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Abstract- This paper describes recent developments on 
the model identification and attitude control system for a 
Micmmechanical Flying lnsect (MFI). We include recently 
developed dynamical models for the thorax actuatom and 
various sensor models. Wing kinematic parameterization 
scheme was designed to generate feasible wing motions to 
decouple the body torques under the constraints of the 
thorax model. A nominal state-space LTI model in hover 
was identilied through linear estimation and a LQR con- 
troller was designed to achieve stable hovering and steering 
maneuvers. Simulation mults show satisfactory performance 
comparable to that of the real insects. 

I. INTRODUCTION 

Most research work on Micro aerial vehicles (MAVs) 
today are based on fixed and rotary wings [I]. However, 
flapping wing flight observed in insects demonstrates 
superior performance and maneuverability. The aim of 
the UC Berkeley Micromechanical Flying Insect (MR) 
project is to use hiomimetic principles to develop a MAV 
that can achieve exceptional flight performance through 
the use of flapping wings [Z]. 

Biomimetic sensor models, including halteres, ocelli, 
and magnetic compass to measure angles and angular 
rates in body frame are recently developed, together with 
a linear thorax actuator model. Due to the constraints 
on the input amplitude of the thorax model, low level 
wing motion design and open loop control problem is 
reconsidered. The original wing motion parameterization 
method in our previous work [3] is no longer feasible 
since discontinuities at the end of consecutive wingheats 
cause the thorax input torques to jump and saturate. In 
this work, we describe a new wing kinematic parame- 
terization method, which keeps the thorax inputs smooth 
and bounded, while still decouples roll, pitch, yaw body 
torques. 

Based on this parameterization, we adopt our previous 
identification and control scheme [3] to find an equivalent 
discrete-time linear time-invariant (LTI) model to approxi- 
mate the main dynamics of the MFI near hover and design 
a sensor feedbackLQR controller which stabilizes the M R  
and provides setpoint tracking. 

11. ATTITUDE DYNAMICS 
The attitude dynamics of a flying insect is described as 

R = Rhb 
fbb = J-’ (rb- -WbxJwb)  

Uib = -%b $b 3’1 [ :b - a b  0 

(1) 

where mb = [ ~ ~ ~ y ~ m ~ ~ ] ~  is the body frame angular 
velocity vector, zb E R3 is the body frame aerodynamic 
torque vector, J E is the insect body moment of 
inertia. To simplify the notation, we drop the superscript 
b from equations, implicitly assuming that all quantities 
are measured relative to the body frame B, attached to the 
center of mass. R E  SO(3)  = { R E  R3x3 : RTR =I,detR = 
+I} is the rotation matrix representing the orientation of 
the insect body frame B relative to the fixed frame A. In 
particular, we parametrize the rotation matrix R by mll(q), 
pirch(O), yaw(qf) Euler angles. 

111. SENSORS 
Three sensors, namely, the ocelli, the magnetic compass 

and the halteres, are developed to estimate the roll, pitch, 
yaw angles and angular velocities in body frame. In this 
paper we report only the major results and details are 
presented in [41. These sensors are currently being built 
and preliminary results are very promising [5J. 

A. Ocelli 

The ocelli can he used to estimate roll and pitch angles 
through light detection. It is a sensory system present in 
many flying insects which comprise of three wide angle 
photoreceptors placed on the head of the insect. They 
are oriented in such a way to collect light from different 
regions of the sky. By comparing the light intensity 
measured by different photoreceptors it helps to achieve 
attitude stabilization in insect flight [6]. 

We developed a biomimetic ocelli-like sensor sys- 
tem composed of four ideal photoreceptors, denoted 
Pi,P2,P3,P4. fixed with respect to the body frame E .  They 
are oriented symmetrically to have the same latitude and 
their axes intersect the sky sphere forming an imaginary 
pyramid, whose vertex is placed at the center of the insect 
head. Every photoreceptor collects light from a conic 
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Fig. 1. (a) Graphical rendering of ocelli present on flying insects. 
Four photoreceptors, PI,P2,P3,P4. collect light from different 
regions of the sky. The shadowed area represents the region for 
photoreceptor P,. (h) Schematic of ocelli hiomimetic sensor. 

region A, around its ideal orientation Pi as shown in Figure 
1 a. 

