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Abstract—We apply a dynamical systems approach to con- a) Structure of the paperWe first introduce the dynam-
catenation of quantum error correcting codes, extending and jcal systems approach in Section Il and establish the notation
generalizing the results of Rahn et al. [5] to both diagonal and and some basics. In Section Ill we extend this approach

nondiagonal channels. Our point of view is global: instead of to di | ch Is. includi vsi f . f
focusing on particular types of noise channels, we study the 0 diagonal channels, Including an analysiS of regions o

geometry of the Coding map as a discrete-time dynamica| System ConVergence. Section IV deals W|th faulty gates. In Section V
on the entire space of noise channels. we establish several results and examples for non-diagonal (i.e.
_In the case of diagonal channels, we show that any code with general) noise channels. Our approach allows to drastically
distance at least three corrects (in the infinite concatenation Ilmlt) reduce the number of parameters, lending QECCs to an elegant
an open set of errors. For CSS codes, we give a more precise . . . . .
characterization of that set. We show how to incorporate noise anaIyS|§. This however comes at ;ome prlc_e, and in Section VI
in the gates, thus completing the framework. We derive some We outline some of the shortcomings of this approach, before
general bounds for noise channels, which allows us to analyze concluding with some open questions.
several codes in detail.

II. NOTATION AND FRAMEWORK

I. INTRODUCTION In this section we formulate the basic framework and

In this paper we analyze quantum codes in essence 5%\4iew the main results from [5], which should be consulted

stracting their details as codes and extracting their fadft’ details. Quantum states are represented by their density

tolerance properties using a dynamical systems approach. THRICES- _ ,

framework has been initiated by Rahn et al. [5]. They show The eITor correction process consists of th.ree parisod-

how to incorporate diagonal noise on the qubit intceffective N9 ¢ noise.#", anddecoding?. Each part is modeled as

channelon thelogical qubits. a quantum channelhamely, a map taking density matrices to
We broaden this viewpoint and extend their approach in sé¥€"SIty matrices. Quantum channels are required to be linear,

eral ways. We look at the effective channel from a dynamicgpce-preservmg, and completely positive, hence of the form

systems point of view, using tools and methods from this field. ZAJ'/’A;’ with ZA;AJ =1,

In particular we characterise the region of correctable errors ; ;

using tools from the analysis of fixed points and show how to . . . .
incorporate perturbations of the coding map. where A; are linear operators antlis the identity (cf. ]).

Our second chain of results extends the results of [5] to t% the subsequent sections, we will often denote quantum

realistic model of faulty gates and general channels. Rahn et annels bys.

only analyzed the depolarising channel on the physical qub,its,EnCOdingé‘a takes an initial logical qubit statg, to the

as the single source of noise. We show that incorporatiﬂ'[gtIal register statep(0) which evolves according to some

noisy gates gives rise togerturbedeffective channel. We also © ntinuous-time noise dynamics. We consider the evolution

analyze general noise on the qubits and give several bouﬂ%rsa fixed _amount (_)f time, “”””?9 hoise Into a discrete-
for the convergence of non-diagonal channels to diagoﬁ e operation#” which takesp(0) into a final register state

channels. Our results are supported by several examples/4gy = </ (¢(0)). Finally, decoding? takesp(t) to the final
the family of CSS-codes, which is the encoding predominanél?/g'cal qubit stateps. The map
proposed for fault-tolerant quantum computing. We simplify G=PoNo&:py— py
our bounds in the case of CSS codes and analyzgthk 3] ‘
code, the smallest member of the CSS family, in great detglescribes the effective dynamics of the encoded information
resulting from the physical dynamics of” and is called the
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taking the single qubit noise/ (V) to the effective channel It was shown in [5] that ifC is a stabilizer code, then
9, Q¢ takes diagonal channels to diagonal channels. In fact, if
®n S1,...,Sn are the generators af, then
Q. yW g0 (JV(l)> 0 &, @)

Oz, y, 2] = [ (2,9, 2), ¥ (2,9, 2), 9% (2,9, 2)] ,

is called thecoding mapof C.
The density matrix of one qubit can be expanded in tﬁ/&here .

