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Abstract— This paper presents the mathematical modeling of
flapping flight for inch-size micro aerial vehicles (MAVs). These
vehicles, called Micromechanical Flying Insects (MFIs), are elec-
tromechanical devices propelled by a pair of independent flapping
wings and are capable of sustained autonomous flight, and
therefore mimic real flying insects. In particular, we describe the
design and implementation of the Virtual Insect Flight Simulator
(VIFS), a software tool intended for modeling true insect flight
mechanisms and for testing the flight control algorithms of the
MFIs. The VIFS includes models that have several elements
which differ greatly from those with either larger rotary, or
fixed wing MAVs. In particular, the VIFS simulates wing-thorax
dynamics, the flapping flight aerodynamics at a low Reynolds
number regime, and the biomimetic sensory system consisting of
ocelli, halteres, magnetic compass and optical flow sensors. In this
paper we present a mathematical description for each of these
models based on biological principles and experimental data.
All these models are designed in a modular fashion for quick
upgrading and they are integrated together to give a realistic
simulation for MFI flapping flight. The VIFS is intended to serve
as a tool to evaluate the performance of the MFI flight control
unit with an accurate low-level modeling of dynamics, actuators,
sensors and environment.

Index Terms— flapping flight, micro aerial vehicles,
biomimetic, modeling, low Reynolds number, flying insects.

I. I NTRODUCTION

Micro aerial vehicles (MAVs) have drawn a great deal of
interest in the past decade due to the advances in microtech-
nology. However, most research groups working on MAVs
have their designs based on either fixed or rotary wings [1].
It must be noted, though, that fixed and rotary winged MAVs
are best suited for outdoor missions, and they have limited
applications in urban and highly cluttered environments as a
result of their higher speed and bigger size constraints. On
the other hand, flapping flying insects, such as fruit flies and
house flies, besides being at least two orders of magnitude
smaller than today’s smallest manmade vehicles, demonstrate
superior performance and unmatched maneuverability. These
attributes would be beneficial in obstacle avoidance and in
navigation in small spaces. Therefore, inspired by true insects,
several researchers have started using biomimetic principles
to develop MAVs with flapping wings that will be capable of
sustained autonomous flight [2], [3], [4]. In particular, the work
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Fig. 1. MFI model based on a blow fly calliphora, with a mass of
100 mg, wing length of11 mm, wing beat frequency of150 Hz,
and actuator power of10 mW . Each of the wing has two degrees
of freedom: flapping and rotation. (Courtesy of R. Fearing and R.J.
Wood)

in this paper has been developed for the Micromechanical
Flying Insect (MFI) project at UC Berkeley [5], which has
designed a robotic flying insect that mimics a blow-fly. Fig. I
shows a conceptual view of the designed robotic fly.

Recently, considerable effort has been directed toward un-
derstanding the complex structure of insect flapping flight by
examining its components, particularly its sensors [6], [7], [8],
[9], the neural processing of external information [10], [11],
the biomechanical structure of the wing-thorax system [12],
[13], the wing aerodynamics [14], [15], the flight control algo-
rithms [16], and the trajectory planning [17], [18]. However,
still little is known about how these elements interact with
one another to give rise to the complex behaviors observed in
true insects. Therefore, in order to accurately simulate robotic
flying insects, we have developed mathematical models for
each of the following systems: wing aerodynamics, body dy-
namics, actuator dynamics, sensors, external environment and
flight control algorithms. These models have been integrated
together into a single simulator, called the Virtual Insect Flight
Simulator (VIFS), aimed both at giving a realistic analysis and
at improving the design of sensorial information fusion and
flight control algorithms. The mathematical models are based
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on today’s best understanding of true insect flight, which is
far from being complete.

This paper is organized as follows. In Section II we give a
brief overview of the MFI project. In Section III we present
the modular architecture of VIFS. Sections IV through VII
describe in detail respectively the mathematical modelling of
flapping flight in a low Reynolds number regime, the insect
body dynamics, the wing-thorax actuator dynamics, and the
sensory system represented by the ocelli, the halteres, the
magnetic compass and the optical flow sensors. Finally, in
Section VIII, we state our conclusions and give direction for
future work.

II. MFI OVERVIEW

The design of the MFI is guided by the studies of true
flying insect. The requirements for a successful fabrication,
such as small dimensions, low power consumption, high flap-
ping frequency, and limited computational on-board resources,
are challenging, however, and they forced the development
of novel approaches to electromechanical design and flight
control algorithms.

The goal of the MFI project is the fabrication of an inch-
size electromechanical device capable of autonomous flight
and complex behaviors, mimicking a blowfly Calliphora. The
fabrication of such a device requires the design of several
components. In particular, it is necessary to identify five
main units (Fig. 2), each of them responsible for a distinct
task: thelocomotory unit, the sensory system unit, the power
supply unit, thecommunication unitand thecontrol unit. The
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Fig. 2. MFI structure

locomotory unit, composed of the electromechanical thorax-
wings system, is responsible for generating the necessary wing
motion for the flight, and thus for the MFI dynamics. One
of the most challenging parts of this project is the design
of a mechanical structure that provides sufficient mobility
to the wings to generate the desired wings kinematics. We
do not consider these issues in this paper and we direct
the interested reader to more detailed work in [19] [20] and
references therein. At present, the current design provides two
independent wings with two degrees of freedom: flapping and
rotation.

