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Fault-tolerant quantum computation
– a dynamical systems approach

Jesse Fern, Julia Kempe, Slobodan N. Simić, Shankar Sastry

Abstract— We apply a dynamical systems approach to con-
catenation of quantum error correcting codes, extending and
generalizing the results of Rahn et al. [5] to both diagonal and
nondiagonal channels. Our point of view is global: instead of
focusing on particular types of noise channels, we study the
geometry of the coding map as a discrete-time dynamical system
on the entire space of noise channels.

In the case of diagonal channels, we show that any code with
distance at least three corrects (in the infinite concatenation limit)
an open set of errors. For CSS codes, we give a more precise
characterization of that set. We show how to incorporate noise
in the gates, thus completing the framework. We derive some
general bounds for noise channels, which allows us to analyze
several codes in detail.

I. I NTRODUCTION

In this paper we analyze quantum codes in essence, ab-
stracting their details as codes and extracting their fault
tolerance properties using a dynamical systems approach. This
framework has been initiated by Rahn et al. [5]. They show
how to incorporate diagonal noise on the qubit into aneffective
channelon the logical qubits.

We broaden this viewpoint and extend their approach in sev-
eral ways. We look at the effective channel from a dynamical
systems point of view, using tools and methods from this field.
In particular we characterise the region of correctable errors
using tools from the analysis of fixed points and show how to
incorporate perturbations of the coding map.

Our second chain of results extends the results of [5] to the
realistic model of faulty gates and general channels. Rahn et al.
only analyzed the depolarising channel on the physical qubits
as the single source of noise. We show that incorporating
noisy gates gives rise to aperturbedeffective channel. We also
analyze general noise on the qubits and give several bounds
for the convergence of non-diagonal channels to diagonal
channels. Our results are supported by several examples for
the family of CSS-codes, which is the encoding predominantly
proposed for fault-tolerant quantum computing. We simplify
our bounds in the case of CSS codes and analyze the[[7, 1, 3]]
code, the smallest member of the CSS family, in great detail.
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a) Structure of the paper:We first introduce the dynam-
ical systems approach in Section II and establish the notation
and some basics. In Section III we extend this approach
to diagonal channels, including an analysis of regions of
convergence. Section IV deals with faulty gates. In Section V
we establish several results and examples for non-diagonal (i.e.
general) noise channels. Our approach allows to drastically
reduce the number of parameters, lending QECCs to an elegant
analysis. This however comes at some price, and in Section VI
we outline some of the shortcomings of this approach, before
concluding with some open questions.

II. N OTATION AND FRAMEWORK

In this section we formulate the basic framework and
review the main results from [5], which should be consulted
for details. Quantum states are represented by their density
matrices.

The error correction process consists of three parts:encod-
ing E , noiseN , and decodingD . Each part is modeled as
a quantum channel, namely, a map taking density matrices to
density matrices. Quantum channels are required to be linear,
trace-preserving, and completely positive, hence of the form

ρ→
∑

j

AjρA
†
j , with

∑
j

A†
jAj = I, (1)

whereAj are linear operators andI is the identity (cf. [?]).
In the subsequent sections, we will often denote quantum
channels by$.

EncodingE takes an initial logical qubit stateρ0 to the
initial register stateρ(0) which evolves according to some
continuous-time noise dynamics. We consider the evolution
for a fixed amount of timet, turning noise into a discrete-
time operationN which takesρ(0) into a final register state
ρ(t) = N (ρ(0)). Finally, decodingD takesρ(t) to the final
logical qubit stateρf . The map

G = D ◦N ◦ E : ρ0 → ρf

describes the effective dynamics of the encoded information
resulting from the physical dynamics ofN and is called the
effective channel.

We consider noise modelsN on n qubits consisting of
uncorrelated noiseN (1) on each single physical qubit, so

N =

n times︷ ︸︸ ︷
N (1) ⊗ . . .⊗N (1) .

Given an n qubit quantum error correcting codeC with
encoding operationE and decoding operationD , the map
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taking the single qubit noiseN (1) to the effective channel
G ,

ΩC : N (1) → D ◦
(
N (1)

)⊗n

◦ E , (2)

is called thecoding mapof C.
The density matrix of one qubit can be expanded in the

standard Pauli basisP = {I,X, Y, Z} for density matrices
and represented as a four-dimensional real vector. A noise
channelN (1) can then be represented as a4× 4 matrix

N (1) =


1 0 0 0

NXI NXX NXY NXZ

NY I NY X NY Y NY Z

NZI NZX NZY NZZ

. (3)

Zeroes in the first row are due to trace preservation. For
an arbitraryn qubit codeC, the entries of the matrixG =
ΩC(N (1)) can be calculated to be

Gσσ′ =
∑

µ

∑
ν

βσ
να

σ′

µ

n∏
i=1

Nνiµi
, (4)

whereµ = (µ1, . . . , µn), ν = (ν1, . . . , νn) run overP⊗n, and
ασ′

µ , βσ
ν are the coefficients in the expansions for the encoding

and decoding operations relative toP⊗n. See [5] for details.
If the matrix (3) is diagonal,N (1) is called adiagonal

channel. In that case, we writex = NXX , y = NY Y , and
z = NZZ and denote the channel by[x, y, z]. It was shown in
[3] that complete positivity of such channels implies that the
point (x, y, z) must be in the tetrahedron∆ defined by

−x+ y + z ≤ 1
x− y + z ≤ 1
x+ y − z ≤ 1

−x− y − z ≤ 1.

(5)

It is easily checked that asingle-bit Pauli channelwith
exclusive probabilities0 ≤ pX , pY , pZ ≤ 1,

ρ→ (1− pX − pY − pZ)ρ+ pXXρX + pY Y ρY + pZZρZ,

has the following representation in the above notation:

[1− 2(pY + pZ), 1− 2(pX + pZ), 1− 2(pX + pY )].

In fact, any diagonal channel can be realized as a single-bit
Pauli channel, so the parametrizations of∆ via [x, y, z] and
via (pX , pY , pZ) are equivalent.

Then dimensional Pauli group isPn = {±1,±i}⊗P⊗n.
Suppose we have a stabilizer code that encodesk qubits into
n. Its stabilizerS is an abelian subgroup ofPn with n − k
generatorsgi. The 2k dimensional codespace is defined as

CS = {|ψ〉 ∈
(
C2

)⊗n
so thatg|ψ〉 = |ψ〉 for all g ∈ S}.

The subset ofPn that commutes withS is the centralizer,
and it includes encoded operations we can perform on the
codespace. We measure each generatorgi, and letβi = 0 if
we project into the+1 eigenspace, andβi = 1 if we project
into the−1 eigenspace. We then have an error syndromeβ ∈
Fn−k

2 , and we correct with a recovery operatorRβ ∈ Pn.