standard Pauli basis? = {I, X,Y, Z} for density matrices c 1 wx (Sk5). wy (Sk5) wy (Ské
and represented as a four-dimensional real vector. A noise Q5 l2,y,2] = Ezf’”x SRy )z 5h),
channel.# (1) can then be represented ad a 4 matrix k=t

fro = _1(Sk, R;)n(R;,5), (6)
1 0 0 0 J

1) _ | Nxr Nxx Nxy Nxz andn(o,0’) = %1, if 00’ = 0’0, for 0,0’ € {I,X,Y, Z}.
W = N G) _ .
Nyr Nyx Nyy Nygz Here, w, denotes thes-weight,  is the encodedr, and
Nzr Nzx Nzy Nzz the R, denote recovery operators corresponding to the error
Zeroes in the first row are due to trace preservation. Feyndromes. For later purposes, we extenas the natural
an arbitraryn qubit codeC, the entries of the matrigg = Nomomorphism to the negative of the Pauli matrices by
QF (M) can be calculated to be n(=0,0") =n(o,—0") = —n(o,0') = 1(~0, —0"). .
. Therefore, the components 6 [z, y, z] are polynomials
o, o f degreen in x,y, z. Observe, however, that in genefaf
Gpor = Ny 4y 2 Y, 2 e ’ ;
%:ZU: v 71;[1 i @ is a map from a higher dimensional space of non-diagonal

channels to itself. Non-diagonal channels of particular interest
wherep = (p1,..., pn), v = (v1,...,vn) run over@?®™, and o ys areunital channelsa channet is unital if % (I) = I.
o, , By are the coefficients in the expansions for the encodingAn important result from [5] is that concatenation of codes
and decoding operations relative #8“". See [5] for details. translates into composition of coding maps. In other words, if

If the matrix (3) is diagonal,# (") is called adiagonal ¢ and(, are codes and’; o C, denotes their concatenation,
channel In that case, we writec = Nxx, ¥y = Nyy, and then

z = Nzz and denote the channel ljy, y, z]. It was shown in 0° — €1 6 OC2.

[3] that complete positivity of such channels implies that the ) ) )
point (z,y, z) must be in the tetrahedroA defined by Given a noise model¥ (1) and codeC, we are interested in

what this noise looks like under repeated concatenation of the

—r+y+z<1 codeC with itself. Then the question is, does
—y+2<1 o
royTE= ) QCF MY L1 ask — 00?
r+y—2<1

If this is the case( corrects the error given by (1.
Rahn et al. [5] focus mostly on the symmetric depolarizing
It is eaSily checked that $|ng|e-blt Pauli channelwith channel given in the above notation W’Yt7€*7t,e*7t} and
exclusive probabilitie®) < px,py,pz <1, derive threshold estimates for various codes. We take a global
point of view, where instead of looking at noise channels point
by point, we consider the behavior of the coding map as a
has the following representation in the above notation: discrete-time dynamical system and study the seatllohoise
channels attracted to the identity channel under iteration of the
[1=2(py +p2),1 = 2px +p2),1 = 2px +py))- coding map. This approach en)ébles us to use methods from
In fact, any diagonal channel can be realized as a single-tiie theory of dynamical systems.
Pauli channel, so the parametrizations/dfvia [z, y, z] and
via (px, py,pz) are equivalent. [1l. OPEN SET OF CORRECTABLE DIAGONAL ERRORS
Then dimensional Pauli group is?, = {+1,+i} ® 2®". e will first focus on diagonal noise channels, i.e., those
Suppose we have a stabilizer code that encddegsbits into  given by a diagonal matrix, as discussed in the previous sec-
n. Its stabilizerS is an abelian subgroup o, with n — k  tion. The standing assumption of this section isthink, therefore,
generatorgy;. The 2* dimensional codespace is defined as that all noise channels are diagonal. We saw that we can
2\ ®n characterize the asymptotic properties of the coding scheme
Cs ={Jp) € (C*)"" so thatgly) = [¢) for all g € S}. involving the conca%lengtion oﬁ‘ apfixed code with itseglJf by
The subset of#2,, that commutes withS is the centralizer, studying the long-term behavior of the dynamical system
and it includes encoded operations we can perform on the c
. QY A — A
codespace. We measure each genergtoand lets; = 0 if
we project into the+1 eigenspace, and; = 1 if we project We now review some necessary basics from the theory of
into the —1 eigenspace. We then have an error syndrghee dynamical systems. Good introductory references are [2] and
F2”*’“, and we correct with a recovery operatp € &,. [4].

