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Impulse Differential Inclusions: A Viability Approach
to Hybrid Systems

Jean-Pierre Aubin, John Lygeros, Marc Quincampoix, Shankar $S&sttgw, IEEE and Nicolas Seube

Abstract—mpulse differential inclusions are introduced as a mation techniques have been proposed to facilitate the analysis
framework for modeling hybrid phenomena. Connections to stan- [17]-[19]. Based on the theoretical results, computational
dard problems in the area of hybrid systems are discussed. Con- tools been developed to exactly compute the reachable set
ditions are derived that allow one to determine whether a set of . .
states is viable or invariant under the action of an impulse differ- Of Statés whenever possible [20]-[23], compute conservative
ential inclusion. For sets that violate these conditions, methods are approximations for it [24]-[28], or at least help establish some
developed for approximating their viability and invariance kernels,  of its properties deductively [29].
that is the largest subset that is viable or invariant under the action For continuous dynamical systems described by differential
of the impulse differential inclusion. The results are demonstrated . . . . .
on examol inclusions, questions of reachability have been addressed in the

ples. U o :
context ofviability theory[30]. Viability theory deals with two
fundamental properties of sets of states of a dynamical system.
Roughly speaking, a set of statds, is calledviableif for all
initial conditions ink there exists a solution of the dynamical
I. INTRODUCTION system that remains iff; it is calledinvariantif for all initial

YBRID systems, that is dynamical systems with inconditions inK all solutions of the system remain i. In
teracting continuous and discrete dynamics, are the case where a sdt, is not viable (respectively invariant),

convenient modeling abstraction that has been used extensiVéfPility theory techniques can also be used to establish the
to describe systems in a wide range of applications incIudiﬁQeSt_ subset o which is viable (respectively, invariant),
robotics, automotive electronics, manufacturing, automat¥¢pich is known as theiability kernel(respectivelyjnvariance
highway systems, air traffic management systems, integrat§in€) of &£. Numerical algorithms have been developed to
circuit design, and multi-media [1]-[4]. A substantial pargompute these kernels (see [31] and the references therein), and

of the literature on hybrid systems has been devoted to @€ been used to compute, for example, basins of attraction
problem ofreachability that is the question of whether, undefor €quilibria [32]. o .
the dynamics of a hybrid system, a given set of states can bdn this paper, we extend viability theory concepts to a wider
reached from a given set of initial conditions. Techniques ha@kSs Of systems, which we capulse differential inclusions
been developed for establishing whether the set of reachalfpulse differential inclusions capture a broad r.apge-of hybr|ld
states is contained in a certain set [5]-[9], o, in the case Bfénomena and allow one to model nondeterminism in the dis-
hybrid control systems, for synthesizing controllers that satisfjete evolution, in the continuous evolution and in the choice be-
such safety specifications [10]-[16]. Since the reachabiliyfween the two. We formulate a mathematical framework to pre-
problem quickly becomes computationally infeasible, approﬁ-'sely and concisely characterize the properties of sets of states
that are viable or invariant under the dynamics of an impulse dif-
ferential inclusion. In cases where the viability and invariance
Manuscript received February 2, 2001; revised June 20, 2001. Reco@@nditions are violated, we also provide a procedure for estab-
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Il. IMPULSE DIFFERENTIAL INCLUSIONS gent condo K atz, i.e., the set of € X such that there exists
a sequence of real numbéts > 0 converging to 0 and a se-

_ ) _ ~__ qQuence oly, € X converging tov satisfying
We start with a brief overview of some standard definitions

from nonsmooth and set valued analysis; for a more thorough Vn >0, x+hy, €K
treatment the reader is referred to [34], [35]. For an arbitraf%tice that, ifz is in the interior of &, Ti (z) = X. The con-

K i i
set, K, 2% is used to denote the power seti i.e., the set tingent cone is one of many notions of tangent set in nonsmooth

aB. e Y
of all subsets of<. anlr a set valued m e X - 2" anda analysis; for a full treatment of these notions the reader is re-
setK C Y we useR™*(K) to denote thenverse imagef K .0 [34], [35]

o1
undert and £~ (K) to denote thextended coref & under Subsequently we will be dealing with differential inclusions

R, defined by of the formi € F(z), whereF: X — 2%, A solutionto this
R YK)={zr € X|R(z)NK # 0} differential inclusion over an interv@, 77 starting atzg € X

and is an absolutely continuous functian [0, 7] — X, such that

- i i z(0) = zo and almost everywherg(t) € F(x(t)). To ensure

R7NK) = {z € X|R(z) C K} U {z € X|R(z) = 0}, e>(<is)tence of solutions we will negd)to im(pO(S()a) some standard

The inverse image and extended core are equivalent to the rggularity assumptions on the méj for example requird” to

tions of relation pre-image operators, discussed, for examplepi@ Marchaud and/or Lipschitz. We say that a nfapX — 2%

[36] in the context of modal logics. Notice th&*(Y") is the is Marchaudif and only if

set ofz € X such thatR(x) # 0. We call the seR~'(Y") the 1) the graph and the domain 6fare nonempty and closed,;

domainof R and the sef(z, y) € X x Y|y € R(x)} thegraph 2) forallz € X, F(x) is convex, compact and nonempty:

of iR, 3) the growth ofF is linear, that is there exists> 0 such
We useX to denote a finite dimensional vector space with the thatforallz €¢ X

standard Euclidean metric, denoteddy\e use| - || to denote

the corresponding norm. The metric notation is extended to sets sup {lvll[v € F(z)} < e(flzfl + 1)

K C X by setting We sayF is Lipschitzif and only if there exists a constakt> 0
d(x, K) = inf d(x, 2). (known as the ipschitz constantsuch that for allz, 2’ € X

' CK
F(z) C F(a') + M|z — 2| B(0, 1).

A. Notation and Terminology

Forz € X, we useB(x, n) to denote the closed unit ball of
radiusn > 0 aboutx

B(z, n) = {z’ € Xld(z, ') <n}.
The notation is extended to subsé&fsC X by setting

B. Basic Definitions and Assumptions

We will consider hybrid phenomena, in the sense of dynam-
ical phenomena that involve both continuous evolution and dis-
B(K,n) = U B(z, n). crete transitions. To distinguish the times at which discrete tran-

o€ K sitions take place we recall the notion of a hybrid time trajectory
[12], [37].

Definition 1 (Hybrid Time Trajectory):A hybrid time tra-

jectoryr = {I;}¥, is a finite or infinite sequence of intervals

We define the sum of two subsefs, and L, of a finite dimen-
sional vector space as the set

K+L={x+ylr€eKandy€ L}. of the real line, such that
Asetvalued mag: X — 2% is calledupper semicontinuous ~ * fOfi <N, I; = [Tiv 71
atz € X if for everye > 0 there exist$ > 0 such that s if N < oo, theneithedy = [rw, 7], Or Iy = [7n, Tx ],

ossibly with7}, = oo;

Vo' € Bz, §), R(z')C B(R(x), ). oralli < i
R is calledlower semicontinuous at € X if forall ' € R(x) Since the dynamical systems we will consider will be time in-
and for all sequences, converging tac, there exists a sequencevariant, we assume, without loss of generality, that 0. The
2! € R(z,) converging tox’. R is calledupper semicontin- interpretation is that; are the times at which discrete transitions
uous(respectiveljjower semicontinuoysf it is upper semicon- take place. Notice that discrete transitions are assumed to be in-
tinuous (respectively, lower semicontinuous) ataale X. It stantaneous, and therefore multiple discrete transitions may take
should be noted that, unlike single valued functions, these twlace at the same time instant (since itis possiblefef r;1).
notions of continuity are not equivalent for set valued maps.HBach hybrid time trajectory,, is linearly ordered by the relation
can be shown [34] that ik is upper semicontinuous with closed<, which for¢ € [r;, 7] € 7 and¢’ € [r;, 7/] € 7 is defined
domain andK C X is a closed set, theR~!(K) is closed, byt < # ifandonlyif# < # ori < j; we uset < # to denote
whereas ifR is lower semicontinuous and C X isanopen t < t,ort =t and: = j. Fort € R, we uset € 7 as a short-
set, thenR~*(U) is open. Notice that the last statement also infrand notation for “there existsjasuch that € [r;, 7] € 7.
plies that if R is lower semicontinuous anli C X is closed, For a topological spac& we usek: 7 ~» K as a shorthand
RPY(K)is closed, sinck“(K) = X\R71(X \ K). notation for a map assigning values frdtnto all t € 7. Notice

For a closed subsefy C X, of a finite-dimensional vector thatk: = ~~ K is not a functionover the interval J, I;, since it
space, and a point € K, we use€lx (x) to denote theontin- assigns multiple values to the times= , = 7/_;.
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e in the literature, such as different variants of hybrid automata
(HA) [9], [13], [36], [38] and hybrid input/output automata
(HIOA) [7]. Many of the properties studied here for impulse
differential inclusions can be easily extended to these different
classes of models by assuming that the discrete states of the
HA and the HIOA are embedded in a finite dimensional vector
space and evolve in continuous time under a trivial differential
inclusion & € {0}). In this context, impulse differential inclu-
sions are more general than the hybrid automata of [36], [38],
since they allow nondeterministic evolution in continuous time.
They are comparable to the hybrid automata of [9] (without
the restrictions imposed for decidability) and [13] (without
differentiating between controls and disturbances). Finally,
impulse differential inclusions are not as general as HIOA
[7], since the latter allow continuous states that take values in
infinite dimensional spaces (e.g., can be used to model systems
with delays).