The measurements from the photoreceptors are simply 
subtracted pairwise and form the outputs: 

Y: = I ( P ~ ) - I ( P ~ ) ,  y ; = w 3 ) - ~ ( p 4 )  (2) 

where I(4) is the output from the i-th photodiode. 
Without loss of generality we assume that the light source 
is placed at position X = ( O , O , l )  relative to the fixed 
frame. If the output of a photodiode is a monotonic 
decreasing function of its latitude relative to the light 
source, it was showed that the following proposition holds 
me [4]: 

Proposition 1: If the photoreceptor output is a mono- 
tonic decreasing function of its latitude 0, relative to 
the light source, then the signals yy "d y4 defined in 
Equations (2) always satisfy the following conditions: 

(3) 
(4) 
( 5 )  

where 0 < k,,,, < k, < km are constant, and rij is the 
i - j enuy of the rotation matrix R. 

Therefore, it is evident that the outputs from the ocelli 
can he used as an estimate of the position of the ocelli 
reference frame relative to the light source, since for small 
deviations from the equilibrium, i.e. R 13x3. r3,, and 
r32 correspond to the roll and pitch angles, respectively. 
Detailed results are given in [4]. A prototype for the ocelli 
system, which is currently being developed [5] seems to 
confirm the mathematical model results. 

B. MEMS Magnetic Compass 
The MEMS magnetic compass is used to estimate MFl 

heading (yaw angle) based on the terrestrial geomagnetic 
field. It is a "U-shaped" suspended structure as shown in 
Figure 2. As electric current flows across this structwe, 
it interacts with the terrestrial geomagnetic field, and the 
Lorentz forces is generatesd by F - Li x B, where F, 
is the force at the tip of the cantilever, L is the length 

k,,,,r,, 5 ?'? 4 kmorr32 
k,,,r3, 4 Y! 5 kmr31 

r33 - 1 * fl- kor32;yi  - k0r3, 

Fig. 2. 
Schematic of a magnetic compass. 

(a) Photo of a MEMS magnetic sensor prototype (h) 

of one side of the cantilever, i is the current, and B is 
the terrestrial electromagnetic field. The deflection of the 
cantilever is sensed at the base by a strain gage, and is 
proportional to the force perpendicular to the cantilever,i.e. 
Fc = F, . n, where n is the sensing direction. Therefore, the 
output from the strain gage can be used to estimate the 
heading of the MFl when the magnetic sensor is attached 
to the MFl body. Without loss of generality, assume that 
the earth magnetic field is oriented along the x-axis of the 
fixed frame, i.e. B = [OOB]7 relative to the fixed frame. If 
we orient the compass such that the current i = [0 0 -;IT 
and the sensing direction n = [I 0 01' relative to the body 
frame (see Figure Z), then the signal measured by the 
strain gage is given by: 

(6 )  
yc = F,=L([OO - ~ ] x ( R ' [ O O B ] ~ ) ) [ ~ O O ] '  

= LiBr12 = k, r,* 

where we use the fact that the coordinates of the earth 
magnetic field relative to the body frame is given by vb = 
RTIO 0 BIT. For small deviations from the equilibrium, 
i.e. R % lZx3.  and rI2 correspond to the yaw angle, thus 
providing an estimate for the heading. 

C. Halteres 

Halteres are used to measure angular velocities in the 
body frame. Biomechanical studies revealed that insects 
use halteres to measure body rotations via gyroscopic 
forces [7]. The halteres of a fly resemble small balls at 
the end of thin sticks. During flight the two halteres beat 
up and down in non-coplanar planes'through an angle 
of nearly 180' anti-phase to the wings at the wingbeat 
frequency. This non-coplanarity of the two halteres is 
essential for a fly to detect rotations ahout all three turning 
axes [SI. 

