reward
associated with cell z at time t given the measurement history
yt is given by:

P(Z, ~ I K) = ~ g (z , ~ I K) . T(k+- l)z t + b e , (z, t l ~ t) * rist]
i=l ... k

We assume that the same reward is given for attempting to
capture any given evader in any given cell at time t and we
denote this by et. Let I be the set of indices of all evaders
that the pursuers are currently detecting. Then:

I P(S, ~ J K) = et . pg(z, tlyt)+ b e , (5, ~IY,)] [i E I

The choice of value for et will depend on the real life
scenario that we are trying to simulate. For the sake of
simplicity, we will from now on use et as a normalizing
constant set to &. To avoid confusion with the terminology
introduced in the next section we will refer to p(s,tlYt) as
the single cell reward.

The creation of the single cell reward map is demonstrated
in Fig. 2. Note that the dark areas are areas of higher
evader presence probability (higher rewards). Fig. 3 shows
an instance of the game. The solid-filled squares with no
outer squares represent the evaders, and those with with the
outer square represent the pursuers, with the outline marking
their sensing region. Finally, the unfilled outer squares denote
the boundary of our stage. No pursuer or evader can move
out of this boundary.

22

x1

18

I6

14

12

0

8

6

2
6 10 13 20

Fig. 2. Combining the general map and one evader map to obtain the
reward map: (a) the general map, (b) an active evader map, and (c) the
single cell reward map

111. SEARCH ALGORITHMS
In this section we formally describe our search policies,

which correspond to the intelligence of the pursuing agents.
We define the state-space for both pursuers and evaders to
be X . That means that the state of a player is the cell in
which it exists, i.e. their location. Define spk(t) to be the
state of pursuer k at time-step t. Similarly define X e , to be

Fig. 3. An instance of the game between three pursuers and three evaders

the random variable denoting the state of evader i and let
ze,(t) be its realization at time step t.

A. Local-max policy
This is the simplest of policies, whose property was proved

in [2]. Let U(z,,(t)) denote the one-step reachable set for
pursuer k when the pursuer is in cell II: at time t. A reward
for moving to cell y is defined to be the sum of the single
cell rewards associated with the sensing area of the pursuer,
provided the pursuer was centered in cell y. Let S k (y) denote
the set of all cells that lie within the sensing area of pursuer
k located at the cell y. Then the total reward associated with
pursuer k moving to cell y is given by:

%I, t) = [P k t + 1IWl
z E S k (Y)

where p(z , t + 1IYt) is the single cell reward, which was
defined to be the expected reward associated with cell z at
time t + 1 given the measurement history Yt . Under the local-
max policy pursuer k moves to the cell xPl, (t + 1) that gives
the highest total reward, that is:

zpk (t + 1) = arg inax [R(y, t)]
YEU(z,, (t))

B. GlobaLmax policy
This policy attempts to find the evaders using a global

perspective. Define d(z, y) to be the Manhattan distance
from cell z to cell y, that is, if cells z and y lie in a
two-dimensional space with coordinates (21, s z) and (yl, y2)
respectively then:

d(z,y) = max(lz1 - Y l l , 122 - Yzl)

The total reward associated with cell y and pursuer k is given
by:

Under the global-max policy, pursuer k finds the cell f i p k (t +
1) that gives the highest total reward, that is:

hpk (t + 1) = arg max [R(y, t)]

where X is the set of all cells in our grid. Having found
its target cell, the pursuer moves straight toward it. We call

Y E X

758

the line joining a pursuer's current location with its target
location the principal direction. So this policy seeks to move
the pursuers toward the cells with the maximum distance-
discounted probability of evader presence. In order to model
this, we let @be the vector pointing to the principal direction;
Thus, in a two-dimension_al+space, we will havefi= x1;+~2j
for some x1 and 2 2 and i , j pointing in the increasing column
and row directions, respectively. Then, x p k (t + 1) will be the
cell that corresponds to a physical translation of cell xpk (t)
by sign(xQ columns and sign(x2) rows. For example, if
@= 3;- 2 j then xpk (t + 1) is the cell that lies one column
to the right and one row below xp,(t).

C. Local-inax with no overlap

This is an enhanced version of the local-max policy. In
this policy pursuers decide on their next move sequentially.
After a pursuer k has made a choice of action then the
cells z E S(z,,(t + 1)) are assigned a single cell reward
of - 1. Hence, for pursuer k + 1, actions that would result in
moving to a region that has a sensing overlap with pursuer
k will be heavily penalized. The effect of this is to minimize
observation overlap.

D. Global-max with no overlap
This is an enhanced version of the global-max policy that

also tries to reduce sensing overlap between pursuers. Under
this policy the pursuers choose their target locations exactly
like in the global-max policy. The difference, however, is that
they do not necessarily move straight toward that location. In-
stead, they are given three options: move along the principal
direction, or move along directions that lie 45" to the left and
right of the principal direction. The pursuer makes the choice
between the three directions using the local-max with no
overlap policy. The 45" angle choice is made to ensure that
the two extra directions retain forward momentum toward the
target location. To summarize, under this policy, we employ
the global-max policy deciding on a target location, and
the local-max with no overlap policy deciding on how the
pursuer gets to that target location.

