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Impulse Differential Inclusions: A Viability Approach
to Hybrid Systems

Jean-Pierre Aubin, John Lygeros, Marc Quincampoix, Shankar Sastry, Fellow, IEEE, and Nicolas Seube

Abstract—Impulse differential inclusions are introduced as a
framework for modeling hybrid phenomena. Connections to stan-
dard problems in the area of hybrid systems are discussed. Con-
ditions are derived that allow one to determine whether a set of
states is viable or invariant under the action of an impulse differ-
ential inclusion. For sets that violate these conditions, methods are
developed for approximating their viability and invariance kernels,
that is the largest subset that is viable or invariant under the action
of the impulse differential inclusion. The results are demonstrated
on examples.

Index Terms—Differential inclusions, hybrid systems, invari-
ance, reachability, set valued analysis, viability theory.

I. INTRODUCTION

H YBRID systems, that is dynamical systems with in-
teracting continuous and discrete dynamics, are a

convenient modeling abstraction that has been used extensively
to describe systems in a wide range of applications including
robotics, automotive electronics, manufacturing, automated
highway systems, air traffic management systems, integrated
circuit design, and multi-media [1]–[4]. A substantial part
of the literature on hybrid systems has been devoted to the
problem ofreachability, that is the question of whether, under
the dynamics of a hybrid system, a given set of states can be
reached from a given set of initial conditions. Techniques have
been developed for establishing whether the set of reachable
states is contained in a certain set [5]–[9], or, in the case of
hybrid control systems, for synthesizing controllers that satisfy
such safety specifications [10]–[16]. Since the reachability
problem quickly becomes computationally infeasible, approxi-
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mation techniques have been proposed to facilitate the analysis
[17]–[19]. Based on the theoretical results, computational
tools been developed to exactly compute the reachable set
of states whenever possible [20]–[23], compute conservative
approximations for it [24]–[28], or at least help establish some
of its properties deductively [29].

For continuous dynamical systems described by differential
inclusions, questions of reachability have been addressed in the
context ofviability theory[30]. Viability theory deals with two
fundamental properties of sets of states of a dynamical system.
Roughly speaking, a set of states,, is calledviable if for all
initial conditions in there exists a solution of the dynamical
system that remains in ; it is calledinvariant if for all initial
conditions in all solutions of the system remain in . In
the case where a set,, is not viable (respectively invariant),
viability theory techniques can also be used to establish the
largest subset of which is viable (respectively, invariant),
which is known as theviability kernel(respectively,invariance
kernel) of . Numerical algorithms have been developed to
compute these kernels (see [31] and the references therein), and
have been used to compute, for example, basins of attraction
for equilibria [32].

In this paper, we extend viability theory concepts to a wider
class of systems, which we callimpulse differential inclusions.
Impulse differential inclusions capture a broad range of hybrid
phenomena and allow one to model nondeterminism in the dis-
crete evolution, in the continuous evolution and in the choice be-
tween the two. We formulate a mathematical framework to pre-
cisely and concisely characterize the properties of sets of states
that are viable or invariant under the dynamics of an impulse dif-
ferential inclusion. In cases where the viability and invariance
conditions are violated, we also provide a procedure for estab-
lishing the viability and invariance kernels of a set of states. Nu-
merical algorithms for implementing the procedure have been
developed recently in a parallel study [33].

The material is arranged in five sections. In Section II, the
impulse differential inclusion framework is introduced, and the
basic concepts of viability theory are extended to it. Some exam-
ples are presented, to motivate subsequent discussion. In Sec-
tion III we establish necessary and sufficient conditions for a
set of states to be viable or invariant under the dynamics of an
impulse differential inclusion. Procedures for establishing the
viability and invariance kernels of a set (in cases where the con-
ditions of Section III are violated) are developed in Section IV,
and applied to examples in Section V. To maintain the flow of
the paper, the more technical proofs are given in the Appendix.

0018–9286/02$17.00 © 2002 IEEE



AUBIN et al.: IMPULSE DIFFERENTIAL INCLUSIONS: A VIABILITY APPROACH TO HYBRID SYSTEMS 3

II. I MPULSE DIFFERENTIAL INCLUSIONS

A. Notation and Terminology

We start with a brief overview of some standard definitions
from nonsmooth and set valued analysis; for a more thorough
treatment the reader is referred to [34], [35]. For an arbitrary
set, , is used to denote the power set of, i.e., the set
of all subsets of . For a set valued map and a
set we use to denote theinverse imageof
under and to denote theextended coreof under

, defined by

and

The inverse image and extended core are equivalent to the no-
tions of relation pre-image operators, discussed, for example, in
[36] in the context of modal logics. Notice that is the
set of such that . We call the set the
domainof and the set thegraph
of .

We use to denote a finite dimensional vector space with the
standard Euclidean metric, denoted by. We use to denote
the corresponding norm. The metric notation is extended to sets

by setting

For , we use to denote the closed unit ball of
radius about

The notation is extended to subsets by setting

We define the sum of two subsets,and , of a finite dimen-
sional vector space as the set

and

A set valued map is calledupper semicontinuous
at if for every there exists such that

is calledlower semicontinuous at if for all
and for all sequences converging to , there exists a sequence

converging to . is calledupper semicontin-
uous(respectivelylower semicontinuous) if it is upper semicon-
tinuous (respectively, lower semicontinuous) at all . It
should be noted that, unlike single valued functions, these two
notions of continuity are not equivalent for set valued maps. It
can be shown [34] that if is upper semicontinuous with closed
domain and is a closed set, then is closed,
whereas if is lower semicontinuous and is an open
set, then is open. Notice that the last statement also im-
plies that if is lower semicontinuous and is closed,

is closed, since .
For a closed subset, , of a finite-dimensional vector

space, and a point , we use to denote thecontin-

gent coneto at , i.e., the set of such that there exists
a sequence of real numbers converging to 0 and a se-
quence of converging to satisfying

Notice that, if is in the interior of , . The con-
tingent cone is one of many notions of tangent set in nonsmooth
analysis; for a full treatment of these notions the reader is re-
ferred to [34], [35].

Subsequently we will be dealing with differential inclusions
of the form , where . A solutionto this
differential inclusion over an interval starting at
is an absolutely continuous function , such that

and almost everywhere . To ensure
existence of solutions we will need to impose some standard
regularity assumptions on the map, for example require to
be Marchaud and/or Lipschitz. We say that a map
is Marchaudif and only if

1) the graph and the domain ofare nonempty and closed;
2) for all , is convex, compact and nonempty:
3) the growth of is linear, that is there exists such

that for all

We say is Lipschitzif and only if there exists a constant
(known as theLipschitz constant) such that for all

B. Basic Definitions and Assumptions

We will consider hybrid phenomena, in the sense of dynam-
ical phenomena that involve both continuous evolution and dis-
crete transitions. To distinguish the times at which discrete tran-
sitions take place we recall the notion of a hybrid time trajectory
[12], [37].

Definition 1 (Hybrid Time Trajectory):A hybrid time tra-
jectory is a finite or infinite sequence of intervals
of the real line, such that

• for , ;
• if , then either , or ,

possibly with ;
• for all , .