The sensory system unit is made up of different sensors. The
halteres are biomimetic gyros for angular velocity detection.
The ocelli are biomimetic photosensitive devices for roll-pitch
estimation and horizon detection. The magnetic compass is
used for heading estimation. The optical flow detectors are
utilized for self-motion detection and object avoidance. These
sensors provide the control unit with the input information
necessary to stabilize the flight and to navigate the environ-
ment. Other kinds of miniaturized sensors can be installed,
such as temperature and chemical sensors, which can be used
for search and recognition of particular objects or hazardous
chemicals.

The power supply unit, which consists of three thin sheets
of solar cells at the base of the MFI body, is the source of
electric energy necessary to power the wing actuators and
the electronics of all the units. One sheet of solar cells can
generate up to20mWcm−1. Underneath the solar cell, thin
films of batteries can store energy for dim-lit or night condition
operation.

The communication unit, based on micro Corner Cube
Reflectors (CCR) [21] ( a novel optoelectronic transmitter) or
on ultra-low-power RF transmitters, provides a MFI with the
possibility to communicate with a ground base or with other
MFIs.

Finally, the control unit, embedded in the MFI computa-
tional circuitry, is responsible both for stabilizing the flight
and for planning the appropriate trajectory for each desired
task.

III. SYSTEM MODELING ARCHITECTURE

In accordance with the major design units of MFI, the
VIFS is decomposed into several modular units, each of them
responsible for modeling a specific aspect of flapping flight,
as shown in Fig. 3.
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Fig. 3. Simulator (VIFS) architecture

The Aerodynamic Moduletakes as input the wing mo-
tion and the MFI body velocities, and gives as output the
corresponding aerodynamic forces and torques. This module
includes a mathematical model for the aerodynamics, which
is described in the next section.

The Body Dynamics Moduletakes the aerodynamics forces
and torques generated by the wing kinematics and integrates
them along with the dynamical model of the MFI body, thus
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computing the body’s position and the attitude as a function
of time.

The Sensory System Modulemodels the sensors used by
the MFI to stabilize flight and to navigate the environment.
It includes the halteres, the ocelli, the magnetic compass, and
optical flow sensors. This module will also include a model
for simple environments,i.e. a description of the terrain and
the objects in it. It takes as input the MFI body dynamics and
generates the corresponding sensory information which is used
to estimate the MFI’s state, i.e. its position and orientation.

TheControl Systems Moduletakes as input the signals from
the different sensors. Its task is to process the signals and to
use that information to generate the necessary control signals
to the electromechanical wings-thorax system to stabilize flight
and navigate the environment.

TheActuator Dynamics Moduletakes as input the electrical
control signals generated by the Control System Module and
generates the corresponding wing kinematics. It consists of the
model of the electromechanical wings-thorax architecture and
the aerodynamic damping on the wings.

The VIFS architecture is extremely flexible since it allows
ready modifications or improvements of one single module
without rewriting the whole simulator. For example, different
combinations of control algorithms and electromechanical
structures can be tested, giving rise to the more realistic setting
of flight control with limited kinematics due to electrome-
chanical constraints. Moreover, dimensions and masses of the
wings and body can be modified to analyze their effects on
flight stability, power efficiency and maneuverability. Finally,
as better flapping flight aerodynamic models become available,
the aerodynamic module can be updated to improve accuracy.
The following sections present a detailed mathematical de-
scription for the different modules, including simulations and
comparisons with experimental results.

IV. A ERODYNAMICS

Drag
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Fig. 4. Block diagram of the Aerodynamical Module

Insect flight aerodynamics, which belongs to the regime
of Reynolds number between30 − 1000, has been a very
active area of research in the past decades after the seminal
work of Ellington [22]. Although, at present, some numerical
simulations of unsteady insect flight aerodynamics based on
the finite element solution of the Navier-Stokes equations give
accurate results for the estimated aerodynamics forces [23]
[24], their implementation is unsuitable for control purposes
since they require several hours of processing for simulating
a single wingbeat, even on multiprocessor computers. How-
ever, several advances have been achieved in comprehending
qualitatively and quantitatively unsteady-state aerodynamic
mechanisms thanks to scaled models of flapping wings [14],
[25]. In particular, the apparatus developed by Dickinson and

his group, known as Robofly [14], consists of a two25cm-long
wings system that mimics the wing motion of flying insects.
It is equipped with force sensors at the wing base, which can
measure instantaneous wing forces along a wingbeat.

Results obtained with this apparatus have identified three
main aerodynamics mechanisms peculiar only to the unsteady
state nature of flapping flight:delayed stall, rotational lift and
wake capture.