It was shown in [5] that ifC is a stabilizer code, then
ΩC takes diagonal channels to diagonal channels. In fact, if
S1, . . . , Sm are the generators ofC, then

ΩC [x, y, z] =
[
ΩC

X(x, y, z),ΩC
Y (x, y, z),ΩC

Z (x, y, z)
]
,

where

ΩC
σ [x, y, z] =

1
m

m∑
k=1

fkσx
wX(Skσ̄)ywY (Skσ̄)zwZ(Skσ̄),

fkσ =
∑

j

η(Sk, Rj)η(Rj , σ̄), (6)

andη(σ, σ′) = ±1, if σσ′ = ±σ′σ, for σ, σ′ ∈ {I,X, Y, Z}.
Here, wσ denotes theσ-weight, σ̄ is the encodedσ, and
the Rj denote recovery operators corresponding to the error
syndromes. For later purposes, we extendη as the natural
homomorphism to the negative of the Pauli matrices by
η(−σ, σ′) = η(σ,−σ′) = −η(σ, σ′) = η(−σ,−σ′).

Therefore, the components ofΩC [x, y, z] are polynomials
of degreen in x, y, z. Observe, however, that in generalΩC

is a map from a higher dimensional space of non-diagonal
channels to itself. Non-diagonal channels of particular interest
to us areunital channels; a channelU is unital if U (I) = I.

An important result from [5] is that concatenation of codes
translates into composition of coding maps. In other words, if
C1 andC2 are codes andC1 ◦C2 denotes their concatenation,
then

ΩC = ΩC1 ◦ ΩC2 .

Given a noise modelN (1) and codeC, we are interested in
what this noise looks like under repeated concatenation of the
codeC with itself. Then the question is, does

ΩC◦k
(N (1)) → I, ask →∞?

If this is the case,C corrects the error given byN (1).
Rahn et al. [5] focus mostly on the symmetric depolarizing

channel given in the above notation by[e−γt, e−γt, e−γt] and
derive threshold estimates for various codes. We take a global
point of view, where instead of looking at noise channels point
by point, we consider the behavior of the coding map as a
discrete-time dynamical system and study the set ofall noise
channels attracted to the identity channel under iteration of the
coding map. This approach enables us to use methods from
the theory of dynamical systems.

III. O PEN SET OF CORRECTABLE DIAGONAL ERRORS

We will first focus on diagonal noise channels, i.e., those
given by a diagonal matrix, as discussed in the previous sec-
tion. The standing assumption of this section isthink, therefore,
that all noise channels are diagonal. We saw that we can
characterize the asymptotic properties of the coding scheme
involving the concatenation of a fixed codeC with itself by
studying the long-term behavior of the dynamical system

ΩC : ∆ → ∆.

We now review some necessary basics from the theory of
dynamical systems. Good introductory references are [2] and
[4].
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A. Dynamical systems preliminaries

A (discrete-time)dynamical systemis a mapf : M →
M , whereM is a space with a certain additional structure
(topological, metric, differentiable, etc.). In our case, it suffices
to assume thatM is some Euclidean spaceRk or a subset of
it, and thatf is a differentiable map. We denote byDf(p) the
derivative off at a pointp and think of it as a linear operator
on Rk. We will denote by‖Df(p)‖ the norm ofDf(p) as
such on operator; that is,

‖Df(p)‖ = max{‖Df(p)v‖ : ‖v‖ ≤ 1}.

(The norm onRk is arbitrary but fixed.) IfDf(p) depends
differentiably onp, we define the second derivative off in
the usual way asD2f = D(Df); recall thatD2f(p) can be
thought of a bilinear mapRk×Rk → Rk and‖D2f(p)‖ then
denotes its norm. Continuing recursively, we say thatf is of
classCr (or simplyCr) if Drf(p) exists and is a continuous
function of p.

For p ∈ M , the set{fn(p) : n = 0, 1, 2, . . .}, wherefn =
f ◦ · · · ◦ f (n times), is called theorbit or trajectory of f .
A fundamental question in the theory of dynamical systems
is: what is the long term behavior of trajectories? That is,
where doesfn(p) end up eventually, asn → ∞? The set of
accumulation points of the orbit ofp is called theω-limit set
of p. An example of such a set is afixed pointof f , i.e., a point
p such thatf(p) = p. A fixed point p is locally attracting if
there exists a neighborhoodV of p in M such that for every
x ∈ V , fn(x) → p, asn → ∞. A basic criterion for a fixed
point to be locally attracting is the following.

Lemma 3.1:SupposeU ⊂ Rk is open,f : U → Rk is a
C1 map,p ∈ U is a fixed point off , andλ0 = ‖Df(p)‖ < 1.
Thenp is locally attracting.

Proof: Let λ0 < λ < 1. SinceDf(x) depends continu-
ously onx and‖Df(p)‖ < 1, there exists a neighborhoodV
of p in U such that‖Df(x)‖ ≤ λ, for all x ∈ V . Then, by
the Mean Value Theorem,

‖f(x)− f(p)‖ ≤ λ‖x− p‖,

for all x ∈ V . Therefore,

‖fn(x)− p‖ = ‖fn(x)− fn(p)‖
≤ λn‖x− p‖
→ 0,

asn→∞.
The largest such setV is called thebasin of attractionof the
fixed pointp, denoted byB(p). Let B(x, r) denote theopen
ball of radiusr centered atx.

Lemma 3.2:Assumef is C2, the hypotheses of the previ-
ous lemma are satisfied, and‖D2f(x)‖ ≤ K, for all x ∈ U .
ThenB(p, (1− λ0)/K) ∩ U ⊂ B(p).

Proof: The proof goes along similar lines as the previous
one. Letλ0 < λ < 1 be arbitrary and0 < r < (λ − λ0)/K.
For an arbitrary pointx in the closed ballB[p, r]∩U , we have

‖Df(x)‖ ≤ ‖Df(x)−Df(p)‖+ ‖Df(p)‖
≤ Kr + λ0

≤ λ,

that is,f is a contraction onB[x, r]∩U . Furthermore, for all
x ∈ B[p, r] ∩ U ,

‖f(x)− p‖ = ‖f(x)− f(p)‖
≤ λ‖x− p‖
≤ r,

which implies thatB[p, r]∩U is f -invariant. Therefore, under
iteration of f , every point inB[p, r] ∩ U converges top, so
B[p, r] ∩ U ⊂ B(p). Taking the union over allλ ∈ (λ0, 1)
proves the claim.
Now take f = ΩC and observe that[1, 1, 1] is always an
isolated fixed point ofΩC , though not necessarily attracting.
For instance,[1, 1, 1] is a saddle for the coding mapΩbf of
the bit-flip code. However, ifC is the Shor or five-bit code,
then DΩC [1, 1, 1] = 0, so [1, 1, 1] is locally attracting. The
following result shows that this is not a coincidence.

Proposition 3.3:Under the assumptions above, ifC is a
quantum error correcting code of distance≥ 3, then

DΩC [1, 1, 1] = 0.
Proof: It suffices to show thatDΩC sends three linearly

independent vectors to zero.
Since the distance of the code is at least three,C corrects

all errors of weight one. In particular, it corrects all single-bit
Pauli channel errors

ρ→ (1− ε)ρ+ εσρσ,

for σ ∈ {X,Y, Z} and 0 ≤ ε ≤ 1. Such errors correspond
to noise channels[1, 1 − 2ε, 1 − 2ε], [1 − 2ε, 1, 1 − 2ε], and
[1−2ε, 1−2ε, 1], for σ = X,Y, Z, respectively. Let us consider
σ = X. To say thatC correctsX-errors means that

ΩC [1, 1− 2ε, 1− 2ε] = [1, 1−O(ε2), 1−O(ε2)].