Since the dynamical systems we will consider will be time in-
variant, we assume, without loss of generality, that . The
interpretation is that are the times at which discrete transitions
take place. Notice that discrete transitions are assumed to be in-
stantaneous, and therefore multiple discrete transitions may take
place at the same time instant (since it is possible for ).
Each hybrid time trajectory,, is linearly ordered by the relation

, which for and is defined
by if and only if or ; we use to denote

, or and . For , we use as a short-
hand notation for “there exists asuch that .”
For a topological space we use as a shorthand
notation for a map assigning values fromto all . Notice
that is not a functionover the interval , since it
assigns multiple values to the times .
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Fig. 1. A run of an impulse differential inclusion(X; F; R; J).

Definition 2 (Impulse Differential Inclusion):An impulse
differential inclusion is a collection , con-
sisting of a finite-dimensional vector space, a set valued map

, regarded as adifferential inclusion , a
set valued map , regarded as areset map, and a set

, regarded as aforced transition set.
We call thestateof the impulse differential inclusion.

Subsequently, will be used to denote the complement
of .

Impulse differential inclusions can be used to describe hybrid
phenomena in the following sense.

Definition 3 (Run of an Impulse Differential Inclusion):A
run of an impulse differential inclusion, , is
a pair, , consisting of a hybrid time trajectoryand a map

, that satisfies

• Discrete Evolution: for all , ;
• Continuous Evolution: if , is a solution to the

differential inclusion over the interval
starting at , with for all .

We will use to denote the set of all runs of an im-
pulse differential inclusion starting at a state

. An example of a run of an impulse differential
inclusion is shown in Fig. 1; the solid arrows indicate continuous
evolution while the dotted arrows indicate discrete transitions.
Definition 3 dictates that, along a run the state can evolve con-
tinuously according to the differential inclusion until
the set is reached. Moreover, whenever , a discrete
transition from state to some state in may take place.
In other words enablesdiscrete transitions [transitions may
happen when but do not have to], while forcesdis-
crete transitions (transitions must happen when ). Notice
that if at a state a transition must happen ( ) but is
not able to ( ) the systemblocks, in the sense that there
does not exist a run of the impulse differential inclusion starting
at [other than the trivial run ]. Regularity assump-
tions that prevent such behavior are discussed in detail below.

Definitions 2 and 3 suggest that impulse differential inclu-
sions are intimately related to other modeling languages found

in the literature, such as different variants of hybrid automata
(HA) [9], [13], [36], [38] and hybrid input/output automata
(HIOA) [7]. Many of the properties studied here for impulse
differential inclusions can be easily extended to these different
classes of models by assuming that the discrete states of the
HA and the HIOA are embedded in a finite dimensional vector
space and evolve in continuous time under a trivial differential
inclusion ( ). In this context, impulse differential inclu-
sions are more general than the hybrid automata of [36], [38],
since they allow nondeterministic evolution in continuous time.
They are comparable to the hybrid automata of [9] (without
the restrictions imposed for decidability) and [13] (without
differentiating between controls and disturbances). Finally,
impulse differential inclusions are not as general as HIOA
[7], since the latter allow continuous states that take values in
infinite dimensional spaces (e.g., can be used to model systems
with delays).

C. Classification of Runs

Definition 3 allows for runs defined over finite or infinite
“time horizons,” runs that take a finite or infinite number of dis-
crete transitions, etc. To distinguish these cases we introduce the
following classification.

Definition 4 (Run Classification):A run, , of an im-
pulse differential inclusion, , is called

• finite, if is a finite sequence ending with a compact in-
terval;

• finite-open, if is a finite sequence ending with an interval
of the form with ;

• infinite, if either is an infinite sequence, or
;

• Zeno, if it is infinite and .

We will use to denote the set of all infinite runs of
starting at (some of which may be Zeno while others not).
Ideally, one would like to be able to extend all runs of an im-
pulse differential inclusion over arbitrarily long time horizons.
In certain cases, however, this may not be possible; an impulse
differential inclusion may produce runs that escape to infinity
in finite time along continuous evolution, runs that block, and
Zeno runs (refer to Fig. 2).

In the case offinite escape time, the run is defined over a finite
sequence ending in a right open interval, with

and . This situation can be prevented
by imposing regularity assumptions on.

Proposition 1: If is Marchaud, every finite-open run of
the impulse differential inclusion can be
extended to a finite run.

The proof is straight forward: the claim follows from standard
results for existence of solutions of differential inclusions [30],
and the fact that along continuous evolution over an interval

with , is only required for .
The Marchaud assumption onwill be imposed throughout this
paper to ensure the existence of runs. In Section III, additional
technical requirements will be imposed on the mapand the
set to allow us to characterize viability and invariance.

In the case ofblocking, the run is defined over a finite
sequence , ending in a closed interval such that at
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Fig. 2. Examples of Zeno, blocking and finite escape runs.

neither continuous nor discrete evolution are possible,
i.e., and . To prevent this situation
we introduce the following assumption.

Assumption 1:An impulse differential inclusion
is said to satisfyAssumption 1if

and, if is open (hence, is closed), ,
for all .

Roughly speaking, Assumption 1 implies that if for some
continuous evolution is not possible (becauseis ei-

ther in or is forced to enter along all solutions of the dif-
ferential inclusion) then a discrete transition has to be possible
( ). It can be shown that under Assumption 1 and some
additional technical requirements, every finite run of the im-
pulse differential inclusion can be extended to an infinite run.
The proof will be deferred for the time being, since it follows as
a corollary of the viability theorems given below. Assumption
1 will not be imposed as a standing assumption, whenever it is
invoked it will be clearly stated.

Finally, in the case of aZeno run, the system takes an infinite
number of discrete transitions in a finite amount of time. This
is, in a sense, a discrete version of finite escape time since the
run can effectively be defined only over a time horizon of the
form . Zeno runs are somewhat more difficult to
characterize and eliminate [38], [39]; some sufficient conditions
will be given in Section III.

D. Viability Definitions

Questions of reachability have been widely studied in the hy-
brid system literature. Roughly speaking, a verification problem
for a reachability(or safety) specification involves proving that
the state of the system never leaves a certain “good” part,

, of the state space (or, equivalently, never enters a “bad” part,
, of the state space). The solution to this problem in-

volves computing the set of states that can be reached from a set
of initial conditions by finite runs of the hybrid system. Theoret-
ical methods have been developed for performing these compu-
tations [5], [6], [17], [7], [8], [18], [9], some of them supported
by automated or semi-automated tools [20], [22], [23], [26],

[24], [25], [29], [21]. If control inputs are available, one can also
define reachability controller synthesis problems, where the ob-
jective is to choose the values of the control inputs such that the
run of the system never leaves the good set,[15], [10]–[14],
[16]. The solution to reachability controller synthesis problems
comes down to computing controlled invariant subsets of
[12], [30], that is subsets of for which there exist a choice
for the control such that the runs of the system that start in the
set stay in the set for ever.

For impulse differential inclusions, reachability questions can
be characterized by viability constraints.

Definition 5 (Viable Run):A run, of an impulse dif-
ferential inclusion, , is called viable in a set

if for all , .
Notice that the definition of a viable run requires the state to

remain in the set throughout the run, along continuous evolu-
tion up until and including the state before discrete transitions,
as well as after discrete transitions. Based on the notion of a vi-
able run, one can define two different classes of sets.