The delayed stall is the result of the translational motion of
the wing that starts from rest, and it depends only on the wing
translational velocity and angle of attack. It accounts for most
of the aerodynamic force generation in flapping flight. This
mechanism is unique to flapping flight since it produces large
aerodynamic forces for large angles of attack only during the
onset of motion and lasts for a distance of a few wing chord
lengths. After travelling this distance, turbulent aerodynamic
vortices develop behind the wing profile which cause the
wing to stall, from which the mechanism takes the name of
“delayed” stall. This mechanism can be observed on toy paper
airplanes when they are launched from rest: initially they tend
to climb because of the large lift generated by the delayed
stall, but soon after they fall. Fixed and rotary aircraft cannot
exploit this mechanism since they move at a constant velocity
and turbulent aerodynamics would arise for large angles of
attack.

The second mechanism is the rotational lift that results from
the interaction of translational and rotational velocity of the
wing at the end of a half-stroke when the wing decelerates
and rotates. It is analogous to the effect of back or top
spin on a translating tennis ball or baseball, which induces
a curved trajectory. However, the fact that the wing profile
is flat and not spherical, is an important difference, since the
force direction is always perpendicular to wing surface, rather
than perpendicular to the velocity vector as in the tennis ball.

Finally, the wake capture is the result of the interaction of
the wing with the fluid wake generated in the previous stroke,
when the wing inverts its motion. In fact, the fluid behind the
wing tends to maintain its velocity due to its inertia, therefore
when the wing changes direction, the relative velocity between
the wing and the fluid is larger than the absolute wing velocity,
thus giving rise to larger force production at the beginning of
each half-stroke.

The mathematical aerodynamic modeling presented below
is a combination of an analytical model, based on quasi-
steady state equations for the delayed stall and rotational
lift, and an empirically matched model for the estimation
of the aerodynamic coefficients based on experimental data.
Wake capture is very complex to treat analytically, and it has
not been considered in this work. However, this mechanism
is observed to have a small contribution for sinusoidal-like
motion of the wings, motion that it is widely used in our
simulations and flight control algorithms [26].

A quasi-steady state aerodynamic model assumes that the
force equations derived for 2D thin aerofoils translating with
constant velocity and constant angle of attack, can be applied
also to time varying 3D flapping wings. It is well known from
aerodynamics theory [27] that, in steady state conditions, the
aerodynamic force per unit length exerted on a aerofoil due
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to delayed stall is given by:

F ′tr,N =
1
2
CN (α)ρ cU2

F ′tr,T =
1
2
CT (α)ρ cU2 (1)

where F ′tr,N and F ′tr,T are, respectively, the normal and
tangential components of the force with respect to the aerofoil
profile, c is the cord width of the aerofoil,ρ is the density
of air, α is the angle of attack defined as the angle between
the wing profile and the wing velocity relative to the fluid,
U , andCN and CT are the dimensionless force coefficients.
The orientation of these forces is always opposite to the wing
velocity. Fig. 5 shows a graphical representation of these
parameters. A good empirical approximation for the force
coefficients is given by:

CN (α) = 3.4 sin α

CT (α) =
{

0.4 cos2(2α) 0 ≤ α ≤ 45o

0 otherwise
(2)

which were derived using experimental results given in [14].
These coefficients have been obtained from Equations (1)
by experimentally measuring aerodynamic forces for different
angles of attack and translational velocities and then solving
for the aerodynamic coefficients. Fig. 6 shows the plots of
Equations (2). It is clear how, for high angles of attack, the

tangential component, mainly due to skin friction, gives only
a minor contribution.

In the aerodynamics literature, it is more common to find
the lift and drag force coefficients,CL andCD. Lift, FL and
drag,FD are defined, respectively, as the normal and tangential
components of the total aerodynamic force with respect to the
stroke plane, i.e. the plane of motion of the wings with respect
to the body (see Fig. 5a). However, the force decomposition
in normal and tangential components is more intuitive, since
aerodynamic forces are mainly a pressure force which acts
perpendicularly to the surface. Nevertheless, the lift and drag
coefficients can be readily computed as:

CL(α) = CN (α) cos α− CT (α) sin α
CD(α) = CN (α) sin α + CT (α) cos α

(3)

and they are plotted in Fig. 6. Note how the maximum lift
coefficient is achieved for angles of attack of approximately
45o, considerably different from fixed and rotary wings which
produce maximum lift for angles of about5o.

The aerodynamic force per unit length exerted on a aerofoil
due to rotational lift is given by [28]:

F ′rot,N =
1
2
Crotρ c2 U ω (4)

whereCrot = 2π
(

3
4 − x̂o

)
is the rotational force coefficient,

approximately independent of the angle of attack,x̂o is the
dimensionless distance of the longitudinal rotation axis from
the leading edge, andω is the angular velocity of the wing
with respect to that axis. In most flying insectsx̂o is about14 ,
which correspond to the theoretical value of the mean center
of pressure along the wing chord direction. This is a pure
pressure force and therefore acts perpendicularly to the wing
profile, in the opposite direction of wing velocity.