Fig. 1. Arun of an impulse differential inclusidiX, F, R, J). C. Classification of Runs

Definition 2 (Impulse Differential Inclusion)An impulse Definition 3 allows for runs defined over finite or infinite
differential inclusion is a collectiodl = (X, F, R, J), con- time horizons,” runs that take a finite or infinite number of dis-
sisting of a finite-dimensional vector spa&e a set valued map Crete transitions, etc. To distinguish these cases we introduce the
F: X — 2% regarded as differential inclusioni € F(z), a following classification.
set valued mag: X — 2%, regarded as eeset mapand aset ~ Definition 4 (Run Classification):A run, (7, x), of an im-

J C X, regarded as forced transition set pulse differential inclusion, is called

We callz € X thestateof the impulse differential inclusion.  « finite, if 7 is a finite sequence ending with a compact in-

Subsequently] = X\.J will be used to denote the complement terval;

of J. « finite-openif 7 is a finite sequence ending with an interval
Impulse differential inclusions can be used to describe hybrid  of the form[rx, 74 [ with 74 < o0;

phenomena in the following sense. « infinite, if either 7 is an infinite sequence, or, (v} —
Definition 3 (Run of an Impulse Differential Inclusionp T;) = o0

run of an impulse differential inclusiodf = (X, F, R, .J), is » Zenqifitisinfinite and) ", (7 — 7;) < oo.

a pair,(, =), consisting of a hybrid time trajectoryand a map e will use R (o) to denote the set of all infinite runs &f

z: 7~ X, that satisfies starting atzo (some of which may be Zeno while others not).
» Discrete Evolutionfor all i, z(7;11) € R(z(7])); Ideally, one would like to be able to extend all runs of an im-

+ Continuous Evolutionif 7; < 7/, z(-) is a solution to the pulse differential inclusion over arbitrarily long time horizons.
differential inclusioni € F(x) over the intervalr;, 7;] In certain cases, however, this may not be possible; an impulse
starting atz(7;), with z(¢) ¢ J forall t € [r;, 7/[. differential inclusion may produce runs that escape to infinity

We will use R (z¢) to denote the set of all runs of an im-in finite time along continuous evolution, runs that block, and
pulse differential inclusio#! = (X, F, R, J) starting ata state Zeno runs (refer to Fig. 2).

x(m0) = o € X.An example of a run of an impulse differential Inthe case ofinite escape timeghe run is defined over a finite
inclusion is shown in Fig. 1; the solid arrows indicate continuowsquence ending in a right open intervalry, 74, [ with 75, <
evolution while the dotted arrows indicate discrete transitionso andlim,_, -, ||x(t)|| = oo. This situation can be prevented
Definition 3 dictates that, along a run the state can evolve cdsy imposing regularity assumptions éh

tinuously according to the differential inclusiane F'(x) until Proposition 1: If F' is Marchaud, every finite-open run of
the set/ is reached. Moreover, whenev&(z) # (), a discrete the impulse differential inclusio®d = (X, F, R, J) can be
transition from state: to some state ifR(xz) may take place. extended to a finite run.

In other wordsR enablesdiscrete transitions [transitions may The proofis straight forward: the claim follows from standard
happen whe?(z) # ¥ but do not have to], while forcesdis- results for existence of solutions of differential inclusions [30],
crete transitions (transitions must happen when .J). Notice and the fact that along continuous evolution over an interval
that if at a stater € X a transition must happen € J) butis [, 7/] with , < 7/, =(t) ¢ J is only required fort € [r;, 7/[.

not able to R(x) = ) the systenblocks in the sense that there The Marchaud assumption éfwill be imposed throughout this
does not exist a run of the impulse differential inclusion startingaper to ensure the existence of runs. In Section Ill, additional
atx [other than the trivial rur{[0, 0], z)]. Regularity assump- technical requirements will be imposed on the nfaand the
tions that prevent such behavior are discussed in detail belowet./ to allow us to characterize viability and invariance.

Definitions 2 and 3 suggest that impulse differential inclu- In the case ofblocking the run is defined over a finite

sions are intimately related to other modeling languages fousequence-, ending in a closed intervédty, 75| such that at
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define reachability controller synthesis problems, where the ob-
jective is to choose the values of the control inputs such that the
run of the system never leaves the good &ef15], [10]-[14],

[16]. The solution to reachability controller synthesis problems
comes down to computing controlled invariant subset&zof
[12], [30], that is subsets off for which there exist a choice
for the control such that the runs of the system that start in the
set stay in the set for ever.

For impulse differential inclusions, reachability questions can
be characterized by viability constraints.

Definition 5 (Viable Run): A run, (7, ) of an impulse dif-
ferential inclusionH = (X, I, R, J), is called viable in a set
K CXifforall t e, z(t) € K.

Notice that the definition of a viable run requires the state to
remain in the sek” throughout the run, along continuous evolu-
tion up until and including the state before discrete transitions,
as well as after discrete transitions. Based on the notion of a vi-
Fig. 2. Examples of Zeno, blocking and finite escape runs. able run, one can define two different classes of sets.

Definition 6 (Viable and Invariant Set)A set K C X
z(7)y) neither continuous nor discrete evolution are possiblis, called viable under an impulse differential inclusidf, =
i.e.,z(ry) € JandR(z(7})) = 0. To prevent this situation (X, F, R, .J), if for all z; € K there exists an infinite run,
we introduce the following assumption. (1, z) € R¥(xo), viable in K. K is called invariant under

Assumption 1:An impulse differential inclusion the impulse differential inclusion, if for alt, € K all runs
(X, F, R, J) is said to satisfyAssumption If J C R71(X) (1, z) € Ry(xo) are viable ink.
and, if.J isopen (hencd, = X\ J is closed) F'(x)NT;(x) # 0, In the cases where an impulse differential inclusion fails to
forallz € I\R1(X). satisfy a given viability or invariance requirement, one would

Roughly speaking, Assumption 1 implies that if for soméke to establish sets of initial conditions (if any) for which the
x € X continuous evolution is not possible (becausis ei- requirement will be satisfied. This notion can be characterized
ther in.J or is forced to enter along all solutions of the dif- in terms of viability and invariance kernels.
ferential inclusion) then a discrete transition has to be possibleDefinition 7 (Viability and Invariance Kernel)The
(R(z) # 0). It can be shown that under Assumption 1 and sonvability kernel, Viaby(K) of a setK C X under an im-
additional technical requirements, every finite run of the impulse differential inclusionH = (X, I, R, .J) is the set
pulse differential inclusion can be extended to an infinite ruof stateszg € X for which there exists an infinite run,
The proof will be deferred for the time being, since it follows aér, ) € R (z0), viable in K. The invariance kernel,

a corollary of the viability theorems given below. Assumptiodnvy (K) of K C X underH = (X, F, R, J) is the set of
1 will not be imposed as a standing assumption, whenever itsigtesz, € X for which all runs(r, ) € Ry (xo) are viable
invoked it will be clearly stated. in K.

Finally, in the case of Zeno run the system takes an infinite  Notice that by definitiorV iaby (K) C K andInvy(K) C
number of discrete transitions in a finite amount of time. Thi&, but in general the two sets are incomparable.
is, in a sense, a discrete version of finite escape time since the
run can effectively be defined only over a time horizon of thE. Special Cases and Alternative Characterizations
form[ro, lim;.c 7;[. Zeno runs are somewhat more difficult to |mpulse differential inclusions are extensions of differential
characterize and eliminate [38], [39]; some sufficient conditiongclusions and discrete time systems over finite dimensional
will be given in Section IIl. vector spaces (see for example [30]). A differential inclusion

X J [24],[25], [29], [21]. If control inputs are available, one can also
Finite escape time

Blocking run

Zeno runs

D. Viability Definitions & € F(x)

Questions of reachability have been widely studied in the hy-
brid system literature. Roughly speaking, a verification problepover a finite dimensional vector spaée can be thought of as
for areachability(or safety specification involves proving that an impulse differential inclusio X, F, R, J), with R(z) = @
the state of the system never leaves a certain “good” Gaff, forallx € X andJ = . Likewise, a discrete time system
X, of the state space (or, equivalently, never enters a “bad” part,
B C X, of the state space). The solution to this problem in- Tpy1 € R(zy)
volves computing the set of states that can be reached from a set
of initial conditions by finite runs of the hybrid system. Theoretean be thought of as an impulse differential inclusiéh, =
ical methods have been developed for performing these compix- I, R, .J), with F'(z) = {0} forallz € X and.J = X.
tations [5], [6], [17], [7], [8], [18], [9], some of them supportedThe situation where a nonzero amount of time elapses between
by automated or semi-automated tools [20], [22], [23], [26lwo transitions of the discrete system can also be easily encoded,
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by letting.J = 0. The two formulations are equivalent from the
point of view of viability, under the assumption that the time
between any two transitions is finite. As expected, the viability
and invariance conditions developed below for impulse differer
tial inclusions reduce to the corresponding conditions for differ
ential inclusions and discrete systems, when restricted to thel___T=" T<78
special cases.

In the control literature, differential inclusions and dis-
crete-time systems are frequently used to model continudtig 3. Thermostat system.
and discrete control systems. The continuous control system

Te [aT, bT]+50 Te [aT, bT]+100

&= flz,v), wve V() Moreover, if J = @, then all pairgr, x) with 7 a hybrid time
trajectory ande: 7 ~» X, that satisfy (1) are runs d¥ .
with z € R*, v € R™, f: R* x R™ — R™ andV: R* — 2R™ If J = 0 (there are no forced transitions), the impulse differ-
can be though of as a differential inclusion ential inclusionH can also be denoted symbolically as

€ F(z)={f(z,v)lveV(x)}.
#(t) € F(x() + Y S (=(r])) 8(r))
Likewise, the discrete-time control system i>0

Ty = 7(wn, vk), vk € Vian) whereé(t) is the Dirac measure at tinteand, as beforey, <
with z;, € R™, v, € R™, r: R* x R™ — R™ andV: R" — 28™ ™ < - <7/ <---denotes a sequence of switching times and

can be though of as z(7}) a sequence of elements &f. This notation can be mis-
leading since it may convey the impression that switching times
Tpy1 € R(zy) = {r(ag, v)|ve V(e)}. are prescribea priori. We mention it, however, to establish a

) o . . . ) connection with the notation used in [40].
Extending this interpretation to the hybrid domain, an impulse

differential inclusion can be though of as a hybrid contrgt £, -0
: : . . =, ples
system. In this context, the relation between invariance/vi- _ ) o )
ability and verification/controller synthesis for reachability TO illustrate how impulse differential inclusions can be used
specifications becomes clearer. Recall that a reachabiliycharacterize hybrid phenomena we consider two simple ex-
specification is encoded by a “good” set of statéspne would amples from.the hybrid systems Ilteratgre: a thermostat system
like to ensure that the state remainsGnalong all runs of the and a bouncing ball system [41]. We will return to these exam-
system (verification) or, if control inputs are available, chooggles in Section V, to illustrate the viability and invariance con-
the inputs so that the state remaingdr(controller synthesis). ditions for impulse differential inclusions.
If the inputs,v, represent uncontrollable disturbances and thel) Thermostat: The thermostat system (adapted from a sim-
good set(, can be shown to be an invariant set (in the sengéer example given in [41]) models a room whose temperature,
of Definition 6), then it is easy to check that the hybrid syster, is controlled by a thermostat. The thermostat tries to keep
satisfies the safety specification encoded@yin the sense the room temperature at 75 degrees by switching a heater on
that any run that starts i it remains inG for ever. If G is  and off. When the heater is on the temperature of the room in-
not invariant then its invariance kernel is the largest set gfeases, while when the heater is off the temperature of the room
initial conditions for which the safety specification is satisfiedjecreases. To avoid modeling the details of the heat transfer
Alternat|ve!y, if the inputsy, represe.nt cc')ntrols,' Vlablllty of process, we assume that the exact rate of increase or decrease of
G can be interpreted as controlled invariancedifis viable, e temperature is unknown and may change with time, but that
then it is possﬁle t(l)l deS|gnfa ﬁontlrolle(; flor the hybrid Eontr(?tls value can be bounded by known constants at all times. To pre-
§ys(§em such tGa]E a runslfC)Gt_ € ctos_e bl Ootﬁ Sy.stte”? tb'?': St@&ht the heater from chattering between on and off, the thermo-
N & remain int- for ever. IS not viable, then IS viabllity stat allows the temperature to fluctuate slightly about the desired
kernel is the maximal controlled invariant subset®f . : . . o
. . L . . set point. To avoid modeling the details of the switching process,
The runs of an impulse differential inclusion can also be in- X )
. . . . we assume that the heater is switched on somewhere between 72
terpreted in the context of impulse control by introducing the 473 d di itched off here betw 27 and
switching maps: X — 2%, defined by an egrees and is switched off somewhere between 77 an
78 degrees, but the exact switching point is unknown and may
S(z) ={a' € X|3y € R(z), ' =y—a}. change in time. A typical trajectory of the system, as well as a
hybrid model in the intuitive directed graph notation, are shown
Proposition 2: If (7, z) is a run of an impulse differential in Fig. 3.
inclusionH = (X, F, R, J), then forallt € 7 The thermostat system can be modeled by an impulse differ-
+ ential inclusionHr = (Xr, Fr, Ry, Jr) with two state vari-
e(t) € {a(ro)t+ > S(a(r))) +/ F(z(t)) dt'. (1) ablesg = (1, x2): the current room temperatusg = 7 and
{il+] <t} 0 the steady state toward which the temperature is converging
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X2
X1