Definition 6 (Viable and Invariant Set):A set
is called viable under an impulse differential inclusion,

, if for all there exists an infinite run,
, viable in . is called invariant under

the impulse differential inclusion, if for all all runs
are viable in .

In the cases where an impulse differential inclusion fails to
satisfy a given viability or invariance requirement, one would
like to establish sets of initial conditions (if any) for which the
requirement will be satisfied. This notion can be characterized
in terms of viability and invariance kernels.

Definition 7 (Viability and Invariance Kernel):The
viability kernel, of a set under an im-
pulse differential inclusion is the set
of states for which there exists an infinite run,

, viable in . The invariance kernel,
of under is the set of

states for which all runs are viable
in .

Notice that by definition and
, but in general the two sets are incomparable.

E. Special Cases and Alternative Characterizations

Impulse differential inclusions are extensions of differential
inclusions and discrete time systems over finite dimensional
vector spaces (see for example [30]). A differential inclusion

over a finite dimensional vector spacecan be thought of as
an impulse differential inclusion, , with
for all and . Likewise, a discrete time system

can be thought of as an impulse differential inclusion,
, with for all and .

The situation where a nonzero amount of time elapses between
two transitions of the discrete system can also be easily encoded,
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by letting . The two formulations are equivalent from the
point of view of viability, under the assumption that the time
between any two transitions is finite. As expected, the viability
and invariance conditions developed below for impulse differen-
tial inclusions reduce to the corresponding conditions for differ-
ential inclusions and discrete systems, when restricted to these
special cases.

In the control literature, differential inclusions and dis-
crete-time systems are frequently used to model continuous
and discrete control systems. The continuous control system

with , , and
can be though of as a differential inclusion

Likewise, the discrete-time control system

with , , and
can be though of as

Extending this interpretation to the hybrid domain, an impulse
differential inclusion can be though of as a hybrid control
system. In this context, the relation between invariance/vi-
ability and verification/controller synthesis for reachability
specifications becomes clearer. Recall that a reachability
specification is encoded by a “good” set of states,; one would
like to ensure that the state remains inalong all runs of the
system (verification) or, if control inputs are available, choose
the inputs so that the state remains in(controller synthesis).
If the inputs, , represent uncontrollable disturbances and the
good set, , can be shown to be an invariant set (in the sense
of Definition 6), then it is easy to check that the hybrid system
satisfies the safety specification encoded by, in the sense
that any run that starts in it remains in for ever. If is
not invariant then its invariance kernel is the largest set of
initial conditions for which the safety specification is satisfied.
Alternatively, if the inputs, , represent controls, viability of

can be interpreted as controlled invariance: ifis viable,
then it is possible to design a controller for the hybrid control
system such that all runs of the closed loop system that start
in remain in for ever. If is not viable, then its viability
kernel is the maximal controlled invariant subset of.

The runs of an impulse differential inclusion can also be in-
terpreted in the context of impulse control by introducing the
switching map, , defined by

Proposition 2: If is a run of an impulse differential
inclusion , then for all

(1)

Fig. 3. Thermostat system.

Moreover, if , then all pairs with a hybrid time
trajectory and , that satisfy (1) are runs of .

If (there are no forced transitions), the impulse differ-
ential inclusion can also be denoted symbolically as

where is the Dirac measure at timeand, as before,
denotes a sequence of switching times and

a sequence of elements of. This notation can be mis-
leading since it may convey the impression that switching times
are prescribeda priori. We mention it, however, to establish a
connection with the notation used in [40].

F. Examples

To illustrate how impulse differential inclusions can be used
to characterize hybrid phenomena we consider two simple ex-
amples from the hybrid systems literature: a thermostat system
and a bouncing ball system [41]. We will return to these exam-
ples in Section V, to illustrate the viability and invariance con-
ditions for impulse differential inclusions.

1) Thermostat:The thermostat system (adapted from a sim-
pler example given in [41]) models a room whose temperature,

, is controlled by a thermostat. The thermostat tries to keep
the room temperature at 75 degrees by switching a heater on
and off. When the heater is on the temperature of the room in-
creases, while when the heater is off the temperature of the room
decreases. To avoid modeling the details of the heat transfer
process, we assume that the exact rate of increase or decrease of
the temperature is unknown and may change with time, but that
its value can be bounded by known constants at all times. To pre-
vent the heater from chattering between on and off, the thermo-
stat allows the temperature to fluctuate slightly about the desired
set point. To avoid modeling the details of the switching process,
we assume that the heater is switched on somewhere between 72
and 73 degrees and is switched off somewhere between 77 and
78 degrees, but the exact switching point is unknown and may
change in time. A typical trajectory of the system, as well as a
hybrid model in the intuitive directed graph notation, are shown
in Fig. 3.

The thermostat system can be modeled by an impulse differ-
ential inclusion, with two state vari-
ables, : the current room temperature and
the steady state toward which the temperature is converging
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Fig. 4. Bouncing ball.

(which of course depends on whether the heater is on or off).
Therefore, , and

if and
or and

otherwise

and

or and

with . Notice that the resulting impulse differential
inclusion can exhibit many more behaviors than the physical
system in question, since is not restricted to the set50, 100 .
However, under the additional assumption that

it is easy to show that the behavior of the impulse
differential inclusion is indeed the expected (see Section V).

2) Bouncing Ball: The bouncing ball system [38], [41]
models an elastic ball bouncing on a level surface under the
effect of gravity (Fig. 4). We assume that the ball looses a
fraction of its kinetic energy with each bounce.

The vertical motion of the ball can be captured by an im-
pulse differential inclusion, with
two state variables, the height of the ball,and its velocity in
the vertical direction, . Therefore, and

if and

otherwise

and

where represents the acceleration due to gravity and
the fraction of energy lost with each bounce. Again the

impulse differential inclusion can demonstrate many more be-
haviors than the physical system in question, sinceis not
assumed to be nonnegative. However, under the additional as-
sumption that it is easy to show that the
behavior of the impulse differential inclusion is indeed the ex-
pected (see Section V).

III. V IABILITY AND INVARIANCE CONDITIONS

Having motivated the importance of viability and invariance
properties of impulse differential inclusions to the analysis and
controller synthesis of hybrid systems, we give conditions that
allow one to determine whether a given set of states is viable or
invariant. The viability conditions naturally lead to conditions
under which the existence of infinite runs of an impulse differ-
ential inclusion is guaranteed for all initial conditions.

A. Viability Conditions

The viability conditions for impulse differential inclusions in-
volve the notion of “viability with target.” This notion was intro-
duced in [42] for continuous differential inclusions, motivated
partly by target optimal control problems (see for example [43]).
Viability with target provides conditions under which solutions
of that remain viable in a set until they reach a
target set exist. For completeness, conditions are summarized
below.

Lemma 1: Consider a Marchaud map and two
closed sets and . For all , there exists a
solution of starting at which is either

1) defined over with for all ;
2) defined over for some , with and

for all ;
if and only if for all , .

The proof when is Lipschitz is given in [42]. The proof
when is Marchaud can be found in the Appendix. Notions
related to viability with target have also been studied in the
context of branching time temporal logics, such as CTL, pri-
marily from a discrete point of view. The most closely related
notion is weak until, sometimes denoted by . The more
common notion ofpossibly until(usually denoted by ) is
slightly stronger; in our context it would exclude solutions that
stay in forever, without ever reaching (see, for example
[9]). (Ab)using the CTL notation, one could think of the prop-
erty “ is viable with target ” in terms of the CTL formula

.
The conditions characterizing viable sets depend on whether

the set is open or closed. In the case whereis closed, we
have the following.