According to the quasi-steady state approach, the total force
on a wing is computed by dividing the wing into infinitesimal
blades of thicknessdr, as shown in Fig. 5(c). First, we
calculate the total force on each blade:

dFtr,N (t, r) =
1
2
CN (α(t))ρ c(r)U2(t, r) dr

dFtr,T (t, r) =
1
2
CT (α(t))ρ c(r)U2(t, r) dr

dFrot,N (t) =
1
2
Crotρ c(r)2 U(t, r) α̇(t) dr

U(t, r) = φ̇(t)r (5)
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whereφ is the stroke angle, and the wing angular velocity,ω
is approximatelyα̇. Then we integrate the forces in Equations
(5) along the wing, i.e.Ftr,N (t) =

∫ L

0
dFtr,N (t, r), to get:

Ftr,N (t) =
1
2
ρAw CN (α(t)) U2

cp(t) (6)

Ftr,T (t) =
1
2
ρAw CT (α(t))U2

cp(t) (7)

Frot,N (t) =
1
2
ρAw Crot ĉ cm α̇(t)Ucp(t) (8)

Ucp(t) = r̂2L φ̇(t) (9)

where Aw is the wing area,L is the wing length,Ucp is
the velocity of the wing at the center of pressure,r̂2 is the
normalized center of pressure,cm is maximum wing chord
width, and ĉ is the normalized rotational chord. The former
two parameters are defined as follows:

r̂2
2 =

∫ L
0 c(r) r2 dr

L2Aw

ĉ =
∫ L
0 c2(r) r dr

r̂2LAwcm

The normalized center of pressure,r̂2, and the normalized
rotational chord,ĉ, depend only on the wing morphology,
and in most flying insects their range is approximatelyr̂2 =
0.6 − 0.7 and ĉ = 0.5 − 0.75 [22]. As a result of this
approach, the wing forces can be assumed to be applied at
a distance,pcp = r̂2L, from the wing base. According to
thin aerofoil theory, the center of pressurercp lies about 1

4
of chord length from the leading edge (see Fig. 5(b)). This
has been confirmed by numerical simulations of insect flight
which do not assume a quasi-steady state aerodynamic regime
[23], and by experiments performed with a scaled model of
insect wings [14].

If the velocity of the insect body is comparable with the
mean wing velocity of the center of pressure, as during
cruising flight, a more accurate model for estimating the
aerodynamic forces is based on finding the absolute velocity
of the center of pressure of the wing relative to an inertial
frame, which is obtained by substituting Equation (9) with the
following:

Ucp(t) = r̂2L φ̇(t) + vb(t) (10)

wherevb(t) is the velocity of the insect body relative to the
inertial frame represented in the wing frame coordinate system.
The total lift and drag forces acting on the wing can be derived
through a trigonometric transformation analogous to the one
used in Equations (3) as follows:

FN (t) = Ftr,N (t) + Frot,N (t)
FT (t) = Ftr,T (t)
FD(t) = FN (t) cos α(t)− FT (t) sin α(t)
FL(t) = FN (t) sin α(t) + FT (t) cos α(t)

(11)

whereFtr,N , Ftr,T , Frot,N are given in Equations (6),(7), and
(8), respectively, andUcp(t) is given in Equation (10).

The aerodynamic forces used for simulation are based on
Equations (11). Fig. 7 shows the simulated aerodynamic forces
for a typical wing motion and the corresponding experimental
results obtained with a dynamically scaled model of insect
wing (Robofly traces). Despite some small discrepancies due
to the undermodeling of the wake capture mechanism, our
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of two wingbeats (Robofly data are courtesy of M. H. Dickinson).

mathematical model predicts the experimental data sufficiently
well .

The flapping flight aerodynamics module implementation is
summarized in the block diagram of Fig. 4.

V. BODY DYNAMICS
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Fig. 8. Body Dynamics Block Diagram

The body dynamic equations compute the evolution of the
dynamics of the insect center of mass and insect orientation
with respect to an inertial frame. This evolution is the result of
the wings’ inertial forces, and the external forces, specifically
aerodynamic forces, body damping forces, and the force of
gravity. However, the mass of the wings is only a small
percent of the insect body mass and as they move almost
symmetrically, their effect on insect body dynamics is likely to
cancel out within a single wingbeat. In fact, even if wing iner-
tial forces are larger than aerodynamic forces, nonholonomic
rotations would be possible for frictionless robots with moving
links (see [29] Example 7.2) only if the links, in our case the
wings, would flap out of sync with each other, an activity not
observed in true insects. Therefore, based on this observation,
it seems safe to assume that one can disregard inertial forces
and simplify the evolution of the insect dynamics to a single
rigid body under the effect of external forces only.