X< 0 and X< 0 Xpi= =0 Xy

0
=%
X2= -8

x> 0 or Xp> 0

Fig. 4. Bouncing ball.

(which of course depends on whether the heater is on or off). lll. VIABILITY AND INVARIANCE CONDITIONS
Therefore,X; = R, and Having motivated the importance of viability and invariance
properties of impulse differential inclusions to the analysis and
Fr(zy, z2) = ([a(xy — x2), b(z; — x2)], 0) controller synthesis_of hybrid syste_ms, we give cond_itio_ns that
(1, 150—23) if (21> 77 anday > 75) _allovv_ one to det_errr_u_ne Whet_h_er a given set of states is V|_a_ble or
Ry(x1, 22)= L 2 L= <73 é— <75 invariant. _The V|ab|_I|ty condmpn_s _naturally Iead_ to condm_ons
T 22 or (x.l <73 andw; <75) under which the existence of infinite runs of an impulse differ-
? otherwise ential inclusion is guaranteed for all initial conditions.
Jr = {.T € XT|(.Z‘1 > 78 andxy > 75)
or (z; < 72 andz, < 75)} A. Viability Conditions

The viability conditions for impulse differential inclusions in-
IvoIve the notion of “viability with target.” This notion was intro-

with ¢ < b < 0. Notice that the resulting impulse differential . . . o . .
inclusion can exhibit many more behaviors than the physic% ced in [42] for continuous differential inclusions, motivated
system in question, sinae is not restricted to the 650, 100 partly by target optimal control problems (see for example [43]).

- . Viability with target provides conditions under which solutions
However, under the additional assumption thét,) € R x of & € I'(x) that remain viable in a set until they reach a

. o : )
{?O’ 100,} 't, IS easy t.o _ShOW that the behavior of the _'mpms?arget set” exist. For completeness, conditions are summarized
differential inclusion is indeed the expected (see Section V). below.

2) Bouncing Ball: The bouncing ball system [38], [41] Lerﬁma 1: Consider a Marchaud map: X — 2% and two
models an elastic ball bouncing on a level surface under th@seq setdy C X andC C X. For allz, € K, there exists a
effect of gravity (Fig. 4). We assume that the ball looses g|ytion ofi € F(z) starting atro which is either

fraction of its kinetic energy with each bounce. 1) defined ovef0, oo with «(t) € K for all ¢ > 0:
The vertical motion of the ball can be captured by an im- 2) defined 0ver[07 17 for someZ" > 0, with x(}) 6 C and
pulse differential inclusionHg = (Xg, Iz, Rg, Jg) with z(t) € K for e{II te o, T]; -
two state variables, the height of the bal|,and its velocity in if and only if for all z € K\C, F(x) N T () # 0.
the vertical directiong. Therefore X5 = R? and The proof whenF is Lipschitz is given in [42]. The proof

when F' is Marchaud can be found in the Appendix. Notions
related to viability with target have also been studied in the

Fp(z1, 2) = (22, —g)
context of branching time temporal logics, such as CTL, pri-

Rp(z1, x2) = { (#1, —a@z) if 21 < Oandz: <0 marily from a discrete point of view. The most closely related
] otherwise notion is weak unti] sometimes denoted by W. The more
Jp = {z € Xp|z; < 0andz, <0} common notion ofpossibly until(usually denoted byif) is

slightly stronger; in our context it would exclude solutions that

] ) stay in K forever, without ever reaching' (see, for example
whereg represents the acceleration due to gravity afide [9]). (Ab)using the CTL notation, one could think of the prop-
[0, 1] the fraction of energy lost with each bounce. Again thgrty “K is viable with targetC” in terms of the CTL formula
impulse differential inclusion can demonstrate many more bes[(; ¢ K)} v {(z € K) 3U(x € C)}.
haviors than the physical system in question, sincés not  The conditions characterizing viable sets depend on whether
assumed to be nonnegative. However, under the additional @& setJ is open or closed. In the case whefés closed, we
sumption thate(7o) € [0, o) x R it is easy to show that the have the following.
behavior of the impulse differential inclusion is indeed the ex- Theorem 1 (Viability Conditions/ Closed): Consider an
pected (see Section V). impulse differential inclusiold = (X, F, R, J) such that?’
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X As noted in Section I, continuous differential inclusions and
discrete time systems can be thought of as special cases of im-
pulse differential inclusions. Therefore, one would expect that
the viability conditions of Theorems 1 and 2 will reduce to the
standard viability conditions given in the literature for these spe-
cial cases. Indeed, one can show that the conditions of the above
theorems imply the following version of the conditions of [30].
Corollary 1: Consider a Marchaud map: X — 2%, an
arbitrary mapR: X — 2%, and a closed st C X.
1) K is viable under the differential inclusioh € F'(z) if
and only if for allz € K, F(z) N Tk () # 0.
2) K isviable under the discrete time system 1 € R(xy)
ifand only if forallz € K, R(z) N K # 0.

B. Existence of Runs

Notice that Assumption 1 does not need to be added explic-
itly to Theorems 1 and 2, since the part of it that is essential to
Fig. 5. K viable underf = (X, F, R, J). guarantee the existence of a run viablednis implied by the
conditions of the theorems. Conditions that guarantee the exis-
'(]ence of runs for impulse differential inclusions can be deduced
as a corollary of Theorems 1 and 2.

Corollary 2: Consider animpulse differential inclusiéh =
. (X, F, R, J) such thatF' is Marchaud, and? is upper semi-

DENTC R;l (K); continuous with closed domain antis either open or closed.

2) Va € KNR™(K), Fx) N Tie(x) # 0. Every finite run of H can be extended to an infinite run if and
In words, the conditions of the theorem require that for any Stadfily if H satisfies Assumption 1.

« € K, whenever a discrete transition has to take plac&(  1q gee this, replac&’ by the (closed) seX in Theorems 1
K nJ), atransition back intd is possible {(x) N K # @),  and 2. The first condition of both theorems is then part of As-
and whenever a discrete transition to another poidt’iis not sumption 1. In the case whetgis closed, the second condi-
possible {(x) N K = ) continuous evolution that remains ingi,n of Theorem 1 is trivially satisfied, since for afl € X,

K has to be possible [encoded by the local viability conditiO@X(x) — X andF(z) # 0 (recall thatF is Marchaud). In the

F(x) NTx(x) # 0]. Justas with viability conditions for differ- case were/ is open, the second condition of Theorem 2 is part
ential inclusions, this last condition can equivalently be give(gbf Assumption 1

in terms of theproximal normal cong30]. Going through the Corollary 2 can be used to ensure that a model for a phys-
proof of Theorem 1 it becomes apparent that the assumptionsig

Al process given in the impulse differential inclusion frame-
1 ; _

[z are only used to §how that the ggr (K) is closed. .Ther.e work produces infinite runs for all initial conditions. Ideally, one
fore, the theorem still holds even & is not upper semicontin-

) . 1 would also like these runs to be non-Zeno. Set valued analysis
uous with closed domain, bét~*(K') happens to be closed. . . o . o7
- . . Lo techniques can be used to derive conditions under which this is
Similar conditions characterize viability when the skis

open, or, in other words, the set= X\ J is closed indeed the case. A condition for a simple case that will be useful
Theorem 2 (Viability Conditions/ Open): Consider an in the examples is given below; more general conditions are the

impulse differential inclusiod = (X, F, R, J) such that#’ topic of on-going research.
is Marchaud,R is upper semicontinuous with closed OIOmaiI]LIProposmon 3: Consider an impulse differential inclusion

and./ is open. A closed sek C X is viable underH if and = (X, F’ R, J) such thatF” !s _Marchaud andR has
only if closed domain. Assume thé#l satisfies Assumption 1, that

R™YX)N R(X) = 0, and thatR(X) is compact. Then all

—1 ’

D KENJCR (K)iand infinite runs of H (which exist thanks to Corollary 2) are
2) Vo € (KNI\RNK), F(z) N Tinr(x) # 0. on.Zeno,

The first condition is the same as for the case wheiclosed: Analogs of Proposition 3 can be obtained with any other set of

whenever a discrete transition has to take place from a poinidgngitions that provide a lower bound between transition times.
K, atransition back intd( must be possible. The second con-

dition requires that whenever a discrete transition #gtis not C. Invariance Conditions

possible, there should be a solution to the differential inclusion

that stays ik’ and avoids/. The second condition can again be The conditions for invariance make use of the notion of “in-
given equivalently in terms of the proximal normal cone and thariance with target” for continuous differential inclusions. In-
requirements o can be relaxed, as noted above. Fig. 5 sugariance with target involves conditions ensuring that all solu-
gests how the conditions of Theorems 1 and 2 can be interpretieths of & € F'(x) remain in a sefs until they reach a target set,
pictorially. C (in subsequent discussianwill play the role ofC). The in-

is Marchaud,R is upper semicontinuous with closed domai
and.J is closed. A closed sdt C X is viable unde if and
only if
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X literature. Indeed, one can show that the above conditions imply
the following conditions of [30].
Corollary 3: Consider a Marchaud and Lipschitz map
F: X — 2% amapR: X — 2%, and a closed sét’ C X.
1) K is invariant under the differential inclusighe F(x)
ifand only if for all z € K, F(x) C T (x).
2) K is invariant under the discrete-time systam,; €
R(zy)ifandonly ifforallz € K, R(z) C K.