During insect flight, forces acting on the halteres in- 
clude inertial, angular acceleration, centrifugal, Coriolis, 
and gravitational forces. However, particular characteris- 
tics (frequency, modulation, and phase) of the Coriolis 
signals on the left and right halteres motivated a demodula- 
tion scheme that can decipher roll, pitch, and yaw angular 
velocities [ 5 ] .  It was shown [4] that the halteres outputs 
are almost equivalent to the following smoothed version 
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Pig. 3. (a) Schematic of enlarged halteres of a fly. (bj Photo of 
the completed haltere. 

of the insect angular velocities: 

> h ( r )  = ah\r&(T)dr=k,,l &(t)  

J(r)  = CL\rUh(T)dr=k,, 4 ( r )  
where T is the period of oscillation, a,b,~,k~,,k,,~,k~~ 

are constants and 6; is the mean angular velocity of the 
insect over a period of oscillation of the halteres. 

h) = bL:,%(.r)d.r=k,, 4 ( t )  (7) 

IV. LINEAR THORAX MODEL 
Each wing is controlled by a thorax, a complex trape- 

zoidal strncture actuated by two piezoelectric actuators at 
its base, as shown in Figure 4. A complete nonlinear model 
for the thorax, developed in [9], can he written as 

where f(&) = fn~:,~(&)', 8, is the leading edge flapping 
angle from the four bar mechanism, a = 8, - 8, is the 
phase difference between the four bar output angles, u1 
and u2 are the control input torques to the actuators, M 
and B are the inertia and damping maaices. Paranieters 
in K and T matrices includes some slowly time varying 
terms, and the control inputs (u t ,  U*) are limited to IOpNm 
by physical constraints. 

The relation between the state variables in Equation (8) 
and the wing motion variables (stroke angle $, rotation an- 
gle 'p) can be approximated as $ = Oz and 'p = 2a. Based 
on Equation (Sj, with a change of variables, neglecting the 
nonlinear components, we can derive the linear actuator 
model as 

where MO, B KO, and To ?e constant matrices. 
Equation (8; is a stable linear MIMO system, and its 

steady state solution at a particular frequency can he 
calculated through complex matrix operations. To gen- 
erate sufficient lift to sustain the insect, the stroke and 
rotation angles must follow a trajectory which mimic 
insect wing flapping motions, such as 0 = $cos(wt) and 
'p = 4 sin(wr), where w = 2nf and f = 150Hz is the 
wingbeat frequency. The desired steady sfate input torques 
to the actuators that generate the above wing trajectories 
can be calculated from 

Fig. 4. Wing-Thorax StNCtUre. Courtesy of [9] 

where C( jw)  is the frequency domain system transfer 
function matrix, the resulted steady state inputs are u1 = 
5.64sin(wr-2.67), u2 =6.48sin(wr-2.47). These inputs 
drive the wings to their steady state trajectory within 2-3 
wingheats, when the wings are started from rest. 

v. WING MOTION PARAMETERIZATION 
In order to decouple roll, pitch, yaw body toques, 

we need to manipulate wing motions through proper 
kinematic parameterization schemes. Meanwhile, smooth 
and bounded input torques to the thorax is desired. One 
feasible parameterization was found by adding an addi- 
tional term, g( t ) ,  in the stroke angle profile to change the 
wing flapping amplitude, and in the rotation angle profile 
to change the wing rotation timing at the end of the first 
half-stroke. 

g ( t )  = ,sm(-wt)--sin(-wr) 3 . 1  1 . 3  

$ , ( f )  = ( c o s : w r : + p ( t ) )  1 
2 10 2 

c ( r )  = f (cm(wr)- 2 - y g ( r )  I )  

vl(r) = 4 (sin(wr) +a,&)) 

s ( r )  = - (sm(wr)+a,g(r))  

x 

(111 

where (y,a,,a,) E [ - I ,  I ]  are the tunable kinematic 
parameters, and the subscript r and I stand.for right and 
left wing, respectively. 

As an example, Figure Sa shows both left and right wing 
motions resulted from choosing the parameters as y = 1, 
a, = 1, and a, = -1. Also plotted is the additional term 
g ( t ) .  We can see that with this parameterization, continuity 
is ensured at the end of wingbeats, while wing motions 
can he manipulated in the middle of each wingbeat. 

The thorax input torques corresponding to the desired 
wing motions can be calculated in a similar manner as in 
IO. This approach is equivalent to feed-forward open loop 

n 
4 
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Fig. 5 .  (a) Left plots: Wing motions results from (y,a,,arj = 
( l , l , - l j .  The solid line traces correspond to the symmetric 
motion (y,al,a,j = (O,O,O). (b) Right plots: Input torques for a 
family of permutations of the parameters (y ,  a,, a,) E { - I ,  1). 
The horizontal lines correspond to the input saturation limits. 

control of wing trajectories in a single wingbeat. Figure 
5h plots in detail a family of input torques obtained by 
varyingtheparameten (y,a,,ar) between ( - l , l ) .  Wecan 
see that the inputs are always bounded by i1OUNm. 