As shown in [29], the equations for rigid body motion
subject to an external wrenchF b = [f b, τ b]T applied at
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the center of mass and specified with respect to the body
coordinate frame, are given as:

[
mI 0
0 I

] [
v̇b

ω̇b

]
+

[
ωb ×mvb

ωb × Iωb

]
=

[
fb

τ b

]
(12)

wherem is the mass of the insect,I is the insect body inertia
matrix relative to the center of mass,vb is the velocity vector
of the center of mass in body frame coordinates, andωb is
the angular velocity vector in body frame coordinates. The
values for the body and wing morphological parameters, such
as lengths and masses, used in our simulations are those of a
typical blowfly. However, they can be changed thus allowing
the simulation of different species and MFI designs.

The total forces and torques in the body frame are given
by the sum of the three external forces, ı.e. the aerodynamic
forces,f b

a, the body damping forces,f b
d , and the gravity force,

f b
g :

f b = f b
a + f b

g + f b
d

τ b = τ b
a + τ b

g + τ b
d

(13)

The aerodynamic forces and torques relative to the insect
center of mass, can be obtained by a sequence of fixed
coordinate transformations, starting from lift and drag forces
and wings kinematics calculated by the aerodynamic module
as follows:

f b
a(t) = f l

a(t) + fr
a(t)

τ b
a(t) = pl(t)× f l

a(t) + pr(t)× fr
a(t) (14)

where the subscriptsl, r stand for left and right wing, respec-
tively, andp(t) is the position vector of the center of pressure
of the wing relative to the body center of mass.

Since the lift and drag forces given by Equations (11) are
calculated relative to thestroke plane frame, a coordinate
transformation is necessary before obtaining the forces and
torques acting on thebody frame. The insect body frameis
defined as the coordinate system attached to the body center
of gravity and with x-axis oriented from tail to head, the y-
axis from right wing hinge to left wing hinge, and the z-axis
from ventral to dorsal side of the abdomen. Since these are
the axes of symmetry of the insect, the matrix of inertia is
almost diagonal in the body frame. Thestroke plane frameis
the coordinate system attached to the center of the thorax at
the center of the wings base, whose x-y plane is defined as
the plane to which the wing motion is approximately confined
during flapping flight.

Given the lift and drag generated by aerodynamics, together
with the stroke angle, the forces and torques in thestroke plane
can be calculated as

fc
a =




F l
D cos φl + F r

D cos φr

F l
D sin φl − F r

D sin φr

F l
L + F r

L




τ c
a = r̂2L



−F l

D cos φl + F r
L cos φr

−F l
D sin φl − F r

D sin φr

F l
D − F r

D




where we usedpl(t) = r̂2L(sinφl, cos φl, 0) and pr(t) =
r̂2L(sinφr, cosφr, 0). To obtain the aerodynamics forces and
torques in thebody frame, we do a coordinate transformation
as: [

fb
a

τ b
a

]
=

[
RT

cb 0
−RT

cbp̂cb RT
cb

] [
fc

a

τ c
a

]
(15)

whereRcb is the rotation matrix of the body frame relative
to the stroke plane, andpcb represents the translation of the
origin of the body frame from the stroke plane. This is a fixed
transformation that depends only on the morphology of the
insect or MFI.

The gravitational forces and torques in thebody frameare
given by:

[
fb

g

τ b
g

]
=




RT




0
0

mg




0


 (16)

whereR is the rotational matrix of the body frame relative
to the spatial frame, andg is the gravitational acceleration.

The viscous damping exerted by the air on the insect body
is approximately given by:

[
fb

d

τ b
d

]
=

[
−b vb

0

]
(17)

whereb is the viscous damping coefficient. The reason for the
linearity in the velocity of the drag force is that the velocity
of the insect is small relative to insect size, therefore vis-
cous damping prevails over quadratic inertial drag. Empirical
evidence for linear damping has been recently observed by
the authors by analyzing the free flight dynamics of true fruit
flies. Moreover, theoretic computations [30] and experimental
data [31] indicate that rotational damping of the insect body
is negligible relative to aerodynamic forces even during rapid
body rotation and can therefore be neglected.

Numerical solution of Equations (12) have been imple-
mented using Euler’s angle representation for the rotation
matrix. This representation is very commonly used in space
vehicle dynamics modeling and the notation that follows can
be found in many textbooks such as [32]. In particular, we
consider the new variableṡP = vp = Rvb and ω̂b = RT Ṙ.
For R ∈ SO(3), we parametrizeR by ZY X Euler’s angles
with ϕ, θ, and ψ about x,y,z axes respectively, and hence
R = eẑψeŷθex̂ϕ with x = [1 0 0]T , y = [1 0 0]T ,z = [0 0 1]T

and x̂, ŷ, ẑ ∈ so(3). By differentiatingR with respect to time,
we have the state equations of the Euler angles,Θ = [ϕ θ ψ]T ,
which can be defined aṡΘ = Wωb. By defining the state
vector [P, Θ] ∈ R3×R3 whereP is the position of the center
of mass w.r.t. the inertia frame, andΘ are the euler angles
which we use to parametrize the rotation matrixR, we can
rewrite the equations of motion of a rigid body as:

Θ̈ = (IW )−1[τ b −W Θ̇× IW Θ̇− IẆ Θ̇]

P̈ =
1
m

Rf b (18)

where the body forces and torques(f b, τ b) are time-varying,
nonlinear functions of the wing kinematics and body orienta-
tion and are given by Equations (13).