IV. VIABILITY AND INVARIANCE KERNELS

A. Characterization of the Viability Kernel

If K is not viable under an impulse differential inclusiéh
one would like to characterize the largest subsetof/hich is
viable underH . This set turns out to be the viability kernel &f
under the impulse differential inclusion. The viability kernel of
an impulse differential inclusion can be characterized in terms
of the notion of the viability kernel with target for a continuous
Fig. 6. K invariant unde(X, F, R, .J). differential inclusion. For a differential inclusioh € F(x),
the viability kernel of a sef( with targetC, Viabp(K, C),

. . i . N . . 'P defined as the set of states for which there exists a solution
variance with target conditions are interesting in their own “g% the differential inclusion that remains ki either forever, or

so they are summarized separately in the following lemma. o . . .
) . . : until it reacheg”'. The following lemma summarizes the basic
Lemma 2: Consider a Marchaud and Lipschitz mapX — . o .
properties of the viability kernel with target.

2% and two closed set& andC. All solutions ofi € F(z) Lemma 3: Consider a Marchaud map: X — 2¥ and two
starting at some, € K are either closed subsets ok, K and C. Viabr(K, C) is the largest

RK) NR(X

1) defined ovef0, co[ with () € K forall ¢ > 0; closed subset ok satisfying the conditions of Lemma 1.
2) defined ovef0, 7] with z(T) € C andz(t) € K forall  For the proof, the reader is referred to the Appendix and, for
t € [0, 17; the Lipschitz case, to [42] [where an approximation scheme for
if and only if for all z € K\C, F(z) C T (z). computingViabr (K, C) is also given]. Notice that, by defini-

Lemma 2 allows us to prove the following invariance theoref#Pn
for impulse differential inclusions.

Theorem 3 (Invariance Conditions)Consider an impulse
differential inclusiond = (X, F, R, J) such that/" is Mar-

KNC CViabp(K, C) C K.

) . A ; Using this notion, one can give an alternative characterization
chaud and Lipschitz and is closed. A closed s&k” C X IS f the sets that are viable under an impulse differential inclu-
invariant undet if and only if sion, as fixed points of an appropriate operator. For an impulse
1) R(K) C K; differential inclusiond = (X, F, R, J), consider the operator
2) Vz € K\J, F(z) C Tx(x). Pre3p: 2% — 2X defined by
In words, the conditions of the theorem require that for all ) =) =)
« € K, if a discrete transition is possible € R~1(X)), then 1 7¢H (K) = Viabp (KNI, RHK)) U (KN R H(K)).
all states after the transition are alsdin((x) C K), whereas Racall thatl — X\J.
if continuous evolution is possible (¢ /) then all possible s0- | amma 4: Consider an impulse differential inclusidd =
lutions of the differential inclusiof € F'(z) remain ink [char- (X, F, R, J) such that#" is Marchaud R is upper semicontin-
acterized here by the invariance conditibits) < Zw(2)]-  yous with closed domain, anlis open. A closed sek C X
As for continuous differential inclusions, the second conditiog yiaple unded if and only if it is a fixed point of the operator
can also be characterized equivalently in terms of the proxinpl,,e?{_
normal cone. Fig. 6 suggests how the conditions of Theorem 3rpegrem 4 (Viability Kernel):Consider an impulse differ-
can be interpreted pictorially. ential inclusionH = (X, F, R, J) such that” is Marchaud R
Notice that no assumptions need to be impose&oftrictly is upper semicontinuous with closed domain and compact im-
speaking, Theorem 3 remains true even without Assumptiongljes, and is open. The viability kernel of a closed 96tC X
if the impulse differential inclusion has no runs for certain iniunderH is the largest closed subset&fviable underH, that
tial conditions ink, then, vacuously, all runs that start at thes®, the largest closed fixed point &frc3, contained ink .
initial conditions are viable id(. In practice, it may be prudent The assumption can again be modified somewhat, by re-
to impose Assumption 1, to ensure the results are meaningfujuiring thatR has compact images adt~ (K ) is closed for
As before, one would expect the above invariance conditioal closed setd{ C X. It should be stressed that the conditions
to reduce to the standard invariance conditions for continuoo&Theorem 4 ensure that for all initial conditions in the viability
differential inclusions and discrete time systems found in thernel infinite runs of the impulse differential inclusion exist,
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but do not ensure that these runs will extend over an infinikernel with target for continuous differential inclusions. For a
time horizon; all runs starting at certain initial conditions imifferential inclusionz € F'(x), the invariance kernel of a set
the viability kernel may turn out to be Zeno. To ensure that th€ with targetC, Invp(K, C) is defined as the set of states
runs extend over an infinite time horizon, assumptions like thier which all solutions to the differential inclusion remain in
ones listed in Proposition 3 need to be added to the theoremk either for ever, of until they react. The following lemma
The proof of Theorem 4 is based on the following abstrastimmarizes the basic properties of the invariance kernel with
algorithm, which follows the standard iterative characterizatidarget.
of the greatest fixed point of a monotone operator on a completd_emma 6: Consider a Marchaud and Lipschitz mBpX —
lattice [44]. 2% and two closed subsets &f, K andC. Invg(K, C) is the
largest closed subset &f satisfying the conditions of Lemma 2.

Algorithm 1 (Viability Kernel Approx.) Notice that, by definition

initialization D Kog=K, 1=0 KNC C Invp(K, C) C K.
repeat
K1 = Pre3 (K;) Using the notion of invariance kernel with target, one can give
i =4i+1 an alternative characterization of the sets that are invariant under
until  K; = K; 4 an impulse differential inclusion, as fixed points of an operator.

Given an impulse differential inclusio = (X, F, R, J),

. consider the operatdPreY,: 25X — 2% defined b
As shown in the proof of Theorem 4, the séfs form a se- ! P " - ! y

guence of nested closed sets. Given alSeit may, in general, Preyy (K) = Invp(K, J) N ROYK).

be impossible to compute its succesddy,.; effectively (i.e., ) _ ) o _

in finite time). An in depth study of numerical methods for ap- Leémma 7: Consider an impulse differential inclusidi =
proximating the computation can be found in [33]. Even in caséd’s £ &, J) suchthat"is Marchaud and Lipschitz; is lower
where exact computation of the séfsis possible, the Viability Semicontinuous, and is closed. A closed sék’ C X is in-
Kernel Approximation algorithm may still fail to terminate in avariant undett if and only if it is a fixed point of the operator
finite number of steps. However, the sé{s generated by the Preg.

algorithm provide successively better estimates of the viability Theorem 5 (Invariance Kernel)Consider an impulse differ-
kernel in the following sense. ential inclusiond = (X, F, R, J) such that/" is Marchaud

Lemma 5: Consider an impulse differential inclusid#i = and Lipschitz,R is lower semicontinuous andlis closed. The
(X, F, R, J) such thatF" is Marchaud R is upper semicontin- invariance kernel of a closed skt C X underH is the largest
uous with closed domain antlis open. LetX’ C X be a closed closed subset &K invariant undet, that is, the largest, closed
set andk; be the sequence of sets generated by the Viabilifked point of Prej; contained ink'.
Kernel Approximation algorithm. Them, € K if and only Again the proof of Theorem 5 makes use of_ the sequence of
if there exists a rurfr, ) € Ry (zo) that remains ink for at Sets generated by the following abstract algorithm.
leastV jumps.

“Remains inK for at leastV jumps” is meant to be inter- Algorithm 2 (Invariance Kernel Approx.)

preted as “eithefr, x) is infinite andz(¢) € K forall ¢ € 7, or initialization : Ko=K, i=0
the sequence consists of at leasV + 1 intervals and:(¢) € K repeat
forall t < 741" (up to and includingry1). Ky = Pref, (K;)

Ideally, one would also like to be able to characterize the via-z = ¢ 4 1
bility kernel whenJ is closed. Unfortunately, a precise charuntil K, = K, ;
acterization like the one given in Theorem 4 turns out to be
much more difficult in this case. For example, itis easy to show ot each step, the algorithm computes the set of states for
that if / is closed, the viability kernel may be neither an opegyhich all solution of the differential inclusioi € F(z) stay in
nor a closed set. Consider the impulse differential incIusqueKi until they reach/. K, is then the subset of those states
H = (X, F, R J)with X = R, F(z) = {0} forall z, for which if a transition is possible, the state after the transition
R(z)=A{2}ifz =1 R(z)=0if v #1andJ = [1, col. Itis g als0 inK;.
easy to check thaf is Marchaud andt is upper semicontinuous | emma 8: Consider an impulse differential inclusidd —
with closed domain, buf is closed. One can see that the via(X’ F, R, J)suchthaf” is Marchaud and LipschitZ is lower
bility kernel of the closed set’ = [0, 1]is Viaby (K) = [0, 1[,  semicontinuous and is closed. Let C X be a closed set and
which is neither open nor closed. K; be the sequence of sets generated by the Invariance Kernel
Approximation algorithm. Itz € Ky, then all rungr, z) €
Ru(xo) remain inK for at least| N/2| jumps.

If K is not invariant under an impulse differential inclusion |N/2] is the greatest integer not exceedM@2. “Remain in
H, one would like to characterize the largest subsét efhich K for at least V/2] jumps” is to be interpreted as in Lemma 5.
is invariant under . This turns out to be the invariance kernel Ideally, one would also like to characterize the invariance
of K under the impulse differential inclusion. The invarianckernel in the case wherg is open. Unfortunately a precise
kernel can be characterized using the notion of the invariancearacterization in this case turns out to be difficult. One can

B. Characterization of the Invariance Kernel
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again construct counter examples that suggest that the invaritJsing the viability tools one can also show that the thermostat
ance kernel may be neither an open nor a closed set. Considentlamages to keep the temperature of the room within the desired
impulse differential inclusio = (X, F, R, J)with X =R, levels.