To test whether the above parameterization scheme 
can generate desired aerodynamic torques to steer the 
insect body, we simulate through VIFS [IO] to find the 
empirical map from wing kinematic parameters to the 
average body torques generated over a single wingheat. 
Figure 6 and Figure 7 show the simulation results. It is 
seen that zpich and T& can be approximated with linear 
functions of a, and a,, while zr;a with a linear function of 
y only. Therefore the mean torques are decoupled for the 
identification and control purposes. Figure 6 also shows 
the mean lift force as an approximate linear function of 
frequency. 

VI. MODEL IDENTIFICATION 

The analysis in the previous section provide us with a 
torque decoupling scheme, together with a set of feasible 
control inputs i.e. wing kinematic parameters. Since we 
are interested in the insect dynamics close to the hovering 
regime where angular deviations and angular velocities 
are small, we linearize the dynamics (1) near hover and 
average it within a single wingbeat. For the purpose of de- 
signing a simple feedback controller, we approximate the 
actnral continuous-time nonlinear system with a discrete- 
time LTI model: 

Fig. 6. Average roll torque, T,~~, (left) as a function of the 
parameter y. Mean lift, f, (right) as a function of the wingbeat 
frequency. The simulated points are obtained by randomly select 
the values for the parameters (y ,  a,, a,). 

where x = [?j e & 4 & I T  is the vector of average roll, 
pitch, yaw angles and angular rates over one wingbeat; 
y = bT fi y' j$ $ $ I T  is the vector of measured outputs, 
w and v represents model uncertainties, disturbances, and 
measurement noise, and U = [U, uZu31T = [ya, & I T  are the 
control inputs. 

The matrices [A,B] can be .obtained directly from M H  
morphological parameters such as mass, moment of iner- 
tia, center of mass, etc. However. these parameters are 
difficult to obtain in practice. Moreover, this approach 
cannot model the effect of the time varying part of 
the aerodynamic forces. An alternative approach is to 
run a large number of experiments and record the pair 
Iy(k) ,u(k) ] ,  and then find the matrices [A,B] that best fit 
the data. In this work we recast the model identification 
problem into a least square solution to an overdetermined 
set of linear equations. The experiments were performed 
on the Virtual Insect Flight Simulator (VIFS), developed 
by the authors to provide a software testbed for insect 
flight [IO]. The inputs and initial conditions are generated 
from random signals near trim condition, and the outputs 
are the sensor measurements. 

Estimation of the system parameters and further inves- 
tigation into the system dynamics in Equation (12) results 
in the following approximate parameter structures: 

where T is the wingbeat period. As expected, it was 
found that A,, matrix is close to an identity matrix. The 
structure of the B,, matrix also reflects our previous torque 
deconpling scheme through wing kinematic parameteri- 
zation. For model validation, Figure 8 plots mean angle 
and angular rates predicted by the LTI model together 
the simulation results from VIFS for a consecutive 50 
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Fig. 1. 
parameters a, and a,. 

Average pitch and yaw torques as a linear map of the 

wingbeats. It can he seen that the predicted values match 
the simulated ones very well. 

VII. LQR CONTROLLER DESIGN 

Based on the identified model found above, stabilizing 
output feedback control laws are designed and tuned 
first on the nominal LI I  model, then tested on the fully 
nonlinear continuous time system of Equations ( I ) .  

In this work, a output feedback LQR regulator U = -Ky 
was designed to minimizes the following quadratic cost 
function 

N 

k=l 
J =  lim E ( ~ ~ X ( k ) ~ Q x ( k ) + u ( k ) ~ R u ( K ) )  (13) 

N-D. 

where Q 2 0 and R > 0 are the weighting matrices to 
reflect the trade-off between regulation performance and 
control effort, and the diagonal entries in the weighting 
matrices are iteratively tuned to ensure a good transient 
response without saturating the control inputs. The final 
choice of the the weighting matrices Q and R for the regu- 
lator are Q = diag( 10,20,20,1,1,1) and R =diag( 1,2,5). 