The body dynamic module implementation is summarized
in the block diagram in Fig. 8.

VI. A CTUATOR DYNAMICS

Each wing is moved by the thorax, a complex trapezoidal
structure actuated by two piezoelectric actuators at its base, as
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Fig. 9. Wing-Thorax structure. Courtesy of [33]

shown in Fig. 9. A complete nonlinear model for the thorax,
developed in [33], can be written as follows

M

[
θ̈2

β̈

]
+B

[
θ̇2

β̇

]
+K

[
θ2

β

]
+

[
0

f(β̇)

]
= T

[
u1

u2

]
(19)

wheref(β̇) = 1
2m

′
ω,2(β̇)2, θ2 is the leading edge flapping

angle from the four bar mechanism,β = θ1 − θ2 is the
phase difference between the four bar output angles,u1 and
u2 are the control input torques to the actuators,M and
B are the inertia and damping matrices, which are assumed
to be constant. However, parameters inK and T matrices
include some slowly time varying terms, and the control inputs
(u1, u2) are limited to10µNm by physical constraints.

The relationship between the state variables in Equation (19)
and the wing motion variables (stroke angleφ and rotation
angle ϕ, see Fig. 5) can be approximated asφ = θ2 and
ϕ = 2β. Based on Equation (19), with a change of variables,
neglecting the nonlinear components, we can derive the linear
actuator model as

M0

[
φ̈
ϕ̈

]
+ B0

[
φ̇
ϕ̇

]
+ K0

[
φ
ϕ

]
= T0

[
u1

u2

]
(20)

whereM0, B0, K0, andT0 are constant matrices calculated
from the data provided in [33].

Equation (20) is a stable linear MIMO system and can
also be written using a transfer function representation in the
frequency domain:

Y (jω) = G(jω)U(jω)

whereY andU are the Fourier transform of the output vector
y = (φ, ϕ) and the input vectoru = (u1, u2), respectively.
The electromechanical structure has been designed so that
the input-output frequency response of the system is almost
decoupled at all frequencies, i.e.|G11(jω)| ' |G22(jω)| À
|G12(jω)| ' |G21(jω)|, ∀ω, whereGik represents thei − k
entry of the matrixG, and ω = 2πf . Moreover, the system

has also been designed to achieve a quality factorQ =
3 at the desired resonant frequency off0 = 150Hz, i.e.
|Gii(j2πf0)| ' |Gii(0)|. A low quality factorQ is necessary
to easily control the wing trajectory even when the wingbeat
frequency is the same as the resonant frequency. In fact, large
Qs would practically remove all higher order harmonics from
the input signals and the wing would simply oscillate along
the same sinusoidal trajectory.

VII. SENSORYSYSTEM

This section briefly describes the sensory systems of the
MFI, which include the ocelli, the magnetic compass, the
halteres, and the optic flow sensors. The ocelli can be used
to estimate the roll and pitch angles, the magnetic compass to
estimate the yaw angle, the halteres to estimate the three angu-
lar velocities, and the optic flow sensors for object avoidance
and navigation.

In this paper we only provide the mathematical modeling of
these sensors. Their role in flight stabilization and navigation
are presented in [34] and in the references therein. These
sensors are currently being implemented, and preliminary
results of their prototypes are presented in [35].

A. Ocelli

Ocelli form a sensory system present in many flying insects.
This system comprises three wide angle photoreceptors placed
on the head of the insect. They are oriented in such a way
that they collect light from different regions of the sky.
The ocelli are believed to play an important role in attitude
stabilization in insect flight as they compare the light intensity
measured by the different photoreceptors, which in turn act as
horizon detectors [8]. Inspired by the ocelli of true insects,
we developed a biomimetic, ocelli-like system composed of
four photoreceptors. The light intensity function for a point
on the sky sphereI = I(α, β) is a function of the latitude,α,
and longitude,β, relative to the fixed frame. This modeling is
sufficient to realistically describe light intensity distributions
for different scenarios, such as indoor, outdoor and urban
environments.

The ocelli system is modeled as four ideal photoreceptors,
P1, P2, P3, andP4, fixed with respect to the body frame. They
are oriented symmetrically with the same latitude, and, if their
axes are drawn, one would see that the axes form a pyramid
whose top vertex is located at the center of the insect’s head.
Every photoreceptor collects light from a conic regionAi in
the sky sphere around its ideal orientationPi as shown in
Fig. 10a.