F(z) = {1} for all z, R(z) = {z} andJ =]—o0, 1[. F'is Proposition 5: The setL = {z € Xy|z; € [73, 77|} is
Marchaud and Lipschitz ang is lower semicontinuous, but  viable, while the sed! = {z € X |z, € [72, 78]} isinvariant.

is open. One can see that the invariance kernel of the closed set Proof: L n.Jy = 0, therefore the first condition of The-

K =10, 1] is Invyg(K) = [0, 1], which is neither open nor orem 1 is vacuously satisfied fdr. Moreover

closed.
INR™YL) = {z € Xg|r, > 730rz; =73 andzy > 75}

V. EXAMPLES U {a: S XT|$1 < 77orx; =77 andzs < 75} .

We now return to the examples introduced in Section Il arfébr = such that73 < z; < 77, Tr(z) = Xr and therefore
show how the viability and invariance conditions can be used t&-(x) N T (x) = Fr(z) # 0. Forz such thatz; = 73 and
establish useful properties of the impulse differential inclusiar, > 75
models of these systems. The examples are simple and do not .
allow us to demonstrate the full power of the theoretical results Fr(z) = {v € Xrlvs € la(zy — 22), b(zy — x2)]}
presented above. More challenging examples are studied in [33] € {v € Xplv > 0} = Tk(z)
using numerical implementations of the abstract algorithms pr, acall thata < b < 0). A similar conclusion holds i, = 77

sented above. We are currently applying the same technique ﬁam < 75. The claim that. is viable follows by Theorem 1.
examples from collision avoidance and aerodynamic envelope-l-O see thatl is invariant, recall thatRy leavess, un-

protection for aircraft changed, therefor&(M) C M. Moreover
A. The Thermostat System M\Jp = {z € Xp|z; > 720rz; = 72andz, > 75}
The viability and invariance conditions can be used to show U {z € Xg|r; < 780rz; = 78 andry < 75}.

that the impulse differential inclusioA+ proposed for mod-
eling the thermostat system is indeed a reasonable model for I a@bove argument shows that foralle K\Jr, Frr(z) €
underlying physical process. First note tifais both Marchaud 7k (). The claim follows by Theorem 3.

and Lipschitz andr is both upper and lower semicontinuou

and has closed domain. B. The Bouncing Ball System

Proposition 4: The impulse differential inclusiof{; satis- It is easy to check that’s is both Marchaud and Lipschitz
fies the following properties: and that Rp is upper and lower semicontinuous and has
1) forallzo € Xz, RS (w0) # 0; c!osed domain. Moreovet{; also sati§fies Assumption 1,
2) the setk = {x € XTT|a:2 € {50, 100}} is invariant; sinceR~!(X) = J. Therefore, we can immediately draw the

following conclusion.

Proposition 6: For allzo € X7, R (zo) # 0.

The proposition suggests that the impulse differential inclu-
sion Hg does not deadlock. However, it is easy to show that
R™(X) = {z € Xr|ey > 77 andz, > 75} forall zp € X7 all (7, ) € Ry, (x0) are Zeno (see, for ex-

U{z € Xr|r; < 73andz, < 75} ample, [38] and [41]). As expected ;5 violates the conditions
- of Proposition 3, in particulaR(0, 0) = {(0, 0)}.
2 {z € Xrlz, 2 T8 andz; 2 75} Despite the Zeno behavicH,i is i?] me;{rgy wa)gls areasonable

3) forallzg € K, all (1, z) € R3;, (wo) are non-Zeno.
Proof: To show that infinite runs exist for all initial con-
ditions recall that/r is closed and

Uiz € Xpley < 72andw; < 75} = Jr. model of the bouncing ball system. For example, one can show
Therefore H satisfies Assumption 1, and the claim follows byihat the ball never falls below the surface on which it bounces,
Corollary 2. and that the system dissipates energy.

To show thatK is invariant notice thaf; leavesz; un-  Proposition 7: The seti’ = {x € Xr|z, > 0} is viable and
changed and maps = 50 to x> = 100 and vice versa. More- invariant. ForalC' > 0the setl. = {z € Xr|gz1+23/2 < C}
over IS Invariant.

Proof: For the first part, notice thakl N Jg = {z €
K\Jp = {z € Xp|z, > 72 andz; = 50} Xr|z; = 0 andz, < 0}. SinceRp does not affect:;, K N
U {z € Xr|z1 < 78andz, = 100} . Jp C RYK) andR(K) C K. Moreover,K\Js = {z €

Xr|zy > 0orz; = 0andze > 0}. Forz such thats; > 0,

Therefore, for alle € K\.Jr, Tk (x) = X =0}2
erefore, for all: € K\Jr, Tic(z) = {v € Xrfv: b2 Fp(z) C Tk(xz) = Xp. Forz such that; = 0 andzy > 0,

Lr(x). The claim follows by Theorem 3. | - e
Finally, to show that all infinite runs starting i& are Fp(x) € {v € Xvy > 0} = Ti(x). Therefore K is viable
non-Zeno let by Theorem 1 and invariant by Theorem 3.

For the second parf? leavesr; unchanged and maps to

D= inf llz — yl|- axz. ThereforeR(L) C L sincea € [0, 1]. Moreover
TER(X)NK, yeR-(X)NK

It is easy to check thab > 0. From this point on the proof is INJ = {z € Xr|z, > 00rz; > 0}
the same as the proof of Proposition 3. [ ] N {x € Xr|gx1 + x§/2 < C} .
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Forz € L\J such thalyz; + 23/2 < C, Fp(z) C Tx(z) = If 7q1 = 744
Xp. Forz € L\J such thagz; + z3/2 = C
2(1h41) =2(Tns1)
Tk (z) = {ve Xpl|vig +voxs < 0} /
D {v e Xplvig + vaxe =0} D Fp(x). € ta(r)} + il Z , S (2(7))
7 Ti,<7-7,7,+1
The claim follows by Theorem 3. [ ] /
Trg1
+/ F(z(t)) dt'.
VI. CONCLUDING REMARKS 0
Impulse differential inclusions were introduced as @therwise, ifr,1 < 7)., z(t) is a solution of the differen-
promising framework for modeling hybrid phenomena. Weal inclusioni € F(x) over[r,q1, 7,4, starting ate(7,41).
discussed how important problems in the hybrid systerhierefore, for alk € [7,41, 7/, 1]
literature, such as existence of runs, verification and controller

synthesis for safety specifications can be reduced to viability ¢

! !
and invariance questions for impulse differential inclusions. o(t) € {x(T"“)}JF/T o Fx(t)) dt
Motivated by this we developed conditions for determining ) t
whether a set of states is viable or invariant. In cases where = {x(70)} + Z S (z(])) +/ F(z(t)) dt'.
these conditions are violated, we developed characterizations {il7/ <t} 0
for the viability and invariance kernels of the set, and proposed
conceptual algorithms for approximating them. Summarizing, if (7, z) satisfies equation (1) for all
The results presented in this paper form the foundation fota€ [70. 7gl: - - -, [Tn, 73], then it also satisfies (1) for all

more extensive study of hybrid control through the framewofk€ [7n+1, 7,.41]- The first statement of the proposition follows
of viability theory. Problems we are currently working on inby induction.
clude optimal control of impulse differential inclusions (value T0 prove the second statement, observe that g pair) such
functions and their characterizations in terms of quasivariatiortpt for allz € =
inequalities or viability kernels), stability (Lyapunov functions t
and their characterization as viability kernels) and a study of x(t) € {x(7)} + Z S (z(7])) +/ F(z(t))dt’
the initialization map, which can be used to convert a hybrid {ilr <t} 0
system to a discrete time system by abstracting away the contin-
uous dynamics. In the future we plan to address the more chgtisfiess(7; 1) € {z(7))} +S(x(7])) = R(x(;)). Moreover,
lenging problem of hybrid differential gaming, in terms of disif 7; < 7/, #(¢) is a solution ta: € F'(x) over[r;, 7/] starting at
criminating kernels. This will allow us to address more general ;). Therefore, according to Definition 3,4f = ¢ then(r, x)
control problems, such as controller synthesis in the presencésof run of( X, F, R, J). u
disturbances and nondeterminism.
Proof of Lemma 1
APPENDIX Necessity: Consider:g € K\C andz(-) atrajectory starting

ADDITIONAL PROOFS from zo which stays inK' on some interval0, o] (and which

does not reacld’ in this time interval). By application of [30,

Proof of Proposition 2 Prop. 3.4.1], we obtain

We shall prove the first statement inductivelyzl= o the

statement is true. Iy = 7, z(7}) = x(70). Otherwise, if F(xo) NTx(xo) # 0.
To < 7, x(¢) is a solution of the differential inclusioh € F'(x)
over [, 74] starting atz(7o). Therefore Sufficiency: Let zg € K\C. Becaus& is closed, some >

0 exists such thaB(xzq, ») N C' # @. In the setBy (xg, 7) :=

¢ KnB(xg, r), 0ne can imitate the proof of [30, Prop. 3.4.2] and
a(t) € {a(70)} +/ F(a(t)) dt’, forallt € [ro, 7g]- obtain(the e)xistence af > 0 and of a solution ta: € F(x)
” starting atco which remains inBx (g, r) on|[0, 7.
In either case, equation (1) holds for ak [ro, 74]. Using an argument (Zorn's Lemma) classical in differential
Assume that (7, z) satisfies equation (1) for all €quationtheory,itis possible to extend) to a maximal trajec-
t € [10, 7], ..., [rn, 7.]. Observe that(r,1) € R(z(r)), tory—againdenoted(-)—onsomgo, 7] viable inK and such
and thatC' N[0, T') = §. EitherZ’ = 400 and the proof is complete,
or T < +oo and thenz(T') € C [if not one could extend a little
R(z(7)) = {=())} + S (2(7)) the trajectory to a viable one, this would be a contradiction with

the maximality ofz(-)]. |
= {z(r)}+ DY S(a)
Ll <Tnya} Proof of Theorem 1
Tt , , Notice that, since? is upper semicontinuous with closed do-
+/0 F(x(t) dt’ main andK is closed,R~!(K) is also closed.
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Necessity: Assume thatk is viable under(X, F, R, .J) 1) defined on0, co[ with z(¢) € K NI forall ¢t > 0;
and consider an arbitrany, € K. To show the first condition ~ 2) defined orf0, #] with z(¢) € R~1(K) andz(t) € KNI
is necessary assumg € K N J. Then continuous evolution forall ¢ € [0, ¢].
is impossible atro. Assume, for the sake of contradictionBy the necessary part of Lemma 1, this implies that forgle
thatzo ¢ R™'(K). Then eitherR(z) = @ (in which case K n NRYK), F(z) N Txn(z) # 0.
the system blocks and no infinite runs startzg} or all runs  Sufficiency: Assume the conditions of the theorem hold
starting atz, leave K through a discrete transition to someand consider an arbitrary, € K. We construct a run of
z1 € R(zo). In either case, the assumption tiftis viable (X F, R, J) starting atz, and viable inK by induction.
is contradicted. To show the second condition is necessapye distinguish two casesy, € (K n D\R™Y(K) and
assumerg € K\R™'(K). Since an infinite run viable il », ¢ K N R~1(X). Notice that, since by the first condition of
starts atrq, there exists a solution to the differential inclusioRhe theorenk N J = K\I C R7Y(K), these two cases cover

& € I'(z) starting atzo which is either K. By the sufficient part of Lemma 1, there exists a solution
1) defined on0, cof with 2(¢) € K\.J forall ¢ > 0; to the differential inclusion: € F(x) starting atzo which is
2) defined o0, '] with z(¢) € R~!(K) andz(t) € K\J either
forallt € [0, [. 1) defined on0, oof with z(t) € K NI forallt > 0;
This implies, in particular, that there is a solution to the differ- 2) defined orf0, #] with z(#) € R~1(K) andz(t) € KNI
ential inclusiont € F(z) starting ateo which is either forall ¢ € [0, ¢].
1) defined on0, o[ with z(¢) € K forall ¢t > 0; In the former case, consider the infinite run given by
2) defined on[0, #'] with z(t') € R™}(K) andz(¢t) € K ([0, o[, ); this is clearly a run of X, F, R, .J), viable in
forall ¢ € [0, ]. K. In the latter case, lety = 0, 7, = #, andn, = 7.
By the necessary part of Lemma 1, this implies that foxgle ~ Since z(rj) € R™'(K), z(r;) can be chosen such that
K\R™YK), F(z) N Tx(x) # 0. xz(r1) € K. Notice that this argument also covers the case

Sufficiency: Assume the conditions of the theorem are sawherezy € K N R~(K), with z(7}) playing the role ofz,.
isfied and consider an arbitramy € K. We construct an in- An infinite run viable inX can now be constructed inductively,
finite run of (X, F, R, J) starting atzo and viable inK by by substitutingz, by «(7 ) and repeating the process. =
induction. We distinguish two casesy, € K\R™*(K) and
rg € K N R7Y(K). In the first case, by the sufficient partProof of Proposition 3
of Lemma 1, there exists a solution to the differential inclusion | o
% € I'(x) starting atzo which is either

1) defined on0, oo with z(¢) € K forall ¢ > 0; D= inf e — yl|-
2) defined on[0, #] with z(#') € R™'(K) andz(t) € K ZCR(X), yCR™1(X)
forallt € [0, ¢].