The LQR controller was finally tested on the fully 
nonlinear continuous time model which includes the MFI 
dynamic model (11, the thorax dynamic model (91, and 
the sensors models described in Section 111. The simula- 
tions are based on an MFI of lOOmg and 2cm tip-to-tip 
wingspan with wingheat frequancy f = 150Hz. 

Figure 9 shows the simulation of the MFI steering 
90' degree in yaw angle. The LQR controller drives the 
MFI smoothly to the desired position in approximately 
50 wingbeats, i.e. approximately one third of a second. 
Note that the pitch velocity (center middle plot) exhibits a 
highly oscillatory behavior. This is due to the unavoidable 
periodic pitch torque from the flapping of the wings. Also 
depicted in the figures are the sensor outputs of the MFI 

Fig. 8. Comparison of the predicted mean angles and angular 
velocities from the nominal LTI model(dashed line) and those 
simulated from VIFS (solid line) over 50 consecutive wingbeats: 
y. a,, and a, are chosen randomly. 

angles and angular velocities. The halteres estimates the 
mean angular velocities remarkably well by filtering out 
the high amplitude time varying disturbance due to the 
wing flapping. The ocelli track the roll and pitch angles 
correctly. The MEMS compass initially underestimates 
the yaw angle, but provides the correct error sign, and 
eventually tracks the yaw correctly when the the angle 
becomes small. The bottom plots of Figure 9 present the 
corresponding control inputs to the thorax actuators. As 
expected, the control inputs never exceed the torque limits 
and they are continuous at the end of every wingbeat. 

Figure 10 shows the MFl recovering from an upside 
down 180' roll angle. Again, the LQR controller drives 
the MFl smoothly to the desired position in approximately 
15 wingheats, which correspond to half a second. In this 
situation, when the roll and pitch angles are very large, 
the ocelli fail to estimate them exactly. However it was 
shown in [4] that they can always provide a signal that 
recovers the MFl to hovering. The bottom plots in Figure 
10 present the corresponding wing kinematic parameters 
chosen as inputs. They are strongly related to the control 
effort required by the LQR controller. The parameter y, 
which is directly related to roll body torque, saturates, 
thus implying an aggressive maneuvering, and infact the 
MFl roll angle exhibit some overshooting as it in general 
common with controller with high gains. On the other 
hand, the LQR gains were designed for small angle 
maneuvers, and anti wind-up techniques for large angles 
maneuvers will he explored in the future. 
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Fig. 9. Simulation of MR evolution and sensor outputs during 
9oD steering. (Top plots): Roll, 4, pitch, B,  and yaw, angles. 
(Middle plots): a,, pitch, q, and yaw, y. angular velocities. 
(Bottom plots): Actuator control inputs (uI  , U * )  for left (left plot) 
and right (center plot) wing. The bottom right plot shows a detail 
of the torque u I  of the left wing for the fin1 10 wingbeats. T h e  
is expressed in wingbeats, i.e. 1 wingbeat = 6.1ms 

o.:1'6 o.: 

-0.5 

VIII. CONCLUSION 

, y o.;m 
. . . . . . . . . . . . . . .  . . . . . . . .  

. .  . . . ., . . . . . . 

In this work, high level attitude control of the MFI was 
considered. Based on recently developed thorax model, 
wing kinematic parameterization method was developed. 
A nominal state-space LTI model in hover was identified 
through linear estimation and a LQR controller was de- 
signed. Sensor models such as haltere, magnetic compass, 
and ocelli were included inside the closed loop system 
and the simulations show a performance comparable to 
that of real insect that can complete a full maneuver in 
approximately 30 ~ 50 wingbeats. It is also shown that 
under LQR control the MFl is able to recover from large 
angular displacements such as recovering from an upside 
down orientation and steering 90" degrees in the yaw 
axis with fast transient response, despite the fact the LQR 
controller was designed for small angular errors and the 
sensor outputs are nonlinear for large angles. 

Future work involves quantification of the parameter 
uncertainties in our nominal model, due to sensors noise, 
atmospheric turbulence, and most of all undermodeling 
of nonlinear periodic signals. Given the limited computa- 

Fig. 10. Simulation of MFl evolution and sensor outputs during 
recovering from upsidedown orientation. (Bottom plots): Wing 
kinematic parameters (y, a,, 4). 
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