Theorem 1 (Viability Conditions, Closed): Consider an
impulse differential inclusion such that
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Fig. 5. K viable underH = (X; F; R; J).

is Marchaud, is upper semicontinuous with closed domain
and is closed. A closed set is viable under if and
only if

1) ;
2) , .

In words, the conditions of the theorem require that for any state
, whenever a discrete transition has to take place (

), a transition back into is possible ( ),
and whenever a discrete transition to another point inis not
possible ( ) continuous evolution that remains in

has to be possible [encoded by the local viability condition
]. Just as with viability conditions for differ-

ential inclusions, this last condition can equivalently be given
in terms of theproximal normal cone[30]. Going through the
proof of Theorem 1 it becomes apparent that the assumptions on

are only used to show that the set is closed. There-
fore, the theorem still holds even if is not upper semicontin-
uous with closed domain, but happens to be closed.

Similar conditions characterize viability when the setis
open, or, in other words, the set is closed.

Theorem 2 (Viability Conditions, Open): Consider an
impulse differential inclusion such that
is Marchaud, is upper semicontinuous with closed domain
and is open. A closed set is viable under if and
only if

1) , and
2) , .

The first condition is the same as for the case whereis closed:
whenever a discrete transition has to take place from a point in

, a transition back into must be possible. The second con-
dition requires that whenever a discrete transition intois not
possible, there should be a solution to the differential inclusion
that stays in and avoids . The second condition can again be
given equivalently in terms of the proximal normal cone and the
requirements on can be relaxed, as noted above. Fig. 5 sug-
gests how the conditions of Theorems 1 and 2 can be interpreted
pictorially.

As noted in Section II , continuous differential inclusions and
discrete time systems can be thought of as special cases of im-
pulse differential inclusions. Therefore, one would expect that
the viability conditions of Theorems 1 and 2 will reduce to the
standard viability conditions given in the literature for these spe-
cial cases. Indeed, one can show that the conditions of the above
theorems imply the following version of the conditions of [30].

Corollary 1: Consider a Marchaud map , an
arbitrary map , and a closed set .

1) is viable under the differential inclusion if
and only if for all , .

2) is viable under the discrete time system
if and only if for all , .

B. Existence of Runs

Notice that Assumption 1 does not need to be added explic-
itly to Theorems 1 and 2, since the part of it that is essential to
guarantee the existence of a run viable inis implied by the
conditions of the theorems. Conditions that guarantee the exis-
tence of runs for impulse differential inclusions can be deduced
as a corollary of Theorems 1 and 2.

Corollary 2: Consider an impulse differential inclusion
such that is Marchaud, and is upper semi-

continuous with closed domain andis either open or closed.
Every finite run of can be extended to an infinite run if and
only if satisfies Assumption 1.

To see this, replace by the (closed) set in Theorems 1
and 2. The first condition of both theorems is then part of As-
sumption 1. In the case whereis closed, the second condi-
tion of Theorem 1 is trivially satisfied, since for all ,

and (recall that is Marchaud). In the
case were is open, the second condition of Theorem 2 is part
of Assumption 1.

Corollary 2 can be used to ensure that a model for a phys-
ical process given in the impulse differential inclusion frame-
work produces infinite runs for all initial conditions. Ideally, one
would also like these runs to be non-Zeno. Set valued analysis
techniques can be used to derive conditions under which this is
indeed the case. A condition for a simple case that will be useful
in the examples is given below; more general conditions are the
topic of on-going research.

Proposition 3: Consider an impulse differential inclusion
such that is Marchaud and has

closed domain. Assume that satisfies Assumption 1, that
, and that is compact. Then all

infinite runs of (which exist thanks to Corollary 2) are
non-Zeno.

Analogs of Proposition 3 can be obtained with any other set of
conditions that provide a lower bound between transition times.

C. Invariance Conditions

The conditions for invariance make use of the notion of “in-
variance with target” for continuous differential inclusions. In-
variance with target involves conditions ensuring that all solu-
tions of remain in a set until they reach a target set,

(in subsequent discussion,will play the role of ). The in-
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Fig. 6. K invariant under(X; F; R; J).

variance with target conditions are interesting in their own right,
so they are summarized separately in the following lemma.

Lemma 2: Consider a Marchaud and Lipschitz map
and two closed sets and . All solutions of

starting at some are either

1) defined over with for all ;
2) defined over with and for all

;

if and only if for all , .
Lemma 2 allows us to prove the following invariance theorem

for impulse differential inclusions.
Theorem 3 (Invariance Conditions):Consider an impulse

differential inclusion such that is Mar-
chaud and Lipschitz and is closed. A closed set is
invariant under if and only if

1) ;
2) , .
In words, the conditions of the theorem require that for all

, if a discrete transition is possible ( ), then
all states after the transition are also in( ), whereas
if continuous evolution is possible ( ) then all possible so-
lutions of the differential inclusion remain in [char-
acterized here by the invariance condition ].
As for continuous differential inclusions, the second condition
can also be characterized equivalently in terms of the proximal
normal cone. Fig. 6 suggests how the conditions of Theorem 3
can be interpreted pictorially.

Notice that no assumptions need to be imposed on. Strictly
speaking, Theorem 3 remains true even without Assumption 1;
if the impulse differential inclusion has no runs for certain ini-
tial conditions in , then, vacuously, all runs that start at these
initial conditions are viable in . In practice, it may be prudent
to impose Assumption 1, to ensure the results are meaningful.

As before, one would expect the above invariance conditions
to reduce to the standard invariance conditions for continuous
differential inclusions and discrete time systems found in the

literature. Indeed, one can show that the above conditions imply
the following conditions of [30].

Corollary 3: Consider a Marchaud and Lipschitz map
, a map , and a closed set .

1) is invariant under the differential inclusion
if and only if for all , .

2) is invariant under the discrete-time system
if and only if for all , .

IV. V IABILITY AND INVARIANCE KERNELS

A. Characterization of the Viability Kernel

If is not viable under an impulse differential inclusion,
one would like to characterize the largest subset ofwhich is
viable under . This set turns out to be the viability kernel of
under the impulse differential inclusion. The viability kernel of
an impulse differential inclusion can be characterized in terms
of the notion of the viability kernel with target for a continuous
differential inclusion. For a differential inclusion ,
the viability kernel of a set with target , ,
is defined as the set of states for which there exists a solution
to the differential inclusion that remains in either forever, or
until it reaches . The following lemma summarizes the basic
properties of the viability kernel with target.

Lemma 3: Consider a Marchaud map and two
closed subsets of , and . is the largest
closed subset of satisfying the conditions of Lemma 1.

For the proof, the reader is referred to the Appendix and, for
the Lipschitz case, to [42] [where an approximation scheme for
computing is also given]. Notice that, by defini-
tion

Using this notion, one can give an alternative characterization
of the sets that are viable under an impulse differential inclu-
sion, as fixed points of an appropriate operator. For an impulse
differential inclusion , consider the operator

defined by

Recall that .
Lemma 4: Consider an impulse differential inclusion

such that is Marchaud, is upper semicontin-
uous with closed domain, andis open. A closed set
is viable under if and only if it is a fixed point of the operator

.
Theorem 4 (Viability Kernel):Consider an impulse differ-

ential inclusion such that is Marchaud,
is upper semicontinuous with closed domain and compact im-
ages, and is open. The viability kernel of a closed set
under is the largest closed subset ofviable under , that
is, the largest closed fixed point of contained in .