. _ _ _ .
Notice that, since by the first assumption of the theor&hm, SlnceR(X) nE-(X) = @,. A7H(X) Is closed. gndR(X)
compact (by the assumptions of the propositian),> 0.

J € R7Y(K) there must also be a solution to the differentia'g . . . . S .
1 (£) onsider an arbitrary solutiom;, of the differential inclusion

|ncIu5|on.a: € F(x) startnjg atro which is either i € F(z), over an interval0, #] with z(0) € R(X) anda(t) €
1) defined or{0, co with z(¢) € K'\J forall ¢ > 0; RY(X). Clearly, ||z(t) — #(0)|| > D. Let M be a bound on
2) defined or{0, #'] with z(#') € R~'(K) andz(t) € K\J F(), over the seB(R(X), D), i.e
forallt € [0, #] ’ o
[i.e., either the solution stays il§ forever and never reachds
or the solution stays i and reache®~!(K) by the time it
reaches’]. In the former, consider the infinite ruifo, oo[, );
this is clearly a run of X, F, R, J), viable inK. In the latter
case, lety = 0, 7y = ¢/, andr; = 7. Sincex(7}) € R~1(K),

sup lyll < M.
z€B(R(X), D), yeF(x)

Such a bound exists sindeis Marchaud and?(X') is compact.

x(r) can be chosen such tha¢r;) € K. Notice that this ar- Then

gument also covers the case whetee K N R™(K), with t

z(74) playing the role ofzo. An infinite run viable inX can [[(t) — 2(0)[| < / F(x(0))do < Mt.

now be constructed inductively, by substitutingby x(7 ) and 0

repeating the process. B Thereforet > D/M, or, in other words, between any two dis-

crete transitions the system must flow along the differential in-
clusion for at leas /M time units.
As discussed in the proof of TheoremA; 1 (K) is closed. Consider an arbitrary, € X, and a rur(r, ) with z(m) =
Necessity: The first condition was shown to be necessary img. If 7}, = oo, then the run is trivially non-Zeno. Otherwise,
the proof of Theorem 1. To show the second condition is neces-< 7§, < oo and the system takes a discrete transitior,at
sary, assume that is viable unde X, F, R, J) an consider Thereforez (7)) € R=*(X)andx(m) € R(x(7)). If 7| = oo,
an arbitraryzg € K. If zg € K\J = K N1, since an infinite the run is non-Zeno. if; < 7{ < oo, a discrete transition takes
run viable ink starts atzo, there exists a solution to the differ-place atr. Therefore,z(r]) € R~*(X), and, by the above
ential inclusiont € F(x) starting ato which is either: discussiong{ —m > T.

Proof of Theorem 2
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The process can now be repeated by replacingy -, etc. =1 € R(xo) with 1 ¢ K. Therefore, there exists a run starting
Between any two consecutive discrete transitions at least tieer, that leavesk through a discrete transition to some

T > 0 elapses, therefore, the, (7] — ;) diverges. B and the assumption thaf is invariant is contradicted. To show
the second condition is necessary, notice that since all runs of
Proof of Lemma 2 (X, I, R, J) starting inK are viable ink, then all solutions

Necessity: Assume that all solutions starting /i stay inK  to & € F(z) starting inK are either
until they reachC. Considetry € K\C andvy € F(zo). Then 1) defined on0, oc[ with z(¢) € K\.J for all ¢t > 0;
(see for example [30, Corollary 5.3.2]) there exists a trajectory 2) defined on[0, #'] with z(#) € J andz(t) € K for all
z(-) of & € F(z) starting atro such that(d/d¢) z(0) = wvo. t €0, ]
Sincez is a solution toi € F(z) it remains inK until it Otherwise, there would exist a solution #f € F(x) which
reachesC. Butzo, € K\C andC is closed, therefore, therejeavesk before reaching/. This solution would be a run of
existsa > 0 such thatz(t) € K forall ¢ € [0, o]. Sincexzis (X, F, R, J) that is not viable ink, which would contradict
absolutely continuous, for afl € [0, o where(d/dt) z(t) is  the assumption thak is invariant. By the necessary part of
defined,(d/dt) x(t) € T (x(t)) (see for example [30]). In par- _Lemma 2, 1 and 2 imply that for aly € K\.J, F(z) C Ti (z).
ticular, fort = 0, vo = (d/dt) #(0) € Tk(zo). Hence, forall  syfficiency: Assume the conditions of the theorem are sat-
zo € K\C and for allvg € F(zo), vo € Ti(wo), Or, in other jsfied and consider an arbitrany, € K and an arbitrary run,
words, F'(xo) C T (o). (r, z),of (X, F, R, J) starting atz. Notice that:(o) = zo €
Sufficiency: Let A be the Lipschitz constant df. Consider g by assumption. Assume(r;) € K and showz(¢) € K until

zo € K and a solution:(-) of & € F(x) starting atzo, and 7, ., ; the claim then follows by induction. #= r; we are done.
show thatr remains inK until it reachesC. If zo € C then Ifr, < ¢ =< Ti/' thenx(r,—i) c K\] since continuous evolution

there is nothing to prove. lf, € K'\C' consider is possible fromz(7;). By the second condition of the theorem
) ) and the sufficient part of Lemma 2, all solutions to the differen-
0 =sup{t|Vt' € [0, t[, z(t') € K\C}. tial inclusioni € F'(z) starting atz(7;) are either

1) defined om0, co[ with 2(¢) € K forall ¢ > 0;
2) defined on0, ¢'] with z(¢') € J andxz(t) € K for all
t € [0, ¢].

In the first case, the run is viable i§ and we are done. In the
second case; =< t' and therefore for all € [r;, /], z(t) € K.
If z(v}) € R7YK), z(ri41) € R(z(r)) € K by the first
condition of the theorem. If, on the other haadr!) € J, but
d(x(t), K) = d (x(t), L (2(2))) ﬁ;ﬁg{i)g; @, then the execution blocks at, and, therefore;is

If & = oo or z(f) € C we are done. We show tha{f) ¢
K\C leads to a contradiction. Indeed, consider> 0 such
that B(x(#), «) N C = @ [which exists sincex(d) ¢ C and
C' is closed], and’ > 6, such that for alk € [8, ¢'], z(¢) €
B(z(8), «) (which exists since is continuous). Fof € [0, ],
letIIx (x(t)) denote a point oB(x(6), «) N K such that

[a projection ofz(t) onto K]. Then (see, for example, [30

Lemma 5.1.2]) for almost everye (6, ¢'] Proof of Lemma 3

LetD C K aclosed set satisfying the assumptions of Lemma
d 1. ClearlyD C Viabp(K, C).

dt d(=(t), £) We claim thatViabr (K, C) is closed. Consider a sequence
d z, € Viabp(K, C) converging to some € X. SinceK is
<d <% x(t), Tic (I (x(t)))> closed;r € K. We show that: € Viabg(K, C). If z € C, the
proofis done. Else, there existsan- 0 with KN B(z, r) # 0.
<d <i z(t), F (Il (a:(t)))) Forn large enough:,, € B(z, (r/2)). For any such, consider
N dt zn(+) a solution to the differential inclusion starting from,,
d viable in& untilitreaches”. Such a solution exists, sineg €
< (o0, F(0)) + A0, I 00 Viapy (K, ©).
The graph of the solution map of the differential inclusion
< 0+d(2(t), K) restricted to the compact set
sincez is a solution tai € F'(x) and by definition ofll. By {z} U {zn, n > 0}

the Gronwall lemmag(z(t), K) = 0 for all ¢t € [, 8], which
contradicts the definition of. Summarizing, iff' () C T () is compact (in [30, Th. 3.5.2]). Hence, there exists a subse-
for all z € K\C, then all solutions starting i either stay for quence tar,(-)—again denoted:,, (-)—converging to a solu-

ever inK\C or reachC before they leave’. B tionx(-) of the differential inclusion starting atuniformly on
compact intervals.
Proof of Theorem 3 Leto > 0 such thatz[0, o) N C' = ). Such as exists since

Necessity: Assume thaf( is invariant undefX, I, R, J). z ¢ C, Cis closed, and:(-) is continuous. FiX0 < ¢ < o. For
If the first condition is violated, then there exists € K and = large enoughz,,[0, t{]NC = @ becaus€’ is closed and:,,(-)
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Fig. 7. Three possible evolutions fos ¢ Viabr(K NI, R™Y(K))U(K N
R-Y(K)).

and sincex(m) € R(z(7)), we havex(r) ¢ K. This also
contradicts the assumption that, ) is viable in K.

Sufficiency: Next, we show that every closed gétsuch that
K = Pre3 (K) is viable. Consider an arbitrany, € K; we
construct by induction an infinite rurfy, =) that starts atzq
and is viable ink. By assumptiongg = z(19) € K. Assume
that we have constructed a run viableAndefined over a fi-
nite sequencer, 4], [r1, 1], .-, [, 7] SinceK is a fixed
point of Pre3;, and the run is viable i, z(7;) € Viabp(K N
I, RFYK) U (KNRYK)). If z(r;) € KN R YK), let
7/ = 7; and choser(r41) € R(x(r))) N K. If z(r) €
Viabp(K NI, R~(K)), then there exists a solution to the dif-
ferential inclusion: € F'(x) which is either:

1) defined ovef0, oof with z(¢) € K NI forall¢ > 0;
2) defined over{0, #] with =(#) € R™(K) andx(t) €
KnIforalltelo,t].
In the former case, sef = oo and the construction of the infi-
nite run is complete. In the latter case,ét= 7,+t' and choose
x(ri41) € R(x(r})) N K. The claim follows by induction. m

converges uniformly te(-) on[0, ¢]. Sincer,[0, ¢]is contained Proof of Theorem 4
in K soisz[0, t]. Because andt are arbitrary, we can deduce

thatz(-) is viable inK until itreaches”. Sox € Viabp(K, C),
and thereford’iabp (K, C) is closed.