E. Clobal-subregional

This policy is very similar to global-max with no overlap
in the way pursuers move toward their target locations. It
is much different, though, in the way pursuers select those
target locations. We divide the gridworld into subregions
that are as big as the sensing area of each pursuer. This is
demonstrated in Fig. 4 where we used a 16 x 16 grid and a
3 x 3 pursuer sensing region.

Let L denote the set of all these subregions and for each
subregion 1 E L, let F(Z) denote the set of all cells x that
lie in subregion 1. Then the total reward associated with
subregion l at time t is given by:

R(1, t) = inax [p(x, t + 1IYt)J
xEF(1)

Fig. 4. Dividing the map into subregions

Once the total reward for each subregion is calculated, we
assign pursuers to locations in the following manner: Let 1
be defined to be the subregion with the maximum reward
value:

E = arg max [R(I, t)]
IEL

and let C(E) be the cell in E that has the maximum single
cell reward:

C (l) = arg max [p(x,t + ~ I Y ,)] . xEF(e)

Then E gets assigned to the nearest pursuer with the
Manhattan distance of pursuer k from C(E) used as the
distance metric. Let the identity of the pursuer assigned to
subregion l be denoted by le. Then:

It = arg min [d(xp,, (?(e))]
i E (1.. . .n)

We then eliminate l from L and reiterate this assign-
ment procedure with the remaining subregions and the other
pursuers except l e until all pursuers have been assigned to
locations. Once all assignments are completed, the pursuers
move to their target locations in the same manner as in the
global-max with no overlap policy.

E Evasion Policy
The evaders actively try to avoid the pursuers and they use

a potential function to try to stay away from each other, from
pursuers, and from the inaccessible locations. To enhance
their ability to do so, we gave the evaders perfect information
concerning the location of pursuers. At time step t evader k is
sitting in cell z,, (t) and can move to any cell 2 E U(zek (t)) .
Each potential next location is given a cost and the evader
uses a greedy policy to select the cell with the lowest cost
as its location for the next step. Define the cost associated
with cell y and evader k at time t to be:

,

where the sum is taken over all the cells in the grid and U(.)
is given by:

2.0
0.2
1.0

if z lies within the sensing area of a pursuer
if t contains an evader
if z contains an obstacle(e.g. boundary wall)

0 otherwise

w(z) =

759

Game Parameters
Grid size Sensing Num. of Num. of

area pursuers evaders
size

2 0 x 2 0 4 x 4 4 3
2 0 x 2 0 4 x 4 4 5

Median Capture Time
Global- Local- Global- Local- Global-
subregional max no max no max max

overlap overlap with with

191 174 266 253 500+
214 218 305 383 500+

overlap overlap

2 0 x 2 0
2 0 x 2 0

TABLE I
SIMUI.ATION RESULTS FOR THE FIVE PURSUIT POLICIES

5 x 5 3 3 162 166 212 345 500+
5 x 5 3 5 214 192 264 456 500+

Evader IC moves to the cell zek(t + 1) that minimizes the
received cost:

2 0 x 2 0
2 0 x 2 0

Fig. 5 shows time shots of a game with three evaders avoiding
three pursuers that move horizontally towards them. The
pursuers in this example are not using any of the pursuit
policies described above (i.e. sweeping the state-space from
left to right), and the evaders smartly avoid detection.

2 x 2 8 1 3 I 531 I 435 I512 1000+ 1000+
4 x 4 2 1 3 I 1500+ I 863 I 1500+ 1500+ 1500+

Fig. 5. Evaders escaping when pursuit strategies are not intelligent.

IV. SIMULATIONS

In this section, we evaluate the effectiveness of the pursuit
policies proposed in Section I n in simulations. We ran
simulations in Matlab to compare the performance of the
five different pursuit policies, with capture time of all evaders
being the performance metric. We did this for six different
game settings and for each setting we ran 200 simulations.
For each simulation we assigned the player’s initial positions
randomly ensuring, however, that no evader starts in the
sensing area of a pursuer. Finally, the five policies were tested
using the same initial conditions for each simulation run.

To save time, the simulation was stopped at 500 simulation
steps in the first four game settings, and at 1000 and 1500

steps in the more challenging fifth and sixth settings. To
account for this truncation, the median capture time was used
as the performance metric of the policies. The results are
summarized in Table I.

A. Best performing policies
The results suggest that the global-subregional and the

local-max with no overlap policy perform the best among
the five suggested pursuit policies, with the local-max with
no overlap policy winning in the last two more challeng-
ing scenarios. The overall better performance of these two
policies can be attributed to two factors:

1) They reduce sensing overlap between pursuers.
2) They do not over-assign pursuers to target locations.
The first point follows from comparing the local-max and

global-max policies with overlap to their counterparts with no
overlap. It is readily seen that the provision for reducing sens-
ing overlap significantly improved their performance. The
second point is demonstrated in Fig. 6(a) through Fig. 6(c).
As shown in Fig. 6(a), the global-max with no overlap policy
assigns all the pursuers to one specific target area, thus under-
utilizing resources.