This implies that the directional derivative

DΩC [1, 1, 1]vX =
d

dε

∣∣∣∣
ε=0

ΩC([1, 1, 1] + εvX) = 0,

where vX = (0,−1,−1)T . Similarly, we can show that
DΩC [1, 1, 1]vY = DΩC [1, 1, 1]vZ = 0, where vY =
(−1, 0,−1)T and vZ = (−1,−1, 0)T . SincevX , vY , vZ are
linearly independent, it follows thatDΩC [1, 1, 1] = 0.

Corollary 3.4: For every codeC of distance at least three,
[1, 1, 1] is an attracting fixed point of the coding mapΩC :
∆ → ∆. If BC denotes its basin of attraction and‖D2ΩC‖ ≤
K on ∆, then

B

(
[1, 1, 1],

1
K

)
∩∆ ⊂ BC . (7)

Proof: Observe thatΩC is defined on the whole space
R3, has[1, 1, 1] as a fixed point, and, by Proposition 3.3,λ0 =
DΩC [1, 1, 1] = 0. Therefore,[1, 1, 1] is locally attracting for
ΩC as a mapR3 → R3. By Lemma 3.2,B([1, 1, 1], 1/K)
is contained in the basin of attraction of[1, 1, 1], again as a
fixed point of ΩC : R3 → R3. However, we know that∆ is
an invariant set for ΩC , i.e., ΩC(∆) ⊂ ∆, and it contains
[1, 1, 1]. Therefore, points inB([1, 1, 1], 1/K) ∩ ∆ are both
attracted to[1, 1, 1] and stay in∆ under iteration ofΩC . This
proves (7).



4

Proposition 3.5:SupposeC is a CSS code. It will be shown
in Theorem 5.7 that

ΩC [x, y, z] = [f(x), g(x, y, z), f(z)],

for some polynomialsf, g. Let a be the largest fixed point of
f in (0, 1). Then

BC = {[x, y, z] ∈ ∆ : x > a, z > a}.
Proof: It follows from Proposition 3.3 that1 is an

attracting fixed point off . Let (α, β) be its basin of attraction.
It is well known that its boundary{α, β} is f -invariant. Since
α ∈ [a, 1) and [a, 1) is f -invariant, it follows thatα is a
fixed point off . Therefore,α = a. This means that for every
x ∈ (a, 1), fk(x) → 1, ask →∞.

Now suppose[x, y, z] ∈ ∆, x > a, z > a. Then(
ΩC

)k
[x, y, z] = [fk(x), yk, f

k(z)].

We know thatfk(x), fk(z) → 1. Let y∗ be an accumulation
point of the sequence(yk). Since [1, y∗, 1] ∈ ∆, it follows
thaty∗ = 1. Therefore,

(
ΩC

)k [x, y, z] → [1, 1, 1], ask →∞,
which implies{[x, y, z] ∈ ∆ : x > a, z > a} ⊆ BC .

To show the opposite inclusion, assume the contrary, i.e.,
that there exists a pointp = [x, y, z] ∈ BC such thatp 6∈
{[x, y, z] ∈ ∆ : x > a, z > a}. Thenx ≤ a or z ≤ a. In the
former case,fk(x) does not converge to 1, and in the latter,
fk(z) 6→ 1, contrary to our assumption thatp is in the basin
of attraction of[1, 1, 1].

IV. FAULTY GATES

We want to extend the analysis in [5] to include faulty gate
operations both in the error correction and in the computation
circuits. Gate errors are a common form of noise in quantum
information processing. We show how to incorporate faulty
gates into the current framework and how they change the
effective channel and the coding map.

A. A simple noise model

Our first approach is to start with a very simple error model
for faulty unitary gatesG:

G : ρ −→ (1− ε)GρG† + ε
1
N
I. (8)

This error model is rather generic. It has the additional
advantage that noise from sequential gates isadditive; if we
combine two faulty operations as in Eq. (8), we obtain

G2 ◦G1 : ρ −→ G2

(
(1− ε1)G1ρG

†
1 +

ε1
N
I
)

= (1− ε2)(1− ε1)G2G1ρG
†
1G

†
2

+ (1− ε2)
ε1
N
I +

ε2
N
I

≈ (1− ε1 − ε2)G2G1ρ(G2G1)†

+
ε1 + ε2
N

I, (9)

i.e. a faulty process withε = ε1 + ε2. As we have seen,
the effective dynamics of one level of concatenation is simply
encoding, noise and decoding, i.e.

G = D ◦ N ◦ E .

Let us also assume here that the noise on the qubits is unital,
i.e. N (I) = I. We now show that faulty gates in this model
have the same effect as noise; hence we can effectively treat
noise from faulty gates and other types of noise on the qubits
in the same way.

The encoding operation can be written concisely asE(ρ) =
BρB†, whereB = |0̄〉〈0| + |1̄〉〈1| (or, for codes that encode
more than one qubit,B =

∑
i |̄i〉〈i|). This encoding is

performed by applying a sequence of gates, possibly faulty,
as in Eq. (8). The operation coresponding toB can be
implemented with unitary gates in a larger space by appending
some ancillary qubits, for instance asUB : |i〉|0〉 −→ |̄i〉. If
errors occur according to Eq. (8), the resulting operation will
beEεE

: ρ→ (1− εE)UBρU
†
B + εE

N I = (1− εE)E(ρ) + εE

N I,
whereE denotes the error-free encoding andεE is the noise
accumulated from gates during encoding. In an analogous way
it can be seen that a decoding mapD, implemented with faulty
gates, can be written asDεD

: ρ→ (1−εD)D(ρ)+ εD

2 I, where
we have used thatD : 1

N I −→
1
2I. Putting this together under

the simplifying assumption thatN (I) = I (unital channels),
and using additivity of error from faulty gates, we get

ρ −→ (1− ε)G(ρ) +
ε

2
I,

whereε = εD +εE andG is the effective channel with perfect
gates. In other words, faulty gates only contract the iterated
map by(1− ε). As a result, the coding mapΩC (see Eq. (2))
changes toΩC

f , the coding map with faulty gates, as

ΩC
f : N −→ (1− ε)D ◦ N ◦ E + ε

1
2
I = (1− ε)ΩC + ε

1
2
I.

The entries of the matrixG for the coding map change as

Gf
σσ′ = (1− ε)Gσσ′ +

ε

2
δσ1δσ′1, (10)

where we have used the fact that the coding map whose only
non-zero entry isG11 represents a mapping ofρ to the identity
matrix. In other words, the incorporation of faulty gates into
our analysis results in an affine mapping of the coding map:
G is contracted by(1− ε) and the elementεδ11 is added.