The assumption can again be modified somewhat, by re-
quiring that has compact images and is closed for
all closed sets . It should be stressed that the conditions
of Theorem 4 ensure that for all initial conditions in the viability
kernel infinite runs of the impulse differential inclusion exist,
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but do not ensure that these runs will extend over an infinite
time horizon; all runs starting at certain initial conditions in
the viability kernel may turn out to be Zeno. To ensure that the
runs extend over an infinite time horizon, assumptions like the
ones listed in Proposition 3 need to be added to the theorem.

The proof of Theorem 4 is based on the following abstract
algorithm, which follows the standard iterative characterization
of the greatest fixed point of a monotone operator on a complete
lattice [44].

Algorithm 1 (Viability Kernel Approx.)
initialization : ,
repeat

until

As shown in the proof of Theorem 4, the sets form a se-
quence of nested closed sets. Given a setit may, in general,
be impossible to compute its successor, effectively (i.e.,
in finite time). An in depth study of numerical methods for ap-
proximating the computation can be found in [33]. Even in cases
where exact computation of the setsis possible, the Viability
Kernel Approximation algorithm may still fail to terminate in a
finite number of steps. However, the sets generated by the
algorithm provide successively better estimates of the viability
kernel in the following sense.

Lemma 5: Consider an impulse differential inclusion
such that is Marchaud, is upper semicontin-

uous with closed domain andis open. Let be a closed
set and be the sequence of sets generated by the Viability
Kernel Approximation algorithm. Then if and only
if there exists a run that remains in for at
least jumps.

“Remains in for at least jumps” is meant to be inter-
preted as “either is infinite and for all , or
the sequence consists of at least intervals and
for all ” (up to and including ).

Ideally, one would also like to be able to characterize the via-
bility kernel when is closed. Unfortunately, a precise char-
acterization like the one given in Theorem 4 turns out to be
much more difficult in this case. For example, it is easy to show
that if is closed, the viability kernel may be neither an open
nor a closed set. Consider the impulse differential inclusion

with , for all ,
if , if and . It is

easy to check that is Marchaud and is upper semicontinuous
with closed domain, but is closed. One can see that the via-
bility kernel of the closed set is ,
which is neither open nor closed.

B. Characterization of the Invariance Kernel

If is not invariant under an impulse differential inclusion
, one would like to characterize the largest subset ofwhich

is invariant under . This turns out to be the invariance kernel
of under the impulse differential inclusion. The invariance
kernel can be characterized using the notion of the invariance

kernel with target for continuous differential inclusions. For a
differential inclusion , the invariance kernel of a set

with target , is defined as the set of states
for which all solutions to the differential inclusion remain in

either for ever, of until they reach. The following lemma
summarizes the basic properties of the invariance kernel with
target.

Lemma 6: Consider a Marchaud and Lipschitz map
and two closed subsets of, and . is the

largest closed subset of satisfying the conditions of Lemma 2.
Notice that, by definition

Using the notion of invariance kernel with target, one can give
an alternative characterization of the sets that are invariant under
an impulse differential inclusion, as fixed points of an operator.
Given an impulse differential inclusion ,
consider the operator defined by

Lemma 7: Consider an impulse differential inclusion
such that is Marchaud and Lipschitz, is lower

semicontinuous, and is closed. A closed set is in-
variant under if and only if it is a fixed point of the operator

.
Theorem 5 (Invariance Kernel):Consider an impulse differ-

ential inclusion such that is Marchaud
and Lipschitz, is lower semicontinuous and is closed. The
invariance kernel of a closed set under is the largest
closed subset of invariant under , that is, the largest, closed
fixed point of contained in .

Again the proof of Theorem 5 makes use of the sequence of
sets generated by the following abstract algorithm.

Algorithm 2 (Invariance Kernel Approx.)
initialization : ,
repeat

until

At each step, the algorithm computes the set of states for
which all solution of the differential inclusion stay in
the until they reach . is then the subset of those states
for which if a transition is possible, the state after the transition
is also in .

Lemma 8: Consider an impulse differential inclusion
such that is Marchaud and Lipschitz, is lower

semicontinuous and is closed. Let be a closed set and
be the sequence of sets generated by the Invariance Kernel

Approximation algorithm. If , then all runs
remain in for at least jumps.
is the greatest integer not exceeding . “Remain in

for at least jumps” is to be interpreted as in Lemma 5.
Ideally, one would also like to characterize the invariance

kernel in the case where is open. Unfortunately a precise
characterization in this case turns out to be difficult. One can
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again construct counter examples that suggest that the invari-
ance kernel may be neither an open nor a closed set. Consider the
impulse differential inclusion with ,

for all , and . is
Marchaud and Lipschitz and is lower semicontinuous, but
is open. One can see that the invariance kernel of the closed set

is , which is neither open nor
closed.

V. EXAMPLES

We now return to the examples introduced in Section II and
show how the viability and invariance conditions can be used to
establish useful properties of the impulse differential inclusion
models of these systems. The examples are simple and do not
allow us to demonstrate the full power of the theoretical results
presented above. More challenging examples are studied in [33]
using numerical implementations of the abstract algorithms pre-
sented above. We are currently applying the same techniques to
examples from collision avoidance and aerodynamic envelope
protection for aircraft.

A. The Thermostat System

The viability and invariance conditions can be used to show
that the impulse differential inclusion proposed for mod-
eling the thermostat system is indeed a reasonable model for the
underlying physical process. First note thatis both Marchaud
and Lipschitz and is both upper and lower semicontinuous
and has closed domain.

Proposition 4: The impulse differential inclusion satis-
fies the following properties:

1) for all , ;
2) the set is invariant;
3) for all , all are non-Zeno.

Proof: To show that infinite runs exist for all initial con-
ditions recall that is closed and

and

and

and

and

Therefore, satisfies Assumption 1, and the claim follows by
Corollary 2.

To show that is invariant notice that leaves un-
changed and maps to and vice versa. More-
over

and

and

Therefore, for all ,
. The claim follows by Theorem 3.

Finally, to show that all infinite runs starting in are
non-Zeno let

It is easy to check that . From this point on the proof is
the same as the proof of Proposition 3.

Using the viability tools one can also show that the thermostat
manages to keep the temperature of the room within the desired
levels.

Proposition 5: The set is
viable, while the set is invariant.

Proof: , therefore the first condition of The-
orem 1 is vacuously satisfied for. Moreover

or and

or and

For such that , and therefore
. For such that and

(recall that ). A similar conclusion holds if
and . The claim that is viable follows by Theorem 1.

To see that is invariant, recall that leaves un-
changed, therefore . Moreover

or and

or and

The above argument shows that for all ,
. The claim follows by Theorem 3.

B. The Bouncing Ball System

It is easy to check that is both Marchaud and Lipschitz
and that is upper and lower semicontinuous and has
closed domain. Moreover, also satisfies Assumption 1,
since . Therefore, we can immediately draw the
following conclusion.