The measurements from the photoreceptors are simply sub-
tracted pairwise and these two signals are the output from the
ocelli:

yo
1 = I(P1)− I(P2), yo

2 = I(P3)− I(P4) (21)

where I(Pi) is the output from thei-th photodiode. The
orientation of the photodiodes relative to the fixed frame, i.e.,
the latitude and longitude of the area of sky they are pointing
at, is a function of the insect orientation, i.e.,Pi = Pi(R),
whereR is the body orientation matrix. Therefore, if the light
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Fig. 10. (a) Graphical rendering of ocelli present in flying insects. Four
photoreceptors,P1, P2, P3, and P4, collect light from different regions of
the sky. The shadowed area represents such a region for photoreceptorP3;
(b) Photo of the ocelli sensor prototype.

intensity function,I = I(α, β) is defined, given the orientation
of the insect body,R, the output of the ocelli can be computed
from Equation (21). If the light intensity in the environment
is a monotonically decreasing function of its latitude relative
to the light source, i.e.,I = I(α), then it is shown in [34]
that the outputs from the ocelli can be used as an estimate
of the orientation of the ocelli reference frame relative to the
light source. In fact, for small deviations from the vertical
orientation we haveyo

1 ' ko ψ and yo
2 ' ko θ, whereko is

a positive constant, and(ψ, θ) are the roll and pitch body
angles, respectively. More general theoretical and experimental
results for attitude stabilization using ocelli are given in [34].
Even if in real environments light intensity is not exactly a
monotonically decreasing function, the ocelli can still estimate
robustly the orientation of the body frame relative to the light
source, as shown in Fig. 11 where the light intensity function
I(α, β) was collected using the ocelli prototype shown in Fig.
10b.

B. Magnetic Compass

Although the ocelli system provides a means for a flying
insect to reorient its body towards a specific orientation, its
heading remains arbitrary. Since maintaining the heading is
fundamental for forward flight and maneuvering, we propose
to solve this problem by implementing a magnetic compass for
the MFI. This magnetic sensor can estimate the heading based
on the terrestrial geomagnetic field. The magnetic compass
has three “U-shaped” suspended structures as shown in Fig.
12b (see [35] for details). Electric current flows through these
loops, interacting with the terrestrial geomagnetic field, and
induces the Lorentz force given byFl = 3Li × B, where
Fl is the total force at the base of the cantilever,3L is the
length of one loop of the cantilever,i is the total current, and
B is the terrestrial geomagnetic field. The deflection of the
cantilever, which is proportional to the force perpendicular
to the cantilever, i.e.,Fc = Fl · n where n is the sensing
direction of the strain gauge, is sensed at the base by strain
gauges. Thus, the outputs from the strain gauges can be used
to estimate the heading of the MFI and it is given by:

yc = aFc = aL(i×B) · n = kc sin γ = kcf(R) (22)

wherea is a constant that depends on the size of the cantilever
and the strain gauge,γ is the angle between the insect
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Fig. 11. Light intensity distribution and estimated light source position using
experimental data collected from an ocelli prototype [34].

Fig. 12. (a) Schematic of a magnetic compass; (b) Photo of the magnetic
sensor prototype. Courtesy of [36].

heading and the direction of the Earth magnetic field, and
f(R) is a linear function of the body rotation matrixR. The
function f(R) can be computed easily once the orientation
of the current vectorib and the gauge sensing directionnb,
with respect to body frame, and the orientation of the Earth
magnetic fieldBf , relative to the fixed frame, are known.

C. Halteres

Biomechanical studies on insect flight revealed that in order
to maintain stable flight, insects use structures, called halteres,
to measure body rotations via gyroscopic forces [37]. The
halteres of a fly resemble small balls at the end of thin sticks
as shown in Fig. 13a. During flight the two halteres beat up
and down in non-coplanar planes through an angle of nearly
180◦ anti-phase to the wings at the wingbeat frequency. This
non-coplanarity of the two halteres is essential for a fly to
detect rotations about all three turning axes because a fly with
only one haltere is unable to detect rotations about an axis
perpendicular to the stroke plane of that haltere [7].
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Fig. 13. (a) Schematic of the halteres (enlarged) of a fly; (b) Photo of the
haltere prototype. Courtesy of [36].

Fig. 14. Block diagram of the haltere process.R is the insect body rotation
matrix. Details of the demodulation scheme are presented in [36].

As a result of insect motion and haltere kinematics, a
complex set of forces acts on the halteres during flight:
gravitational, inertial, angular acceleration, centrifugal, and
Coriolis forces.

F = mg−ma−mω̇× r−mω× (ω× r)− 2mω×v (23)

where m is the mass of the haltere,r, v, and a are the
position, velocity, and acceleration of the haltere relative
to the insect body,ω and ω̇ are the angular velocity and
angular acceleration of the insect, andg is the gravitational
constant (see Fig. 14). However, by taking the advantage of
the unique characteristics (frequency, modulation, and phase)
of the Coriolis signals on the left and right halteres, a de-
modulation scheme has been proposed to decipher roll, pitch,
and yaw angular velocities from the complex haltere forces
[36]. Fig. 15 shows the decoupled angular velocities of a
fly estimated by processing the haltere force measurements
during a steering flight mode, obtained using simulations of
insect flight according to the body dynamics described in the
previous section. It is shown in [34] that the haltere outputs
are almost equivalent to the following smoothed version of the
insect angular velocities:

yh
1 (t) = kh1

T

∫ t

t−T
ωx(τ)dτ = ω̄x(t)

yh
2 (t) = kh2

T

∫ t

t−T
ωy(τ)dτ = ω̄y(t)

yh
3 (t) = kh3

T

∫ t

t−T
ωz(τ)dτ = ω̄z(t)

(24)

whereT is the period of oscillation of the halteres,kh1, kh2,
and kh3 are positive constants, and̄ωi are the mean angular
velocities of the insect during one period of oscillation of the
halteres. Fig. 13b shows the prototype of the haltere sensor.