B. More general noise

It is not difficult to extend this analysis to more general
noise in the gates and general noise on the qubits. Let us
assume that instead of the restricted noise model of Eq. (8)
we are dealing with generic noise of rateε. We can write

G : ρ −→ (1− ε)GρG† + εNG(ρ),

whereNG is some general noise operation.
The analysis of the previous Section IV-A goes through line

by line. The noise process is additive (withI/N in Eq. (9)
replaced byε1G2NG1(ρ)G

†
2 + ε2NG2(ρ)). The encoding and

decoding operations can then be written as

EεE
: ρ→ (1− εE)UBρU

†
B +

εE

N
I

= (1− εE)E(ρ) + εENE(ρ)
DεD

: ρ→ (1− εD)D(ρ) + εDND(ρ),
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whereNE andND are the noise resulting from encoding resp.
decoding. Concatenating yields

ρ −→ (1− ε)G(ρ) + εNDE

with ε = εE + εD and the cumulative noise can be written to
first order as

εNDE = εED(N (NE(ρ))) + εDND(N (E(ρ))

. The new coding map with faulty gates is then very similar
to before:

ΩC
f : N −→ (1−ε)D◦N◦E+εNDE(ρ) = (1−ε)ΩC+εNDE .

In other words, faulty gates introduce a perturbation to the
original coding map studied in the previous section. They can
be treated in the same way as noise on the qubits. In fact we
see that the occurence of faulty gates is the same as a process
with increased noise on the gates and perfect gates. However,
if the noise on gates is small compared to the noise on qubits,
we can treat it as a perturbation to the original coding map. We
will show how to incorporate such perturbations in the analysis
with the following Lemma. Here,‖h‖C1 denotes theC1 norm
of a smooth maph on its domain, that is, the maximum of
the suprema of|h| and‖Dh‖.

Lemma 4.1:SupposeU ⊂ Rn is an open set,f : U → Rn

is smooth (at leastC2), f(p) = p and λ = ‖Df(p)‖ < 1.
Then for small enoughε > 0 and every smooth mapg : U →
Rn, if ‖g − f‖C1 < ε, then g has a fixed pointq such that
‖Dg(q)‖ < 1 and |q − p| < ε/(1− λ).

In other words, if a map has an attracting fixed point,
then any sufficiently smallC1 perturbation of it also has an
attracting fixed point which is close to the original one.
This is a standard fact from the theory of dynamical systems;
for completeness, we supply a proof here. Proof: Let
M be an upper bound of‖D2f‖ on some relatively compact
neighborhoodV of p. Sinceλ < 1, there existsr > 0 such
thatf maps the closed ballB[p, r] into itself andB[p, r] ⊂ V .
Without loss, we can taker so small thatr < (1 − λ)/M .
Assume0 < ε < min((1 − λ)r, 1 − λ − Mr). Then it is
not difficult to show that for everyx ∈ B[p, r], |g(x) − p| ≤
ε + λr < r, which means thatg takesB[p, r] into itself.
Therefore, by the Brouwer fixed point theorem,g has a fixed
point, sayq, in B[p, r]. Since

|q − p| = |g(q)− p|
≤ |g(q)− f(q)|+ |f(q)− p|
≤ ε+ λ|q − p|,

we obtain|q − p| < ε/(1− λ).
To show thatq is an attracting fixed point forg, let us show

that ‖Dg(q)‖ < 1. Observe first that‖Df(q)‖ ≤ Mr + λ <
1−ε. Therefore,‖Dg(q)‖ ≤ ‖Dg(q)−Df(q)‖+‖Df(q)‖ <
1.
It is clear from (10) that the coding mapΩC

f of a code with
faulty gates is aC1 small perturbation of the coding mapΩC

with perfect gates.

V. A NALYSIS OF CHANNELS

In this section we will give several technical results about
channel maps, which we will subsequently use to analyze vari-
ous diagonal and non-diagonal channels and to give examples.
In particular we will study in detail how non-diagonal elements
of a noise channel affect its convergence and threshold.

A. The two-point theorem

We look at bounds for a general channel, resulting in Thm.
5.4.

Lemma 5.1:For any non-identity Pauli matrixσ,

N2
σX +N2

σY +N2
σZ ≤ (1− |NσI |)2 (11)

(NXI ±NXσ)2 + (NY I ±NY σ)2 (12)

+(NZI ±NZσ)2 ≤ 1.

All elements of the channel are real.
Proof: N preserves hermiticity, and is positive (sends

non-negativeρ to non-negativeρ) [?]. The first condition
implies that the elements are real. Then the adjoint channel,
which has the mapN †ρ =

∑
k A

†
kρAk, is also positive. A

simple calculation shows that a matrixρ = cII+cXX+cY Y +
cZZ is non-negative if and only ifcI ≥

√
c2X + c2Y + c2Z .

Let c =
√
N2

σX +N2
σY +N2

σZ , and apply

N (cI ± (NσXX +NσY Y +NσZZ)),

which givescI = c, andcσ = cNσI ± c2, so the non-negative
condition gives

∣∣cNσI ± c2
∣∣ ≤ c, from which we getc2 ≤

(1− |NσI |)2, which gives equation 11.
Let bσσ′ = NXσNXσ′ + NY σNY σ′ + NZσNZσ′ . Now let

c =
√
bII + bσσ ± 2bIσ. Then, applyN † to

cI−(NXIX+NY IY +NZIZ)±(NXσX+NY σY +NZσZ),

which givescI = c − bII ± bIσ and cσ = −bIσ ± bσσ, so
c − bII ± bIσ ≥ |−bIσ ± bσσ|, which givesc ≥ bII + bσσ ±
2bIσ = c2, so c ≤ 1, which gives equation 12.

This proof extends naturally to multi-qubit channels.

Corollary 5.2: Each row of a quantum channelN in the
Pauli basis has norm at most1.

Proof: Since|NσI | ≤ 1, we have1−N2
σI ≥ (1−|NσI |)2,

and so the result follows from Eq. (11).
Corollary 5.3: Let A = N2

XI + N2
Y I + N2

ZI be the non-
unital portion of the channel. Then we have that any other
column of the channel in the Pauli basis hasL2 norm squared
N2

Xσ +N2
Y σ +N2

Zσ ≤ 1−A.
Proof: Follows immediately from Eq. (12).

Theorem 5.4 (Two-point theorem:):If two of NXX , NY Y ,
NZZ are1, then the channel is the identity channel.