Proposition 6: For all , .
The proposition suggests that the impulse differential inclu-

sion does not deadlock. However, it is easy to show that
for all all are Zeno (see, for ex-
ample, [38] and [41]). As expected, violates the conditions
of Proposition 3, in particular .

Despite the Zeno behavior, is in many ways a reasonable
model of the bouncing ball system. For example, one can show
that the ball never falls below the surface on which it bounces,
and that the system dissipates energy.

Proposition 7: The set is viable and
invariant. For all the set
is invariant.

Proof: For the first part, notice that
and . Since does not affect ,

and . Moreover,
or and . For such that ,

. For such that and ,
. Therefore, is viable

by Theorem 1 and invariant by Theorem 3.
For the second part, leaves unchanged and maps to

. Therefore since . Moreover

or
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For such that ,
. For such that

The claim follows by Theorem 3.

VI. CONCLUDING REMARKS

Impulse differential inclusions were introduced as a
promising framework for modeling hybrid phenomena. We
discussed how important problems in the hybrid systems
literature, such as existence of runs, verification and controller
synthesis for safety specifications can be reduced to viability
and invariance questions for impulse differential inclusions.
Motivated by this we developed conditions for determining
whether a set of states is viable or invariant. In cases where
these conditions are violated, we developed characterizations
for the viability and invariance kernels of the set, and proposed
conceptual algorithms for approximating them.

The results presented in this paper form the foundation for a
more extensive study of hybrid control through the framework
of viability theory. Problems we are currently working on in-
clude optimal control of impulse differential inclusions (value
functions and their characterizations in terms of quasivariational
inequalities or viability kernels), stability (Lyapunov functions
and their characterization as viability kernels) and a study of
the initialization map, which can be used to convert a hybrid
system to a discrete time system by abstracting away the contin-
uous dynamics. In the future we plan to address the more chal-
lenging problem of hybrid differential gaming, in terms of dis-
criminating kernels. This will allow us to address more general
control problems, such as controller synthesis in the presence of
disturbances and nondeterminism.

APPENDIX

ADDITIONAL PROOFS

Proof of Proposition 2

We shall prove the first statement inductively. If the
statement is true. If , . Otherwise, if

, is a solution of the differential inclusion
over starting at . Therefore

for all

In either case, equation (1) holds for all .
Assume that satisfies equation (1) for all

. Observe that ,
and

If

Otherwise, if , is a solution of the differen-
tial inclusion over starting at .
Therefore, for all

Summarizing, if satisfies equation (1) for all
, then it also satisfies (1) for all

. The first statement of the proposition follows
by induction.

To prove the second statement, observe that a pair such
that for all

satisfies . Moreover,
if , is a solution to over starting at

. Therefore, according to Definition 3, if then
is a run of .

Proof of Lemma 1

Necessity:Consider and a trajectory starting
from which stays in on some interval (and which
does not reach in this time interval). By application of [30,
Prop. 3.4.1], we obtain

Sufficiency: Let . Because is closed, some
exists such that . In the set

, one can imitate the proof of [30, Prop. 3.4.2] and
obtain the existence of and of a solution to
starting at which remains in on .

Using an argument (Zorn’s Lemma) classical in differential
equation theory, it is possible to extend to a maximal trajec-
tory—again denoted —on some viable in and such
that . Either and the proof is complete,
or and then [if not one could extend a little
the trajectory to a viable one, this would be a contradiction with
the maximality of ].

Proof of Theorem 1

Notice that, since is upper semicontinuous with closed do-
main and is closed, is also closed.
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Necessity:Assume that is viable under
and consider an arbitrary . To show the first condition
is necessary assume . Then continuous evolution
is impossible at . Assume, for the sake of contradiction,
that . Then either (in which case
the system blocks and no infinite runs start at) or all runs
starting at leave through a discrete transition to some

. In either case, the assumption thatis viable
is contradicted. To show the second condition is necessary,
assume . Since an infinite run viable in
starts at , there exists a solution to the differential inclusion

starting at which is either

1) defined on with for all ;
2) defined on with and

for all .
This implies, in particular, that there is a solution to the differ-
ential inclusion starting at which is either

1) defined on with for all ;
2) defined on with and

for all .
By the necessary part of Lemma 1, this implies that for all

, .
Sufficiency: Assume the conditions of the theorem are sat-

isfied and consider an arbitrary . We construct an in-
finite run of starting at and viable in by
induction. We distinguish two cases, and

. In the first case, by the sufficient part
of Lemma 1, there exists a solution to the differential inclusion

starting at which is either

1) defined on with for all ;
2) defined on with and

for all .
Notice that, since by the first assumption of the theorem,

there must also be a solution to the differential
inclusion starting at which is either

1) defined on with for all ;
2) defined on with and

for all
[i.e., either the solution stays in forever and never reaches,
or the solution stays in and reaches by the time it
reaches ]. In the former, consider the infinite run ;
this is clearly a run of , viable in . In the latter
case, let , , and . Since ,

can be chosen such that . Notice that this ar-
gument also covers the case where , with

playing the role of . An infinite run viable in can
now be constructed inductively, by substitutingby and
repeating the process.

Proof of Theorem 2

As discussed in the proof of Theorem 1, is closed.
Necessity:The first condition was shown to be necessary in

the proof of Theorem 1. To show the second condition is neces-
sary, assume that is viable under an consider
an arbitrary . If , since an infinite
run viable in starts at , there exists a solution to the differ-
ential inclusion starting at which is either:

1) defined on with for all ;
2) defined on with and

for all .

By the necessary part of Lemma 1, this implies that for all
, .

Sufficiency: Assume the conditions of the theorem hold
and consider an arbitrary . We construct a run of

starting at and viable in by induction.
We distinguish two cases, and

. Notice that, since by the first condition of
the theorem , these two cases cover

. By the sufficient part of Lemma 1, there exists a solution
to the differential inclusion starting at which is
either

1) defined on with for all ;
2) defined on with and

for all .

In the former case, consider the infinite run given by
; this is clearly a run of , viable in

. In the latter case, let , , and .
Since , can be chosen such that

. Notice that this argument also covers the case
where , with playing the role of .
An infinite run viable in can now be constructed inductively,
by substituting by and repeating the process.

Proof of Proposition 3

Let

Since , is closed and
is compact (by the assumptions of the proposition), .
Consider an arbitrary solution,, of the differential inclusion

, over an interval with and
. Clearly, . Let be a bound on

, over the set , i.e.,

Such a bound exists sinceis Marchaud and is compact.
Then

Therefore, , or, in other words, between any two dis-
crete transitions the system must flow along the differential in-
clusion for at least time units.

Consider an arbitrary , and a run with
. If , then the run is trivially non-Zeno. Otherwise,

and the system takes a discrete transition at.
Therefore, and . If ,
the run is non-Zeno. If , a discrete transition takes
place at . Therefore, , and, by the above
discussion, .
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The process can now be repeated by replacingby , etc.
Between any two consecutive discrete transitions at least time

elapses, therefore, the diverges.

Proof of Lemma 2

Necessity:Assume that all solutions starting in stay in
until they reach . Consider and . Then
(see for example [30, Corollary 5.3.2]) there exists a trajectory

of starting at such that .
Since is a solution to it remains in until it
reaches . But and is closed, therefore, there
exists such that for all . Since is
absolutely continuous, for all where is
defined, (see for example [30]). In par-
ticular, for , . Hence, for all

and for all , , or, in other
words, .