—r—y—z<1.

p— (1—px —py —pz)p+pxXpX +pyYpY +pzZpZ,



A. Dynamical systems preliminaries
A (discrete-time)dynamical systenis a mapf : M —

M, where M is a space with a certain additional structure
(topological, metric, differentiable, etc.). In our case, it suffices

to assume thad/ is some Euclidean spa®"® or a subset of
it, and thatf is a differentiable map. We denote Byf(p) the
derivative of f at a pointp and think of it as a linear operator
on R*. We will denote by||Df(p)| the norm of Df(p) as
such on operator; that is,

IDf(p)|l = max{[[Df(p)ov]l : [[o] <1}.

(The norm onR* is arbitrary but fixed.) IfDf(p) depends
differentiably onp, we define the second derivative @fin
the usual way aP?f = D(Df); recall thatD?f(p) can be
thought of a bilinear mai* x R* — R* and||D2f(p)|| then
denotes its norm. Continuing recursively, we say tfias of
classC" (or simply C") if D" f(p) exists and is a continuous
function of p.

Forp € M, the set{ f"(p) : n =10,1,2,...}, where f™
fo---of (ntimes), is called theorbit or trajectory of f.

A fundamental question in the theory of dynamical systems

is: what is the long term behavior of trajectorfgsrhat is,
where doesf”(p) end up eventually, a8 — co? The set of
accumulation points of the orbit gf is called thew-limit set
of p. An example of such a set isfiaed pointof f, i.e., a point
p such thatf(p) = p. A fixed pointp is locally attractingif
there exists a neighborhodd of p in M such that for every
x eV, f*(x) — p, asn — oo. A basic criterion for a fixed
point to be locally attracting is the following.

Lemma 3.1:Supposel/ C R* is open,f : U — RF is a
C! map,p € U is a fixed point off, and )\, = |Df(p)|| < 1.
Thenp is locally attracting.

Proof: Let \p < A < 1. SinceD f(x) depends continu-
ously onz and ||Df(p)| < 1, there exists a neighborhodd
of p in U such that|Df(z)|| < A, for all z € V. Then, by
the Mean Value Theorem,

1f(2) = F@)I| < Allz = pll;

for all x € V. Therefore,

11*(z) = pll = 17" () = ")
<Az —pll

— 0,

asn — oo. |
The largest such séf is called thebasin of attractionof the
fixed pointp, denoted by#(p). Let B(x,r) denote theopen
ball of radiusr centered atr.

Lemma 3.2:Assumef is C?, the hypotheses of the previ-
ous lemma are satisfied, afid?f(z)|| < K, for all z € U.
ThenB(p, (1 — Xg)/K)NU C B(p).

that is, f is a contraction orB[z, ] N U. Furthermore, for all
x € Blp,r|NU,

1f () = pl

1f(z) = @)
Az = p

IA

<r

)

which implies thatB[p, r]NU is f-invariant. Therefore, under
iteration of f, every point inB[p,r] N U converges t, SO
Blp,7] NU C %(p). Taking the union over alk € (X, 1)
proves the claim. ]
Now take f = Q¢ and observe thafl, 1,1] is always an
isolated fixed point of2¢, though not necessarily attracting.
For instance|1, 1,1] is a saddle for the coding map®f of
the bit-flip code. However, it”' is the Shor or five-bit code,
then DQC[1,1,1] = 0, so[1,1,1] is locally attracting. The
following result shows that this is not a coincidence.