Proof: Let σ1, σ2, σ3 be some permutation of the Pauli
matrices such thatNσ1σ1 = Nσ2σ2 = 1. From Corollary 5.2,
Nσ1σ1 andNσ2σ2 are the only non-zero elements in their rows.
Hence, the non-unital part must be0. From Corollary 5.3, with
A = 0, Nσ1σ1 andNσ2σ2 are the only non-zero elements in
their columns. It then follows that the channel is diagonal.
From the conditions on diagonal channels given in Eq. (5), it
easily follows that if two terms are equal to1, the 3rd term
must equal1, and so we have the identity channel.
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B. Example: Generalized Shor codes

In this section we give give a first application of our
formalism and the general bounds we obtained. We study
generalised Shor codes, which are bit flip and phase flip codes
concatenated with each other. We will assume a diagonal
channel[x, y, z] in what follows. Note that Thm. 5.4 is easy
to prove in this case; it follows immediately from Eq. (5).

b) Bit flip, phase flip: The n qubit bit flip code is a
classical code onn qubits that corrects all bit flip errors on
less thann

2 qubits and none of the errors on greater than
n
2 qubits; if n is even it also corrects half of the errors
on exactly n

2 qubits. The coding map isΩbfn [x, y, z] =
[xn, hn(x, y, z), fn(z)]. To see this note that the code does not
correct phase flips (Y or Z errors), and so ifp = pY +pZ , the
p-component of the coding map must be a function of only
p. Sincex = 1 − 2(pY + pZ) = 1 − 2p, it follows that the
x-component of the coding map must be a function of only
x. The only such element of theX equivalence class gives us
xn.

To see that thez-component depends onz only, note that
the code can correct bit flips (X or Y errors), sending them to
I or Z errors, respectively), and so ifp′ = pX +pY , by similar
reasoning as above we observe that thep′ component depends
only on p′ and hence that thez-component is a function of
only z. Now, assume onlyX errors. Thenz = 1− 2pX , and
fn(z) = 1− 2g( 1−z

2 ), whereg(p) is the failure probability as
a function of anX error rate ofp. We can obtaing(p) from
the propoerties of the classical bit flip code.

Since the functionhn(x, y, z) does not affect thex and z
components of the channel, from Thm. 5.4, we may ignore it
for the purposes of convergence to the identity channel.

Some values offn are

f1(x) = f2(x) = x
f3(x) = f4(x) = 3

2x−
1
2x

3

f5(x) = f6(x) = 15
8 x−

5
4x

3 + 3
8x

5.

For the phase flip code we get similarlyΩpfn [x, y, z] =
[fn(x), h′n(x, y, z), zn] by exchanging the roles ofx andz.

These codes will have two critical values,xc and zc. If
x > xc thenx→ 1, and similarly forz.

c) Specific codes:We can now obtain sharper results
for the error threshold of concatenated bit flip and phase flip
codes, extending [5].

The often discussed[[9, 1, 3]] Shor code has the
coding map: ΩShor[x, y, z] = Ωpf3Ωbf3 [x, y, z] =
[f3

3 (x), h′′(x, y, z), f3(z3)]. We define a[[25, 1, 5]] code to be
Ω25 = Ωpf5Ωbf5 , and a[[15, 1, 3]] code to beΩ15 = Ωpf5Ωbf3

The [[25, 1, 5]] code has critical values ofxc = 0.916208,
andzc = 0.645611. The [[15, 1, 3]] code has critical values of
xc = 0.794438 and zc = 0.850432. If x = z, the [[15, 1, 3]]
code performs much better than the[[25, 1, 5]], even though it
is less redundant.

C. Convergence of non-diagonal channels

In this section we will establish some general results for
non-diagonal channels in the case of stabilizer codes [?].
Non-diagonal channels are in general much harder to analyze

than their diagonal counterparts, as the parameters span a12-
dimensional manifold. However, we will show that in certain
cases these channels converge to diagonal channels, and will
discuss when these converge to the identity channel.

We can decompose the single qubit noise operatorN as

N = L+ εM, (13)

whereL is the diagonal part, andε is chosen such thatM
has no term with absolute value more than1; it contains the
off-diagonal terms. We show that ifε is sufficiently small and
d ≥ 3, then repeated application of the coding map yields
a diagonal matrix. This will allow to restrict our analysis to
diagonal channels, at least in certain regimes.

We wish to analyize the absolute values of the difference
that the non-diagonal terms make on the channel after we
apply the coding map. Define the difference matrix

Γ = ΩC(N )− ΩC(L).

Let us assume that the code is an[[n, k, d]] stabilizer code [?]
(it encodesk qubits inton qubits, and has distanced, which
is the minimal weight of an undetected error). Letm be the
minimal weight of a non-identity stabilizer element.

Theorem 5.5:The non-diagonal terms of the difference
matrix Γ have absolute value at mostcdεd. The diagonal terms
of Γ are at mostcmεm in absolute value. These coefficients
are bounded above by

max(cd, cm) ≤ 2n−k
∑
σ′′

|Dσ′σ′′ | ≤ 4n−k. (14)

Proof: We can rewrite Eq. (4) as

Gσσ′ = DσNEσ′ , (15)

where Eσ is the σ column of E and similarly forD. The
(non-zero) entries ofEI are the stabilizer elements, and the
non-zero elements ofEσ areσ times the stabilizer elements,
whereσ is the encodedσ. We note thatEσ′σ is non-zero only
if σ′ andσ are in the same equivalence class ofC(S) modulo
S, whereS is the stabilizer group, andC(S) is its centralizer
(see [?] for more detailed definitions).

Now the non-diagonal elements ofΓ depend on the non-
zero elements ofEσ andEσ′ with σ 6= σ′, which correspond to
the σ andσ′ equivalence classes ofC(S), which differ on at
leastd qubits. Then from Eq. (4) resp. Eq. (15), it follows that
the non-diagonal terms involve at leastd non-diagonal terms
of N and are henceO(εd) from Eq. (13). The difference of
the diagonal elements corresponds to elements of the same
Eσ, which differ on at leastm qubits, sincem is the minimal
weight of different elements in the same equivalence class
(non-zero elements of the sameEσ). Hence they areO(εm).

From Eq. (15) it is easy to see that the coefficientscd and
cm are bounded above by∑

σ′′,σ′′′

|Dσσ′′Eσ′′′σ′ | ≤
∑
σ′′

|Dσσ′′ |
∑
σ′′′

|Eσ′′′σ′ | ≤ 4n−k,

where we used that each coefficient is at most1 in absolute
value and the cardinality of the stabiliser group.
Note that in certain cases we have explicit expressions for∑

σ′′ |Dσ′σ′′ |, which can come from calculations with a diag-
onal noise channel and can give us tighter bounds oncd and
cm than the generic4n−k.
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d) Convergence to the identity:Suppose we concatenate
the above coding mapi times. Then the absolute values of the
off-diagonal terms are bounded above byai, wherea0 = ε,
andan+1 = cda

d
n. Then, from Thm. 5.5,

ai = c
Pi−1

j=0 dj

d εdi

= ε0(
ε

ε0
)di

,

whereε0 = d−1

√
1
cd

is defined ford > 1. Since these affect the
diagonal terms by at mostcmεm, we can bound the correction
for the diagonal terms as

bi = cma
m
i−1 = cmc

t
Pi−2

j=0 dj

d εmdi−1
= cmε

m
0 (

ε

ε0
)mdi−1

.

(16)
Now we assume that the non-diagonal terms go to0, which
means thatε < ε0, and soai andbi both go montonically to0.
From Thm. 5.5, we can see that if the mapΩC(L⊗n)−cmεmI
converges to withinO(εm) of the identity matrix, then so does
ΩC(N ⊗n). However, we can get a tighter bound than this.