The proof makes use of the sequence of §&ts; constructed
by the Viability Kernel Approximation algorithm, that is the se-

It remains to prove thatiaby(K, C) satisfies the condi- duenceko = K, Kiy; = Preg (K;). Let

tions of Lemma 1 (i.e., that it is itself viable with targé€y.

Letzo € Viabp(K, C). By the very definition of the viability

kernel some trajectory(-) starting fromz exists which is vi- Ko =
able inK until itreaches”. Suppose by contradiction that some "
s > 0 exists suchs(s) ¢ Viabp(K, C) andz[0, s|N C = 0.

Then any trajectory starting from(s) leavesk before reaching The proof proceeds in a sequence of steps. We show that

K;.

—

Il
=

C.Butt — z(s + t) is such a trajectory which is viable ¥
until it reaches”, a contradiction. [ ]

Proof of Lemma 4
Necessity: We first show that for every closed skt viable

underH = (X, F, R, .J), Pre3; (K) = K. Pre3, (K) is
clearly a subset of(, sinceViabp(K N1, R™(K)) C KN

I C K. Conversely, consider an arbitraty € K. Assume, for

the sake of contradiction, that ¢ Viabr(K NI, R~*(K))U
(KNRY(K)). Consider an arbitrary infinite rufr, =) viable
in K and starting atrg. Thenz () ¢ R~1(K) andx(o) ¢

1) for every viable sel. C K, L C Viaby(K);

2) K, is closed,;

4) K., C Viaby(K);

5) Viabp(K) is viable.

Step l:Every set L C K which viable under
H = (X,F, R,J) must be contained inViabp(K),
since for allzy € L there exists an infinite run starting ag
that stays inl, and, therefore, irk.

Step 2: SinceViabp(K; NI, RY(K;)) C K;nI C K,
K41 C K; foralli. SinceK is closed Ky is closed. Moreover,
if K; is closed, thed?—1(K;) is closed (sinceR is upper semi-

Viabp(K N1, R-YK)). If 7o = 7}, « starts by a discrete continuous with closed domain), aiidabr(K; N1, R~'(K;))

transition to somex(7;) € R(xz(7o)). Sincez(ry) ¢ R™(K),
z(m) ¢ K, which contradicts the assumption that =) is

is closed [by Lemma 3, sinceand R~ (K;) are closed)], and,
therefore K; 1, is closed. By inductioni’; form a sequence of

viable in K. If 79 < 7), then (7, z) starts by continuous nested closed sets, and, therefdig, is closed (possibly the

evolution. Sincery = (7o) ¢ Viabrp(K NI, R71(K)), the
run either

1) leavesK (at timet < 73) before it reache®—!(K);
2) leaves! (at time7}) before it reache®—!(K);
3) takes a transition from some 7)) € K N I\R~}(K);

empty set).

Step 3: Consider a pointg € Viaby(K) and show that
xo € K. Assume, for the sake of contradiction, that ¢
K. Then there exist&’ > 0 such thateg ¢ Kn.If N =0,
thenzy ¢ Ko = K, therefore all runs starting af that are
not viable inK (trivially). This contradicts the assumption that

(see Fig. 7). The first case contradicts the assumption thate Viaby (K). If N > 0, we show that for all infinite runs

(7, z) is viable in K. In the remaining cases(7}) ¢ R~1(K)

(7, z) starting atzq [which exist sincery € Viaby(K)], there
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exists at < 7, such that z(t) ¢ Kx_;. The claim then fol- the sequencg?®)(.) [and hence the sequene&*)(.)] con-
lows by induction. Indeed, since, ¢ K we must havery ¢  verges toy(-) uniformly over[0, 7, for all 7 > 0.

Viabp(Kn_1 NI, RY(Kn_1)) UKy_1 N R Y Kn_1)). Now, (r¢®) z#(®) is a run of (X, F, R, .J) viable in K
If 7o < 74, then(r, z) starts by continuous evolution. Sincefor at leastk jumps. Thereforegp®®)(t) ¢ K NI forallt €
zo = () ¢ Viabp(Kn_1 NI, R-Y(Ky_1)), thenall solu- [0, 7¢™®"[, and hence, for sufficiently large z¢*)(¢) € K N1

tions tod € F(x) either forall t € [0, T]. SinceK N [ is closedz(t) € K n I for all
1) leave Ky_; (at somet = 7)) before they reach t € [0, 1. SinceT’ is arbitrary,([0, o[, 7) is an infinite run of
RN Ky _1); (X, F, R, J) (with no jumps) starting ato and viable inK.
2) leavel (at timer) before they reacl®R =1 (K n_1); The proof is complete.
3) take a transition from some(r)) € (Kny_1 N Case 2: We can restrict attention t6 > 1. As for case
IN\RYKn_1); 1, define the sequencg *)(.) of solutions of (2) that coin-

(refer to Fig. 7). In the first case, we are done. In the remainifgégle withz7™*) on[o, o™ [and the subsequengé®)(-) con-

casesg (7)) ¢ R~(Ky_1) and sincer(r;) € R(z(7})), we verging (uniformly overcompact intervals) to asolut?g(n) of
havexz(r;) ¢ Ky_,. The last argument also subsumes the ca®. As before,(r¢®), z#()) is a run of (X, F, R, J) viable

10 = 1, sincezo ¢ Ky_1 N R (Ky_1). in K for at leastt > 0 jumps. Thereforez*®)(t) €¢ K N1
Step 4: Consider an arbitrary, € K. To show thaty, € forall ¢t € [0, T(‘f(k) [. SinceK N[ isclosedy(t) € KNI

Viaby (K), we construct an infinite rutr, ) € R (xo) vi- for all ¢t € [0, 7(]. Therefore,([To, 7], %) is a finite run of
able inK . More specifically, since, € K forallk, by Lemma (X, F, R, J) (with no jumps) starting at, and viable ink.

5, there exists a sequence of rgn€, +®)) € Ry (o), which  Sincey®(-) converges tgi(-) andr{™ converges t&},
remain inK for at least jumps. We will show that the sequencepé(k)(735<k>') converges ta;(74). Recall tha(¢®), z#(*)) is
(™), 2(®)) has a cluster poirtr, Z) € R (xo), Whichis an a run of (X, F, R, J) viable in K for at leasts > 0 jumps,
infinite run of (X, F, R, J), starting ateo, viable inK.. thereforez*® (r#®) € R(x*®(z¢®)) 0 K. SinceR is

Let [, 7 [or [/, 7 [ if 7 is the last interval] de- upper semicontinuous with closed domain and compact images,

note the sequence of intervald”. Recall that, without loss of there exists a subsequencm@fk)(ff(k)) converging to some
generality, we can assume th‘éf“) = 0forallk. Let7o = 0 pointy, € R(5(7}))NK. Therefore([0, 7 )|[71, 74], 7) with

and define 71 =74 =71 andy(7,) = 7, defined as above is a finite run
y of (X, F, R, .J) (with one jump) starting at, and viable ink.
To=lim inf 757 Case 3: The second part of the argument for Case 2

shows that, since:*™ (+7™") converge tozo, there exists
Thenthere exists a subsequence8t , denoted by:7®, such o€ R(xo) N K. Therefore, ([0, 76][71, 71], ) with

that To=7T1=71=0,%14) = zo andy(71) = 7, is a finite
run of (X, F, R, J) (with one instantaneous jump) starting at
lim 'rg(k), =7 o and viable ink.
k—oo To complete the proof for Cases 2 and 3, we repeat the ar-

gument starting a(7;) (discarding the initial part of the se-

We distinguish three cases ) (kY
quences accordingly). We generate= liminf;_,.. 77"’ and

1) 7o = ; N . .
) Z? oo ) constructarun ofX, F, R, J) viable inK, defined either over
2) T €]0, +oo; ; . . )
3) 7, =0 [0, To][T1, T4[ (if T} = 400, in which case the proof is com-
t = 0.

i o . lete) or ovel0, 74|[71, 74][F2, T4] With 7o = 7/, = 7/ (if
Case 1 will lead to a ruf7, z) € R$5(xo) that is viable inK’ plete) 10, To)[m1, T1][T2, T2l T2 =Ty =T1(

) i _ - 7/ is finite). The claim follows by induction.
and T“a'fes noJumps. Casc_aZv_\/lII lead to afanz) € RH (o) Step 5:Finally, we show Viaby(K) is viable by
that S viable |nK,.Whos.e first jump comes after an mt_erval OfShowing that it is a fixed point ofPre7,. Recall that
continuous evo_lut|on. Finally, C.as‘? 3 W'” Ie_ad a r(_m 7) € Preg; (Viaby(K)) € Viaby(K). Consider an arbitrary
R (xo) viable in K, that takes its first jump immediately.

i . )/, . o To € Viaby(K) and assume, for the sall<e of contra-
Cas_e 1 Congderasequen@é (+) of solutions to the dif diction, thatzo ¢ Pred (Viaby(K)). Consider an ar-
ferential inclusion

bitrary infinite run (7, z) viable in K and starting atzg

[which exists sincexqg € Viaby(K)]. If 7o = 73, x
&€ F(z), z(0)=uzo (2) starts by a discrete transition to somgr) € R(zo).

Since Zo ¢ R_I(ViabH(K)), 37(7'1) ¢ VLCLbH(K) If
that coincide withz**) on[o, Tg(k)’[_ Because the set of solu-70 < 7o, then (7, z) starts by continuous evolution. Since
tions of (2) is compact (see [30, Th. 3.5.2]), there exists a sukp ¢ Viabr(Viabp (K)NI, R~ (Viaby(K))), the execution
sequence*®)(.) of the sequencg”® (- that converges to a €ither

solution7(-) of (2). Moreover, sincéimy_. Tg(’“)' = 400, 1) leavesViabg(K) (at timet < 7)) before it reaches
R (Viabg (K));

Uf 7 = [rp, 00),t < 7y is replaced by < 77 = oco. 2) leavesl (at timet)) before it reache® ! (Viaby (K));
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3) takes a transition from some(r)) € Viaby(K) N there exist®’ > 6 such that(¢’) ¢ K and for allt € [0, ¢'],
NR™Y(Viaby(K)); z(t) ¢ C. Choose: such that
(see Fig. 7). In all caseg,r, =) either blocks or leaves A0, K A9/ 3
Viaby(K)atsome € 7witht < 7. Butif «(t) ¢ Viaby(K) (z(8'), K) > ec 3)
there is no infinite run off = (X, F, R, J) starting atz(t) [possible sincé( is closed and:(¢’) ¢ K]andforallt € [0, ¢']
and viable inK. Therefore(r, x) either blocks or is not viable W
in K. This contradicts the assumption thgte Viaby(K). m {x +eB(0, e } ne=90 )
[possible sinc&” is closed and for alt € [0, #'], z(¢) ¢ C1].