Sufficiency: Let be the Lipschitz constant of . Consider
and a solution of starting at , and

show that remains in until it reaches . If then
there is nothing to prove. If consider

If or we are done. We show that
leads to a contradiction. Indeed, consider such

that [which exists since and
is closed], and , such that for all ,

(which exists since is continuous). For ,
let denote a point of such that

[a projection of onto ]. Then (see, for example, [30,
Lemma 5.1.2]) for almost every

since is a solution to and by definition of . By
the Gronwall lemma, for all , which
contradicts the definition of. Summarizing, if
for all , then all solutions starting in either stay for
ever in or reach before they leave .

Proof of Theorem 3

Necessity:Assume that is invariant under .
If the first condition is violated, then there exists and

with . Therefore, there exists a run starting
at that leaves through a discrete transition to some
and the assumption that is invariant is contradicted. To show
the second condition is necessary, notice that since all runs of

starting in are viable in , then all solutions
to starting in are either

1) defined on with for all ;
2) defined on with and for all

.
Otherwise, there would exist a solution of which
leaves before reaching . This solution would be a run of

that is not viable in , which would contradict
the assumption that is invariant. By the necessary part of
Lemma 2, 1 and 2 imply that for all , .

Sufficiency: Assume the conditions of the theorem are sat-
isfied and consider an arbitrary and an arbitrary run,

, of starting at . Notice that
by assumption. Assume and show until

; the claim then follows by induction. If we are done.
If , then since continuous evolution
is possible from . By the second condition of the theorem
and the sufficient part of Lemma 2, all solutions to the differen-
tial inclusion starting at are either

1) defined on with for all ;
2) defined on with and for all

.
In the first case, the run is viable in and we are done. In the
second case, and therefore for all , .
If , by the first
condition of the theorem. If, on the other hand, , but

, then the execution blocks at, and, therefore, is
viable in .

Proof of Lemma 3

Let a closed set satisfying the assumptions of Lemma
1. Clearly .

We claim that is closed. Consider a sequence
converging to some . Since is

closed, . We show that . If , the
proof is done. Else, there exists an with .
For large enough . For any such , consider

a solution to the differential inclusion starting from ,
viable in until it reaches . Such a solution exists, since

.
The graph of the solution map of the differential inclusion

restricted to the compact set

is compact (in [30, Th. 3.5.2]). Hence, there exists a subse-
quence to —again denoted —converging to a solu-
tion of the differential inclusion starting atuniformly on
compact intervals.

Let such that . Such a exists since
, is closed, and is continuous. Fix . For

large enough, because is closed and
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Fig. 7. Three possible evolutions forx =2 V iab (K\I; R (K))[(K\

R (K)).

converges uniformly to on . Since is contained
in so is . Because and are arbitrary, we can deduce
that is viable in until it reaches . So ,
and therefore is closed.

It remains to prove that satisfies the condi-
tions of Lemma 1 (i.e., that it is itself viable with target).
Let . By the very definition of the viability
kernel some trajectory starting from exists which is vi-
able in until it reaches . Suppose by contradiction that some

exists such and .
Then any trajectory starting from leaves before reaching

. But is such a trajectory which is viable in
until it reaches , a contradiction.

Proof of Lemma 4

Necessity:We first show that for every closed set viable
under , . is
clearly a subset of , since

. Conversely, consider an arbitrary . Assume, for
the sake of contradiction, that

. Consider an arbitrary infinite run viable
in and starting at . Then and

. If , starts by a discrete
transition to some . Since ,

, which contradicts the assumption that is
viable in . If , then starts by continuous
evolution. Since , the
run either

1) leaves (at time ) before it reaches ;
2) leaves (at time ) before it reaches ;
3) takes a transition from some ;

(see Fig. 7). The first case contradicts the assumption that
is viable in . In the remaining cases,

and since , we have . This also
contradicts the assumption that is viable in .

Sufficiency: Next, we show that every closed setsuch that
is viable. Consider an arbitrary ; we

construct by induction an infinite run, that starts at
and is viable in . By assumption, . Assume
that we have constructed a run viable indefined over a fi-
nite sequence . Since is a fixed
point of , and the run is viable in ,

. If , let
and chose . If

, then there exists a solution to the dif-
ferential inclusion which is either:

1) defined over with for all ;
2) defined over with and

for all .

In the former case, set and the construction of the infi-
nite run is complete. In the latter case, let and choose

. The claim follows by induction.

Proof of Theorem 4

The proof makes use of the sequence of sets constructed
by the Viability Kernel Approximation algorithm, that is the se-
quence , . Let

The proof proceeds in a sequence of steps. We show that

1) for every viable set , ;
2) is closed;
3) ;
4) ;
5) is viable.

Step 1: Every set which viable under
must be contained in ,

since for all there exists an infinite run starting at
that stays in , and, therefore, in .

Step 2: Since ,
for all . Since is closed, is closed. Moreover,

if is closed, then is closed (since is upper semi-
continuous with closed domain), and
is closed [by Lemma 3, sinceand are closed], and,
therefore, is closed. By induction, form a sequence of
nested closed sets, and, therefore, is closed (possibly the
empty set).

Step 3: Consider a point and show that
. Assume, for the sake of contradiction, that

. Then there exists such that . If ,
then , therefore all runs starting at that are
not viable in (trivially). This contradicts the assumption that

. If , we show that for all infinite runs
starting at [which exist since ], there
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exists a such that1 . The claim then fol-
lows by induction. Indeed, since we must have

.
If , then starts by continuous evolution. Since

, then all solu-
tions to either

1) leave (at some ) before they reach
;

2) leave (at time ) before they reach ;
3) take a transition from some

;

(refer to Fig. 7). In the first case, we are done. In the remaining
cases, and since , we
have . The last argument also subsumes the case

, since .
Step 4: Consider an arbitrary . To show that

, we construct an infinite run vi-
able in . More specifically, since for all , by Lemma
5, there exists a sequence of runs , which
remain in for at least jumps. We will show that the sequence

has a cluster point , which is an
infinite run of , starting at , viable in .

Let [or if is the last interval] de-
note the sequence of intervals . Recall that, without loss of
generality, we can assume that for all . Let
and define

Then there exists a subsequence of , denoted by , such
that

We distinguish three cases

1) ;
2) ;
3) .

Case 1 will lead to a run that is viable in
and makes no jumps. Case 2 will lead to a run
that is viable in , whose first jump comes after an interval of
continuous evolution. Finally, Case 3 will lead a run

viable in , that takes its first jump immediately.
Case 1: Consider a sequence of solutions to the dif-

ferential inclusion

(2)

that coincide with on . Because the set of solu-
tions of (2) is compact (see [30, Th. 3.5.2]), there exists a sub-
sequence of the sequence that converges to a
solution of (2). Moreover, since ,

1If � = [� ; 1), t � � is replaced byt � � = 1.

the sequence [and hence the sequence ] con-
verges to uniformly over , for all .

Now, is a run of viable in
for at least jumps. Therefore, for all

, and hence, for sufficiently large,
for all . Since is closed, for all

. Since is arbitrary, is an infinite run of
(with no jumps) starting at and viable in .