Let L0 = [x0, y0, z0] be the diagonal part of the channel.
We defineLi = ΩC(Li−1) − biI. We can think of theLi

as a lower bound on the diagonal part of the channel. Then,
the channel goes to[1, 1, 1], if Li → [1, 1, 1]. These coding
maps areΩC

i (L) = ΩC(Li−1)−biI, andΩC
1 (L) = ΩC(L0)−

cmε
mI. The channel converges to identity if

. . . ◦ ΩC
2 ◦ ΩC

1 L = [1, 1, 1].

D. CSS codes on1 qubit with a generalized noise channel

In this section we tighten our result in the case of CSS codes
[?], [?], [?].

Let our code be a[[n, 1, d]] CSS code. From the construction
of CSS codes from classical codes,nmust be odd. Its stabilizer
group is generated byn− 1 generators, half of which depend
only on tensor products ofIs andXs, and the other half are
the same, except they haveZs replacing theXs. We can write
the stabilizer groupS as the span of{S(X), S(Z)}, where
S(A) ∈ AS , and AS is the n-dimensional Pauli Matrices
Pn which only depend on tensor products ofI and A.
The stabilizer elements inS(X) are used to correct against
Z errors, and the stabilizer elements ofS(Z) are used to
correct againstX errors, and so we can write the set of
recovery operators asR(εX , Z) and R(εZ , X), where εA

are the components of the syndromes obtained by measuring
stabilizer generators fromS(A), and eachR(ε,A) ∈ AS .

The Pauli operators are encoded as

X = X⊗n ∈ XS (17)

Z = Z⊗n ∈ ZS

Y = iXZ = (−1)
n−1

2 Y ⊗n ∈ YS .

To obtain a convenient representation of the decoding operator
D, we define the average recovery function as

Rav =
1
|Ri|

∑
i

Ri,

where theRi are the recovery operators (see Sec. II). Let
T ∈ M2n,2n be the the diagonal matrix given by

Tσσ = η(Rav, σ) (18)

Whereη is the linear homomorphism defined in Sec. II Eq.
6. In particular note that ifσ commutes with all recovery
operatorsRi, thenTσσ = 1, and if σ anti-commutes with all
of the recovery operators thenTσσ = −1. Then, from [5] we
obtain for the decoding matrix

D = E tT. (19)

Lemma 5.6:The non-zero elements ofDX must be con-
tained inXS , and similarly forZ, although usually not for
Y .
In particular this implies that ifσ = X or σ = Z, thenGσσ′

depends only onNσI , NσX , NσY , andNσZ . Then to find
convergence of theX andZ rows, we can look at these rows
separately.

Proof: SinceDI = I, the non identity stabilizer elements
must commute with half of the recovery operators. Only the
non-zero elements ofDσ don’t commute with exactly half
of the recovery operators. This implies that each non-identity
element ofS(X) commutes with half of the elements ofRZ =
R(εX , Z), and similarly forS(Z) andRX = R(εZ , X). If
half of eitherRX or RZ commute with some element ofS,
then half of all of the the recovery operators commute with
it. Now, pick some non-zero elementc = X⊗nsXsZ of EX ,
wheresi ∈ S(i). If c /∈ AX thensZ 6= I. Then, if an element
r ∈ AX , it follows that η(r, c) = η(r, sZ), and so, half of
RX commutes withc. Then, c must commute with half of
the recovery elements, and so must be zero inDX . Then the
non-zero elements ofDX are inAX .

Theorem 5.7:There exists functionsf1(a, b, c, d) and
f2(a, b, c, d) such that the following are is true forG =
Ωc(N ⊗n).

GXI = f1(NXI ,NXX , iNXY ,NXZ)
GXX = f2(NXX , iNXY ,NXZ ,NXI)
GXY = inf2(iNXY ,NXZ ,NXX ,NXI)
GXZ = f2(NXZ ,NXX , iNXY ,NXI)
GZI = f1(NZI ,NZX , iNZY ,NZZ)
GZX = f2(NZX , iNZY ,NZZ ,NZI)
GZY = inf2(iNZY ,NZZ ,NZX ,NZI)
GZZ = f2(NZZ ,NZX , iNZY ,NZI).

Furthermore these functionsf1(a, b, c, d) andf2(a, b, c, d) are
symmetric under permutations ofb, c, andd.

Proof: The permutationX → iY → Z → X, sends
EI = S to itself, and sends

EX → inEY → EZ → EX .

Then, from lemma 5.6, and the fact thatX ↔ Z sendsDX ↔
DZ , f1 andf2 must exist as stated.

As for the symmetries,GXI depends onDX and EI . By
permutingX, iY , andZ, we preserve the stabilizer elements
which are the non-zero elements ofEI , and soGXI is fixed
under permutations ofNXX , iNXY , NXZ . GXX depends on
DX , and EX . By permutingI, Z, and iY , we preserve the
non-zero elements ofEX , which areX times the elements of
EI (see Eq. (17)), and soGXX is fixed under permutations of
NXI , iNXY , andNXZ . The other cases follow similarly.
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Lemma 5.8:Let σ 6= σ′ be single qubit Pauli matrices and
let σ′′ be a non-zero element ofEσ. Thenσ′ appears tensored
an even number of times inσ′′.

Proof: In the case whereσ = I, Eσ corresponds to the
stabilizer group. SinceS is generated by even weight elements
in XS and even weight elements inZS , in order for it to be
Abelian, it must have the above property. For generalσ we
haveEσ = σS, and, usingσ is σ on all qubits, the desired
result follows.

Theorem 5.9:A CSS code takes a channelN
to the identity channel if an only if both vectors
[NXI ,NXX ,NXZ , iNXY ] and [NZI ,NZZ ,NZX , iNZY ]
converge to[0, 1, 0, 0] under the map

[a, b, c, d] →
[f1(a, b, c, d), f2(b, c, d, a), f2(c, d, a, b), if2(d, a, b, c)].

In fact, it is sufficient that they converge to[∗, 1, ∗, ∗].
Proof: Obviously, this is a necessary condition. From

Lemma 5.8, we see that each of the variablesb, c, andd in
f1(a, b, c, d), andf2(a, b, c, d) must appear an even number of
times in each term. So we may ignore any−1 sign in front of
GXY or GZY . From the symmetries we have, it then follows
that the above map determines convergence on theX andZ
rows. The rest of the theorem follows from Thm. 5.4.
Remark (Unital channels): In the case of unital channels, the
above reduces to the condition that both[NXX ,NXZ , iNXY ]
and [NZZ ,NZX , iNZY ] converge to[1, ∗, ∗] under the map

[a, b, c] → [f2(a, b, ic, 0), f2(b, ic, a, 0), if2(ic, a, b, 0)].

Notice that this no longer depends onf1.
Lemma 5.10:For CSS codes, we havemax(cd, cm) ≤

2
3
2 (n−k) for cd andcm as defined in Thm. 5.5.

Proof: We use the bound of Thm. 5.5 for the non-
diagonal terms. In the case of a CSS code, we have forA = X
orA = Z thatDA ⊂ AS , and so the non-zero entries are given
by S(A)A⊗n. Therefore the sum in Eq. (14) has only2

n−k
2

entries, giving an overall coefficient of2
3
2 (n−k).