D. Optic Flow Sensors

Research on insects’ motion-dependent behavior contributed
to the characterizations of certain motion-sensing mechanisms
in flying insects. The correlation model of motion detection
represents the signal transduction pathway in a fly’s visual sys-
tem [38] [39]. The basic element of the Reichardt correction-
based motion sensor is an elementary motion detector (EMD),
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Fig. 15. Simulation of angular velocity detection by halteres under a steering
flight mode.

Fig. 16. Elementary motion detector (EMD) architecture.

as shown in Fig. 16. When a moving stimulus is detected by an
EMD, the perceived signal in one photoreceptor is compared
to the delayed signal in a neighboring photoreceptor. If the
signal in the left photoreceptor correlates more strongly to
the delayed signal in the right photoreceptor, the stimulus
is moving from right to left and vice versa. In the EMD
implementation, as in [40], the photoreceptor can be modeled
as a bandpass filter whose transfer function is given by

P (s) =
K · τH · s

(τH · s + 1)(τphoto · s + 1)
(25)

where τH is the time constant of the DC-blocking highpass
filter, τphoto is the time constant defining the bandwidth of the
photoreceptor, andK is the constant of proportionality. The
delay operation of the EMD can be realized by a lowpass filter
with time constantτ :

D(s) =
1

τ · s + 1
(26)

The correlation is achieved by multiplying the delayed signal
in one leg of the EMD with the signal in the adjacent
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Fig. 17. A fly follows the topography of the ground (top) based on the
perceived optic flow (bottom) during the flight.

leg and the signals in the two legs are subtracted, and the
detector output is thus the remainder. Finally, the outputs of
the individual units in the array are added together to obtain
an overall sensor output:

yf (t) =
∑

κ

o(κ, t) (27)

where κ is the number of EMDs in the array. This spatial
summation has the effect of reducing oscillations in the output
of a single EMD [41].

Image motions seen by an insect’s eyes are encoded by the
perceived optic flow. Higher image motions result in greater
optic flow. Therefore, when an insect flies toward an object,
the quick expansion of that object in the insect’s visual field
would induce large optic flow across its eyes. This kind of
flow signal can be exploited to perform tasks such as obstacle
avoidance and terrain following. In the simulation of a fly
following a simple topography of the ground (see top panel of
Fig. 17), optic flow measurements are estimated by simulating
an array of EMDs based on the configuration in Fig. 16, and
calculating the signals using Equations (25), (26), and (27)
according to the fly’s elevation. The flow sensor is assumed to
face downward by60◦ on the head of the fly. The bottom
panel shows the accumulated optic flow perceived by the
sensor during the flight. When the fly is closer to the ground,
the patterns on the ground cause the optic flow to increase
quickly. An upper threshold for the perceived optic flow is set
such that when this value is reached, the fly would elevate in
order to maintain a safe distance to the ground. On the other
hand, when the fly is at a higher position, the patterns on the
ground do not induce significant optic flow and hence the flow
signals decrease due to leakage over time. Accordingly, the fly
would descend when a preset lower threshold is reached. By
selecting appropriate upper and lower threshold values, the fly
can follow the topography of the ground properly.

VIII. C ONCLUSION

In this paper we presented a mathematical model for
flapping flight inch-size micromechanical flying vehicles. The
aerodynamics, the elctromechanical architecture, and the sen-
sory system for these vehicles differ considerably from larger
rotary and fixed-winged aircrafts, and require specific mod-
eling. Based on latest research developed in the biological
community, and the understanding of physical limitations of
the actual device, we built a realistic simulation testbed,
called Virtual Insect Flight Simulator, which captures the most
important features for this kind of flapping wing micro aerial
vehicles. Mathematical modeling and simulations have been
presented for the aerodynamics, the insect body dynamics,
the electromechanical wing-thorax dynamics, the ocelli, the
halteres, the magnetic compass, and the optical flow sensors.
Comparison between simulations and experimental results
have been given, when possible, to validate the modeling. This
simulator has been used extensively to test flight control archi-
tectures and algorithms, which are presented in a companion
paper [26]. The modularity of the implementation is intended
to ease the modification of the simulator as better modeling
becomes available or additional elements are included in
the future, such as a modeling for the wake capture in the
aerodynamics module and the compound-eye visual processing
for object fixation and recognition in the sensory system.
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