The proof is complete.
Case 2: We can restrict attention to . As for case

1, define the sequence of solutions of (2) that coin-
cide with on and the subsequence con-
verging (uniformly over compact intervals) to a solution of
(2). As before, is a run of viable
in for at least jumps. Therefore,
for all . Since is closed,
for all . Therefore, is a finite run of

(with no jumps) starting at and viable in .
Since converges to and converges to ,

converges to . Recall that is
a run of viable in for at least jumps,
therefore . Since is
upper semicontinuous with closed domain and compact images,
there exists a subsequence of converging to some
point . Therefore, with

and defined as above is a finite run
of (with one jump) starting at and viable in .

Case 3: The second part of the argument for Case 2
shows that, since converge to , there exists

. Therefore, with
, and is a finite

run of (with one instantaneous jump) starting at
and viable in .

To complete the proof for Cases 2 and 3, we repeat the ar-
gument starting at (discarding the initial part of the se-
quences accordingly). We generate and
construct a run of viable in , defined either over

(if , in which case the proof is com-
plete) or over with (if

is finite). The claim follows by induction.
Step 5: Finally, we show is viable by

showing that it is a fixed point of . Recall that
. Consider an arbitrary

and assume, for the sake of contra-
diction, that . Consider an ar-
bitrary infinite run viable in and starting at
[which exists since ]. If ,
starts by a discrete transition to some .
Since , . If

, then starts by continuous evolution. Since
, the execution

either

1) leaves (at time ) before it reaches
;

2) leaves (at time ) before it reaches ;
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3) takes a transition from some
;

(see Fig. 7). In all cases, either blocks or leaves
at some with . But if

there is no infinite run of starting at
and viable in . Therefore, either blocks or is not viable
in . This contradicts the assumption that .

Proof of Lemma 5

Necessity:The proof was given in Step 3 of Theorem 4
above, where it was shown that if , then all runs
starting at leave after at most transitions.

Sufficiency: If there is nothing to prove. If
, implies that

. If
, then there exists a solution

to starting at which is either

1) defined on with for all ;
2) defined on with and

for all .
In the former case, the run is an infinite run
viable in (and, hence, ), and the proof is complete.
In the latter case, there exists a finite run with one transition

with , ,
for all and .

This also subsumes the case :
there exists a finite run with one transition
with , and

.
Since , the constructed run remains in

for at least one jump. The claim follows by induction.

Proof of Lemma 6

By definition, is the set of such that for
all solutions of starting at either

1) for all ;
2) there exists such that and for

all .
Therefore, satisfies the conditions of Lemma 2.
Moreover, every subset which satisfies the conditions
of Lemma 2 must be contained in , since all runs
starting in stay in (and therefore in ) until they reach .

It remains to show that is closed. Consider a
sequence converging to and show that

. Since by definition and
is assumed to be closed, . If there is

nothing to prove, since by definition . If
, let be any solution of starting at .

Let

If or if , then , and the proof
is complete.

Let be the Lipschitz constant of, and assume, for the sake
of contradiction, that and . Then, by the
definition of and the assumption that and are closed,

there exists such that and for all ,
. Choose such that

(3)

[possible since is closed and ] and for all

(4)

[possible since is closed and for all , ].
Since there exists large enough such that

. By Filippovs Theorem (see, for example, [30, The-
orem 5.3.1]) there exists a solution of starting
at such that for all

or, in other words, for all

Therefore, by (4), for all , , while, by
(3) . This contradicts the assumption that

. Hence, every converging sequence has its limit
in , and therefore is closed.

Proof of Lemma 7

Necessity:We first show that for every closed, invariant
set , . Clearly , since

. Conversely, consider an arbitrary point
and show that . Assume,

for the sake of contradiction that this is not the case. Then,
either , or . If ,
there exists such that ; in other words,
there exists a run of the impulse differential inclusion starting
at that leaves by a discrete transition. This contradicts
the assumption that is invariant. If, on the other hand,

then, in particular, [since
]; but , so we must have ,

and therefore continuous evolution starting at is possible.
Since , there exists a solution to
starting at that leaves before reaching . This solution is
a run that starts in but is not viable in . This
also contradicts the assumption thatis invariant.

Sufficiency: Next, we show that every closed setsuch that
is invariant. Consider an arbitrary run

starting at some . We show that is viable in
by induction. Assume that we have shown that for all

. Then, since ,
. If the system takes

a discrete transition to some , since
. If the run progresses by

continuous evolution. Since , then either

1) and for all ;
2) , and for all .

Notice that , and, in particular,
. Therefore, . The claim

follows by induction.
Notice that in the last argument may, in fact, be

empty. In this case the run “blocks,” in the sense that there exist
no infinite runs starting at . The conclusion that all runs
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starting at are viable in is still true however. To preclude
this somewhat unrealistic situation, one can add Assumption 1
to the lemma and subsequent Theorem 5.

Proof of Theorem 5

The proof makes use of the sequence of sets constructed by
the Invariance Kernel Algorithm, that is, the sets ,

. Let

The proof proceeds in a sequence of steps. We show that

1) for every invariant set , ;
2) is closed;
3) ;
4) .

Steps 2) and 4) and Lemma 7 imply that is invariant. There-
fore, by Step 1), , and, by Step 3),

. Summarizing, is the largest [(by Step 1)],
closed [(by Step 2)], invariant [(by Step 4)] subset of.

Step 1: Every set which invariant under
must be contained in , since all

runs starting in stay in , and, therefore, in .
Step 2: Clearly, for all , .

Since is closed, is closed. Moreover, if is closed,
then is closed (by Lemma 6, since is closed),

is closed (since is lower semicontinuous), and,
therefore, is closed. By induction, the form a sequence
of nested closed sets, and, therefore, is closed (or the
empty set).

Step 3: Consider a point and show that
. Assume, for the sake of contradiction, that

. Then there exists such that . If ,
then , therefore, there exists a (trivial) run
starting at that is not viable in . This contradicts the as-
sumption that . If , we show that there
exists a run stating at that after at most one discrete transi-
tion finds itself outside . The claim then follows by in-
duction. Indeed, since we must either have

, or . If ,
there exists such that , i.e., there exists
a run starting at that transitions outside . If, on the other
hand, , then . There-
fore, either (and the proof is complete), or
and continuous evolution is possible. In the latter case, since

, by Lemma 6 there exists a solution to
starting at that leaves before reaching .

This solution is a run of that leaves .
Step 4: Recall that . Consider an arbi-

trary and show that . Assume, for
the sake of contradiction, that .
Then there exists a run starting at and a such
that2 , or, in other words, there exists a run , a

and a such that .

2If � = [� ; � ] or � = [� ; � [, t � � should be replaced byt � � or,
respectively,t � � .

To see this notice that either [in which
case we can take , and ] or

[in which case there exists a solution
to that leaves before reaching ]. The same argu-
ment, however, also shows that , which
contradicts the assumption that .

Proof of Lemma 8

If there is nothing to prove. If , im-
plies that . Consider an
arbitrary run (if no such run exists the proof
is complete). If , then , since

. If , starts by continuous evo-
lution. Since , remains in
throughout this continuous evolution. If the proof is
complete. If ,

. Therefore, . There-
fore, all runs starting at will end up in after
one transition. The claim follows by induction.
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