1) Doubly-even CSS codes:Doubly even CSS codes are
CSS codes that have weight divisible by4 for S(X) andS(Z).
For these codes we can strengthen Thm. 5.9. Define functions
g1 andg2 that are the same as thef1 andf2 defined in Thm.
5.7, without the factors ofi.

Theorem 5.11:A doubly even CSS code takes a
channel N to the identity channel if an only if both
[NXI ,NXX ,NXZ ,NXY ] and [NZI ,NZZ ,NZX ,NZY ]
converge to[0, 1, 0, 0] under the map

[a, b, c, d] →
[g1(a, b, c, d), g2(b, c, d, a), g2(c, d, a, b), g2(d, a, b, c)].

Proof: The stabilizer group is formed by generators∈
XS , and generators∈ ZS , each with weight divisible by 4.
ThenX andZ together appear a number of times divisible
by 4 in each stabilizer element (and similarly for{X,Y },
{Y, Z}). Following similar reasoning to that of the proof of
lemma 5.8, we find thatc and t together appear a divisible
by 4 number of times in each term offj (j = 1, 2). Then,

fj(a, b, c, id) = fj(a, b, ic, d), and by definition

gj(a, b, c, d) = fj(a, b, c, id). (20)

Thesegj satisfy all the symmetries above and the convergence
relations of Thm. 5.9 (without the factors ofi).

2) Example:[[7, 1, 3]] CSS code:We use the example of
the [[7, 1, 3]] code, a doubly even CSS code commonly used
in fault tolerance calculations, to illustrate how to find the
functions defined in Thm. 5.7 and use Thm. 5.9 to analyze
the convergence of channels under this code.

a) Computation of the coding map: The
stabilizer group of this code is generated by the
elements IIIXXXX, IXXIIXX,XIXIXIX and
IIIZZZZ, IZZIIZZ,ZIZIZIZ. Using the notation from
section V-C, the non-zero elements ofEI are the stabilizer
group elements.

EI =
∑
s∈S

s =(IIIIIII + IIIXXXX)

(IIIIIII + IXXIIXX)(IIIIIII +XIXIXIX)
+(IIIIIII + IIIZZZZ)

(IIIIIII + IZZIIZZ)(IIIIIII + ZIZIZIZ)

We haveX = XXXXXXX, and Z = ZZZZZZZ.
One notices that there are7 terms that are some permuta-
tion of IIIXXXX. Let p7(IIIXXXX) denote the sum
over these permutations.p7(IIIY Y Y Y ) andp7(IIIZZZZ)
give us the corresponding permutations ofIIIY Y Y Y
and IIIZZZZ. Similarly, there are42 terms that are
−IZZXXY Y , up to some permutation, so we define a
functionp42(−IZZXXY Y ) to sum over these. Then we can
write

EI = IIIIIII + p42(−IZZXXY Y )
+p7(IIIXXXX + IIIY Y Y Y + IIIZZZZ).

With Eσ = EIσ we get

EX = XXXXXXX + p42(−XY Y IIZZ)
+p7(XXXIIII +XXXZZZZ +XXXY Y Y Y )

EY = −Y Y Y Y Y Y Y − p42(−Y XXZZII)
−p7(Y Y Y ZZZZ + Y Y Y IIII + Y Y Y XXXX)

EZ = ZZZZZZZ + p42(−ZIIY Y XX)
+p7(ZZZY Y Y Y + ZZZXXXX + ZZZIIII).

The recovery operators which depend onX are

R(εZ , X) = {IIIIIII,XIIIIII, IXIIIII,
IIXIIII, IIIXIII, IIIIXII, IIIIIIXI, IIIIIIX}.

Combining these with the recovery operations inR(εX , Z), we
easily find all64 recovery operators. There are1 in the form
IIIIIII, all 7 permutions ofIIIIIIX, all 7 permutations
of IIIIIIY , all 7 permutations ofIIIIIIZ, and all 42
permutations ofIIIIIXZ. Eq. (19) now allows us to find the
elements ofDσ. We calculateDX from EX . XXXXXXX
commutes with 8

64 recovery elements,XXXIIII commutes
with 40

64 recovery elements, andXXXZZZZ,XXXY Y Y Y ,
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and XY Y IIZZ each commute with32
64 of the recovery

elements. Then

DX = 1
4p7(XXXIIII) −3

4
XXXXXXX

= 1
4XXXIIII +

1
4
XIIXXII

+ 1
4IXIXIXI +

1
4
IIXIXX

+ 1
4IIXXIIX +

1
4
IXIIXIX

+ 1
4XIIIIXX −3

4
XXXXXXX.

A similar calculation shows thatDZ = − 3
4ZZZZZZZ +

1
4p7(ZZZIIII), but DY doesn’t follow this pattern.

Now we wish to computeGXI . First we look at how
the 1

4p7(XXXIIII) component ofDX contributes. From
NIσ = δIσ, it follows that only elements inDI that are
identity on the last4 qubits contribute. This is justIIIIIII,
so we getp7( 1

4NXINXINXINIINIINIINII) = 7
4N

3
XI . For

the − 3
4XXXXXXX component ofDX , everything inEI

contributes. This gives a contribution of

− 3
4
(NXINXINXINXINXINXINXI

+ p7(NXINXINXINXXNXXNXXNXX

+NXINXINXINXY NXY NXY NXY

+NXINXINXINXZNXZNXZNXZ)
+ p42(−NXINXZNXZNXXNXXNXY NXY )).

Together, these give

GXI =
7
4
N3

XI −
3
4
(N7

XI + 7N3
XI(N

4
XX +N4

XY

+N4
XZ)− 42NXIN

2
XXN

2
XY N

2
XZ).

A similar calculation shows that

GXX =
7
4
N3

XX − 3
4
(N7

XX + 7N3
XX(N4

XI +N4
XZ

+N4
XY )− 42NXXN

2
XIN

2
XZN

2
XY )

−GXY =
7
4
N3

XY − 3
4
(N7

XY + 7N3
XY (N4

XI +N4
XX

+N4
XZ)− 42NXY N

2
XIN

2
XXN

2
XZ)

GXZ =
7
4
N3

XZ −
3
4
(N7

XZ + 7N3
XZ(N4

XI +N4
XY

+N4
XX)− 42NXZN

2
XIN

2
XY N

2
XX).

For the functionsgj , which are related tofj by Eq. (20), we
obtain

g(a, b, c, d) := g1(a, b, c, d) = g2(a, b, c, d)

=
7
4
a3 − 3

4
a7 − 21

4
a3(b4 + c4 + d2) +

63
2
ab2c2d2.

Note that

GXI = g(NXI , NXX , NXY , NXZ)
GXX = g(NXX , NXY , NXZ , NXI)
GXY = −g(NXY , NXZ , NXI , NXX)
GXZ = g(NXZ , NXI , NXX , NXY ).

b) Analysis: We consider the convergence of a row of
the channel matrix[a, b, c, d] as in Thm. 5.11. We have from
Thm. 5.2 that

a2 + b2 + c2 + d2 ≤ 1. (21)

If the channel is diagonal (or in general in the case where all
but one parametera, b, c or d are zero) we have a critical point
xc = 0.870807 such thatg(±xc, 0, 0, 0) = ±xc.