Proof of Lemma 5 Sincex,, — z there exists large enough such thiit:,, —

Necessity: The proof was given in Step 3 of Theorem 4%l < €. By Filippovs Theorem (see, for example, [30, The-
above, where it was shown thatif, ¢ K, then all runs orem 5.3.1]) there exists a solutien (-) of & € F'(x) starting
starting atz, leave K after at mostV transitions. atw,, such that for alt € [0, ¢']

NSufﬁmency. If N = 0 _there is nothing /to prove. If e (t) — e@®)]] < |lzn — zol|e™
> 0, z0 € Ky lmplles thatzg € VLCLbF(KN_l
NI, RYKy_1)) UEN_1 N RYKnx_1)). If 2o € or, inotherwords, foralt € [0, §']
Viabp(Kn_1 NI, R=Y(Ky_1)), then there exists a solution
toi e (F(x) starting atr(o whic%)is either wn(t) € B (2(t), [lon — wolle™) € B (2(t), ¢
1) defined on0, co[ with z(t) € Kx_; nIforall¢ > 0;  Therefore, by (4), for alt € [0, ¢'], z,.(¢) ¢ C, while, by
2) defined on[0, ¢'] with z(#') € R-Y(Kn_1) andz(t) € (3) z,(¢') ¢ K. This contradicts the assumption that €
Ky _inIforallte|o,¢]. Invr (K, C). Hence, every converging sequence has its limit
In the former case, the ruf[0, o[, ) is an infinite run N Invp(K, C), and therefordnvp (K, C) is closed. u
viable in Kx_; (and, henceK), and the proof is complete.
In the latter case, there exists a finite run with one transiti
([ro, 7)[m1s i), ) with 79 = 0, 7, = = = 71 = ¢, Necessity: We first show that for every closed, invariant
z(t) € Ky_inIforallt € [ro, 7)) andx(m1) € Kn_1. setK, K = Prej(K). Clearly Prel;(K) C K, since
This also subsumes the casg € Ky_; N R Y (Ky_1): Inve(K,J) C K. Conversely, consider an arbitrary point
there exists a finite run with one transiti¢pro, 74][71, 71], ) z0 € K and show that, € Invp(K, J) N RSY(K). Assume,
with 7o = 74 = 7 = 71, #(70) = z(7)) = 0 € Kny_1 and for the sake of contradiction that this is not the case. Then,
x(m) € Kn_1. eitherzo ¢ Invp(K, J), orzg ¢ ROVK). If z9 ¢ ROV (K),

SinceKny € Kn-—1 C K, the constructed run remains inthere existsz; € R(zo) such thatz; ¢ K; in other words,

K n_ for at least one jump. The claim follows by inducti@n. there exists a run of the impulse differential inclusion starting
at g that leavesK by a discrete transition. This contradicts

M)

(fr(oof of Lemma 7

Proof of Lemma 6 the assumption thaf is invariant. If, on the other hand,
By definition, Invp(K, C) is the set ofzo € K suchthatfor o ¢ Invr(K, J) then, in particularzo ¢ J N K [since

all solutionsz(-) of & € F(x) starting atr, either JNK C Invp(K, J)]; butzo € K, sowe must have, ¢ J,
1) x(t) € K forall t > 0; and therefore continuous evolution startingzatis possible.

Sincexq ¢ Invp(K, J), there exists a solution td € F(z)
starting atz, that leaveds before reaching/. This solution is
arun(X, I, R, J) that starts ink but is not viable ink. This
‘also contradicts the assumption tiatis invariant.

Sufficiency: Next, we show that every closed gétsuch that
K = Pre}(K) is invariant. Consider an arbitrary rym, z)
starting at some;, € K. We show tha{r, x) is viable in K’
by induction. Assume that we have shown that) € K for all
t € [1o0, ], [r1, 7], - - -, [, i) Then, sincel = Prel (K),

2(r;) € Invp(K, J) N RPYK). If 7; = 7/ the system takes
a discrete transition to som€r;+1) € R(z(r})) C K, since
x(r]) = z(r;) € ROYK). If ; < 7/ the run progresses by

continuous evolution. Since(r;) € Invp(K, J), then either

1) 7/ = oo andx(¢t) € K forall t > 7;

6 = sup {t|V¥ € [0, [, z(¢) € K\C}. 2) 7/ < o0, 2(7]) € Jandz(t) € K forall ¢t € [, 7/].
Notice thatr(7]) € K = Prel;(K), and, in particularg(r!) €

If & = ocorif x(#) € C,thenzo € Invp(K, C), and the proof RO(K). Therefore 2(1i+1) € R(z(r])) € K. The claim
is complete. follows by induction.

Let X be the Lipschitz constant éf, and assume, for the sake Notice that in the last argumeit(x(7/)) may, in fact, be
of contradiction, that! < oo andx(f) € K\C. Then, by the empty. In this case the run “blocks,” in the sense that there exist
definition of # and the assumption thd& and C' are closed, no infinite runs starting at(7;). The conclusion that all runs

2) there exists’ > 0 such thate(t') € C andz(¢) € K for
allt [0, t].
Therefore,Invp (K, C) satisfies the conditions of Lemma 2
Moreover, every subsdt C K which satisfies the conditions
of Lemma 2 must be contained imvr (K, C), since all runs
starting inL stay inL (and therefore irK') until they reachC”.

It remains to show thafnvg (K, C) is closed. Consider a
sequence:,, € Invp(K, C) converging taz, and show that
zo € Invp(K, C). Since by definitionnvp (K, C) C K and
K is assumed to be closedy € K. If zo € K N C there is
nothing to prove, since by definitiolf N C C I'nvp (K, C). If
zo € K\C, letz(+) be any solution of: € I'(x) starting atcg.
Let
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starting atzq are viable inK is still true however. To preclude
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To see this notice that eithefry) ¢ R(K..) [in which

this somewhat unrealistic situation, one can add Assumptiortdse we can take) = 7o, z(m1) ¢ Ko andt = 7] or

to the lemma and subsequent Theorem 5. [ |

Proof of Theorem 5

The proof makes use of the sequence of sets constructea‘:B{)trad'CtS the assumption thaf € K ..

the Invariance Kernel Algorithm, that is, the sdtg
Ki+1 = P7CY{(KZ) Let

Ky

The proof proceeds in a sequence of steps. We show that

1) for every invariantsef C K, L C Invy(K);

2) K, is closed;

3) Invy(K) C Ko

4) Koo = Prefy(Ko).

Steps 2) and 4) and Lemma 7 imply tlgé,, is invariant. There-
fore, by Step 1) K., € Invg(K), and, by Step 3)K.,
Invg (K). Summarizing/nvy (K) is the largest [(by Step 1)],
closed [(by Step 2)], invariant [(by Step 4)] subsetfof

Step l:Every setL C K which invariant under
(X, F, R, J) must be contained infrnvg(K), since all
runs starting inl stay inZ, and, therefore, it

Step 2: Clearly, for all¢, K;11 € Invp(K;, J) C K.
Since K is closed,Kj is closed. Moreover, ifi(; is closed,
thenInvp(K;, J) is closed (by Lemma 6, sincé is closed),
R®Y(K;) is closed (sincekR is lower semicontinuous), and,
therefore K; 11 is closed. By induction, th&’; form a sequence
of nested closed sets, and, therefalg,, is closed (or the
empty set).

Step 3: Consider a pointg € Invy(K) and show that
z9 € K. Assume, for the sake of contradiction, that ¢
K. Then there exist&y > 0 suchthatr ¢ Ky.If N = 0,
thenxzg € Ko = K, therefore, there exists a (trivial) run
starting atrg that is not viable inK. This contradicts the as-
sumption thatey € Invy(K). If N > 0, we show that there
exists a run stating at, that after at most one discrete transi-
tion finds itself outsidei{ ;. The claim then follows by in-
duction. Indeed, since, ¢ Ky we must either have, &
IHUF(KN_1, J), orzo ¢ RQI(KN_l). If Zo ¢ RQI(KN_l),
there exists:; € R(xo) suchthatr; ¢ Kn_1, i.e., there exists
arun starting at, that transitions outsid&  _; . If, on the other
hand,zg 4 ITLUF(I(J\T,l7 J), thenxzg g JNKy_1. There-
fore, eitherzg ¢ Kn_1 (and the proof is complete), ap ¢ J

and continuous evolution is possible. In the latter case, since

2o &€ Invp(Kn_1, J), by Lemma 6 there exists a solution to
z € F(x) starting atzo that leaves{y_; before reaching.
This solution is arun of X, I, R, J) that leaved y_;.

Step 4: Recall thatPre},(Ko,) € K. Consider an arbi-
trary zo € K, and show thaty € Prey, (Ko, ). Assume, for
the sake of contradiction, thag & Invp(K.., J)NRO(K,).
Then there exists a rufr, x) starting atzy and at < 7; such
thae x(t) ¢ K, or, in other words, there exists a rgn =), a
t < 7 and aN > 0 such thate(t) € Ky.

2Af 7 = [r9, 73] Or T = [70, T4, t X 71 should be replaced by =< 7 or,
respectivelyy < 7q.

x(0) € Invp(K, J) [in which case there exists a solution
to & € F(z) that leaved( before reaching/]. The same argu-
ment, however, also shows thatrg) = z¢o ¢ K41, Which

[ |

Proof of Lemma 8

If N < 1thereis nothing to prove. W > 1, zg € Ky im-
plies thatry € Invp(Ky_1, J) N ROY(Kxn_;). Consider an
arbitrary run(r, =) € Ry(zo) (if no such run exists the proof
is complete). Ifry = 7, thenz(r) € R(z9) € Kn_1, Since
xg € ROV (K n_1). If 7§ > 70, (7, ) starts by continuous evo-
lution. Sincexq € Invp(Kn_1,J), () remains inKy_;
throughout this continuous evolution.4f = oo the proof is
complete. If7) < oo, z(ry) € Kn—1 = Invp(Kn_2, J) N
RPY(Kn_2). Thereforex(m) € R(z(7})) € Kn—_o. There-
fore, all runs starting at, € Ky will end up in Ky_5 after
one transition. The claim follows by induction. ]
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