B. Local versus global policies
In the last two game settings we can see that the local-max

with no overlap policy outperforms the global-subregional.
This is a result of an unfavorable property of global policies:
they assign pursuers to target locations of high reward, but
they cannot predict if that reward will remain high until the
time the pursuer gets there. The local-max policy, however,
ensures that the predicted reward will be received on the
next time step. In the global-subregional policy, two adjacent
subregions 11 and 12 of high reward value will be assigned to
two different pursuers, p l and p2 respectively. If pl happens
to be much closer to 11 than p2 is to Z2 then p l will complete
searching 11, and on the next time step it will be assigned
to 12 as it is the closest pursuer to it. Meanwhile, p2 was
traveling towards 12 and now will have to be assigned to

760

(a) Global-max with no over!ap

(b) Global-subregional

(c) Local-max with no overlap

Fig. 6. Three pursuers versus three evaders under different pursuit policies,
(a) Global-max with no overlap, (b) Global-subregional, and (c) Local-max
with no overlap

another location. This constant reassignment practice results
in a resource allocation inefficiency, which accounts for the
worse performance of the global-subregional policy.

C. Time costs and other observations
Comparing the algorithms behind the policies, we see that

the local-max policies are computationally less expensive. In
the case of the global-max and global-subregional policies
we need to search over the whole state-space X in order to
find the desired target areas. The local-max policy, however,
only searches in U (z C p k (t)) which is a small subset of X .
Furthermore, U(z,, (t)) is of fixed size so the computational
complexity does not increase with the dimensions of the grid-
world.

Another interesting conclusion can be inferred from the
last two game settings in which we have the same total
sensing power of 32 cells distributed among eight and
two pursuers, respectively. The simulation results indicate
that distributing sensing power among a greater number of
pursuers significantly decreases capture time.

V. CONCLUSIONS AND FUTURE WORK
A. Conclusions

In this paper, we presented a number of pursuit algorithms
for solving complex multi-player pursuit-evasion games. In
the games we consider, a team of pursuers try to detect and
capture multiple evaders that actively try to avoid capture.
It was demonstrated that reducing sensing overlap between
pursuers and avoiding over-assignment of pursuers to target
locations improve the performance of pursuit policies in
terms of capture time. The strategies were heuristic because
we do not as yet have theory to support the existence of
solutions to multi-player games with partial information. Our

analysis, however, will be useful as a basis for developing
policy classes for the future “learning” controllers or the
study of finite horizon games.

B. Future Work
We expect that incorporating concepts of lookahead hori-

zons and discounts in determining target locations will
further improve the performance of our pursuit policies.
In developing the heuristic algorithms, we assumed that a
pursuer has access to perfect information concerning the
sensing data of all other pursuers. As a result, we were
able to develop a centralized probability map that was
used by pursuers to better organize information and assign
target areas. This assumption will be greatly challenged in
a real-life scenario with UAVs and UGVs, as in most cases
perfect communication between agents is not possible. Sen-
sor network approaches can remedy this limitation and [7]
describes a promising framework for adding sensor networks
to distributed pursuit-evasion games.

VI. ACKNOWLEDGMENTS
This research was supported by the U.S. Army Research

Office under MURI grant DAAD19-02-1-0383 “ACCLI-
MATE and DARPA program MICA under contract number

VII. REFERENCES

[l] S . LaValle, D. Lin, L. Guibas, J.C. Latombe, and R. Mot-
wani. Finding an unpredictable target in a workspace
with obstacles. In Proc. of IEEE Int. Col$ on Robotics
and Automation, pages 732-742, 1997.

[2] J. Hespanha, H.J. Kim, and S. Sastry. Multiple-agent
probabilistic pursuit-evasion games. In Proc. of 38th
IEEE CDC, pages 2432-2437, Dec. 1999.

[3] H. J. Kim, R. Vidal, 0. Shakemia, D. H. Shim, and
S . Sastry. A hierarchical approach to probabilistic
pursuit-evasion games with unmanned ground and aerial
vehicles. In Proc. of 40th IEEE Conference on Decision
and Control, December 200 1.

[4] D. H. Shim. Hierarchical Control System Synthesis for
Rotorcraji-based Unnuznned Aerial Vehicles. PhD thesis,
University of California at Berkeley, 2000.

[5] R. Vidal, 0. Shakemia, H.J. Kim, D. H. Shim, and
S . Sastry. Probabilistic pursuit-evasion games: The-
ory, implementation and experimental evaluation. IEEE
Transaction on Robotics and Autontation, 18(5):662-
670, Oct. 2002.

[6] S . Thrun. Robotic mapping: A survey. In G. Lakemeyer
and B. Nebel, editors, Exploring A rtijicial Intelligence in
the New Milleniuin. Morgan Kaufmann, 2002. to appear.

[7] Bruno Sinopoli, Courtney Sharp, Luca Scenato, Shawn
Schaffert, and Shankar Sastry. Distributed control ap-
plication within sensor networks. In Proc. of the IEEE
special issue on distributed sensor networks, Nov. 2003.

F33615-01-C-3 150.

761