Let us now analyze the behavior of non-diagonal channels
with small off-diagonal elements.

Theorem 5.12:If any of a, b, c, or d is within xc of 0, it
must go to0.

Proof: This can be proved in general by a rather lengthy
calculation. To convey the main idea we will here only give
the proof in the case where one of the4 variables equals0
(for example, a unital channel). Then our functiong becomes
g(a, b, c) = 7

4a
3− 3

4a
3(a4 +7b4 +7c4). We want to show that

that if 0 < |a| < xc, we have that|a| > |g(a, b, c)|. Without
loss of generality, we may assume thata is positive. Below the
critical valuexc, we havea > 7

4a
3− 3

4a
7, so we only need to

see ifa ≤ −g(a, b, c), which is maximized byb =
√

1− a2,
c = 0. A simple calculation shows that there is no solution.
Then it follows that|a| must monotonically go to0.
From Thm. 5.12 and Eq. (21) we easily see that the vector
[a, b, c, d] must converge to a vector with at most one non-
zero coefficient. Now suppose thata is slightly abovexc, and
that b, c, andd have absolute values of at most some smallε.
We wish to see how muchε changes the critical convergence
value fora. Let k := dg(a,0,0,0)

da |xc
= 1.691859. Then,

g(a, b, c, d) ≥ g(a, ε, ε, ε)

≥ g(a, 0, 0, 0)− 63
4
a3ε4 ≈ k(a− xc) + xc −

63
4
a3ε4.

Sinceb, c, andd becomeO(εd) = O(ε3) up to 4th order ofε,
the vector converges to[1, 0, 0, 0] for k(a−xc)+xc− 63

4 a
3ε4 ≥

xc, which implies that

k(a− xc) ≥
63
4
a3ε4 ≈ 63

4
ε4(x3

c + 3(a− xc)2) ≈
63
4
ε4x3

c .

Solving up to first order for our new critical value, we get

a =
63x3

cε
4

4k
+ xc = 6.14726ε4 + xc.

This implies that the off-diagonal terms affect the threshold to
fourth order (as implied by Thm. 5.5); but here we improved
the prefactorct. Note that Lemma 5.10 would have given a
prefactor of512.

If we choose a larger number instead of6.14726, for
example 7, then our vector converges to[1, 0, 0, 0] from
[xc + 7ε4, ε, ε, ε] for ε as big as0.3.

VI. CONCLUSION AND FURTHER QUESTIONS

c) Drawbacks of our approuch:The approach of in-
tegrating the sequence of concatenated encoding and noise
as a rather simple map from channels to channels is very
powerful. By abstracting away from the details of the encoding
and the noise process, it drastically reduces the number of
parameters, and makes the coding process amenable to a
dynamical systems type analysis. However, this approach
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sometimes comes at a price. By ignoring the details of the
coding and correction process, we might get error thresholds
above the actual thresholds if we accounted for all these
details. The following example illustrates this, introducing the
notion of a recovery function.

Suppose we have a[[n, k, d]] stabilizer code. We define a
recovery or error correcting functionR(ε) [1] which maps
the collection of syndromes measured by the codes to some
n qubit Pauli operator,R : F2n−k → Pn. We also define a
syndrome functionε : Pn → F2n−k , which maps Pauli errors
to some syndrome. With these definitions we must have that
β = ε(R(β)), for anyβ ∈ Pn. Note that we can choseR(β)
up to elements of the stabiliserS without any difference for
error correction. Hence our choices forR(β) differ from each
other by elements of the centralizerC(S) are limited to the
4k elements of the Centralizer modulo the Stabilizer. They can
be written as an element ofC(S) times some representative
element ofS. To study the choice of recovery function on the
channel, define the matrixT σ ∈ M4n,4n to be the diagonal
matrix

T σ
σ′σ′ =

1
2n−k

η(σ, σ′).

Then the matrix operatorT , defined in Eq. (18), isT =∑
i T

Ri . We haveG =
∑

i G Ri = ΩC(N ), where the quasi-
channel (they don’t have to preserve trace)

G Ri = E tT RiN E ,

is the contribution of a singleRi on the channel map.
When we measure a syndromeε during error-correction,

we gain some information about the channel. Let the encoded
state be described by the density matrixρ = ρII + ρXX +
ρY Y + ρZZ. We can re-write our channelG = ΩC(N ) as a
sum over all syndromes

G ′ =
∑

β∈F2n−k

G R(β) ⊗ |β〉.

If we measure|β〉 and use the information, we collapse
to a syndromeβ with probability pβ = tr(G R(β)ρ) =
2

∑
σ G

R(β)
Iσ ρσ, and the resulting density matrix is1pβ

G R(β)ρ.

In particular, if G
R(β)
IX = G

R(β)
IY = G

R(β)
IZ = 0, then pβ =

2G
R(β)
II ρI = G

R(β)
II , which doesn’t depend onρ, and the

resultingρ-independent channel is then1pβ
G R(β). If we throw

this information away we recover the coding mapG from the
previous sections. In other words the coding map approach
corresponds to ignoring the information about the channel that
we could have obtained from the syndrome measurements, to
optimize the recovery functions.

By performing measurements on the subblocks of a con-
catenated code, we affect the channel on each qubit of the top
level code. If we don’t optimize our error correction, we are
not being as efficient as we should be. For example, a distance
3 code can’t correct some2 qubit errors, and so the code we
obtain by concatenating it once with itself without changing
the error correction function can’t fix some4 qubit errors.
However, the distanced of a distanced1 code concatented
with a distanced2 code isd ≥ d1d2, and so we should be
able to correct any4 qubit error. The problem is to keep track

of all of this syndrome information, and finding the optimal
error correction function seems to be computationally hard.

d) Open questions:We have initiated a dynamical sys-
tems approach to quantum error correction, extending the
result of Rahn et al. [5]. This only opens the road to further
analysis and many questions remain open. We list a few of
them here.

In our analysis we have always assumed that an error
correction process is successful, if the associated coding map
takes the noise channel to the identity channel. However, this
might be too stringent a condition. Are there any other criteria
for information retrieval, which are not equivalent to zero
(corrected) error?

Another question relates to the basin of correctable noise for
a code: If our noise channel lies outside the basin of attraction
of a certain code, can we find another code that would “lift”
this noise into the basin of attraction of the old code? More
specifically, given a codeC (with d ≥ 3) and a noise channel
p ∈ ∆−BC , is there another codeC ′ such thatΩC′

(p) ∈ BC?
If the answer is positive, then the concatenation schemeCk◦C ′

correctsp, as k → ∞. It would be interesting to formalise
these ideas.

Yet another question concerns the shape of the region of
correctable noise. Is there a (non-trivial) bound for the size
or shape of the domain of attraction? Can we characterize
regions of noise that are not correctable by any code? There
is a new and interesting bound on noise from which no circuit
can recover in [6]. However the methods used there are not
dynamical. Is it possible to make sharper statements?
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