Proposition 3.3: Under the assumptions above, (f is a
guantum error correcting code of distanee3, then

DQC[1,1,1] = 0.
Proof: It suffices to show thaDQ¢ sends three linearly
independent vectors to zero.
Since the distance of the code is at least thféesorrects
all errors of weight one. In particular, it corrects all single-bit
Pauli channel errors

p— (1—¢)p+eopo,

for 0 € {X,Y,Z} and0 < ¢ < 1. Such errors correspond
to noise channel§l, 1 — 2e,1 — 2¢], [1 — 2¢,1,1 — 2¢], and
[1—2¢,1-2¢,1],foro = X, Y, Z, respectively. Let us consider
o = X. To say thatC' correctsX-errors means that

Q1,1 — 26,1 — 2] = [1,1 - O(£?),1 — O(?)].

This implies that the directional derivative

d
DQY[1,1,1Jux = —| QY([1,1,1] + evx) =0,
de|._,
where vx = (0,—1,—1)7. Similarly, we can show that

DQC[1,1,1jvy = DQY1,1,1Jvy = 0, where vy =
(-1,0,-1)T andvy = (—1,-1,0)T. Sincevx,vy,vy are
linearly independent, it follows thaQ¢[1,1,1] = 0. ]
Corollary 3.4: For every code” of distance at least three,
[1,1,1] is an attracting fixed point of the coding m&y~ :
A — A If ¢ denotes its basin of attraction afi?Qc || <
K on A, then
Proof: Observe thaf2¢ is defined on the whole space
R3, has[1, 1, 1] as a fixed point, and, by Proposition 3X3, =
DQC[1,1,1] = 0. Therefore,[1, 1, 1] is locally attracting for

([1,1,1} 1>mAc,@C.

Proof: The proof goes along similar lines as the previouQ“ as a mapR® — R3. By Lemma 3.2,B([1,1,1],1/K)

one. Let\y < A < 1 be arbitrary and) < r < (A — A\g)/K.
For an arbitrary point in the closed balB[p,r]NU, we have

IDf (@)l IDf(z) —Dfp) + [[Df(p)ll
Kr+ X
)‘u

<

<
<

is contained in the basin of attraction ff, 1, 1], again as a
fixed point of Q¢ : R3 — R3. However, we know that\ is
an invariant setfor Q°, i.e.,, Q“(A) C A, and it contains
[1,1,1]. Therefore, points inB([1,1,1],1/K) N A are both
attracted td1, 1, 1] and stay inA under iteration of2¢. This
proves (7). ]



Proposition 3.5: Suppose&” is a CSS code. It will be shown Let us also assume here that the noise on the qubits is unital,
in Theorem 5.7 that i.e. N(I) = I. We now show that faulty gates in this model
0¢ — [f(x), g ), £(2) have the same effect as noise; hence we can effectively treat
(29,21 = [/ (@), (w9, 2), (2)], noise from faulty gates and other types of noise on the qubits
for some polynomials, g. Let a be the largest fixed point of in the same way.
fin (0,1). Then The encoding operation can be written concisely¥ §s) =
BpBf, where B = |0)(0| + |1)(1]| (or, for codes that encode
more than one qubitB = ). [i)(i|). This encoding is
performed by applying a sequence of gates, possibly faulty,
as in Eqg. (8). The operation coresponding B can be
implemented with unitary gates in a larger space by appending
some ancillary qubits, for instance &% : [i)|0) — |i). If
errors occur according to Eq. (8), the resulting operation will
be&., :p— (1—ep)UppUl+ 1 = (1—ep)E(p) + E1,
where& denotes the error-free encoding atwl is the noise
(QC)’“ [z, 2] = [f*(@), yr, F5(2)]. gccumulated from gates du_ring enqoding. Inan an_alogous way
it can be seen that a decoding nfapimplemented with faulty
We know thatf*(z), f*(z) — 1. Let y. be an accumulation gates, can be written &, : p — (1—ep)D(p)+21, where
point of the sequencéyy). Since[l,y.,1] € A, it follows e have used thab : 1.1 — 11. Putting this together under
thaty. = 1. Therefore,(Q°)" [x,y, 2] — [1,1,1], ask — oo, the simplifying assumption that/(I) = I (unital channels),

Bo ={[r,y,z] € A:x >a, z>a}.

Proof: It follows from Proposition 3.3 thatl is an
attracting fixed point off. Let («, 8) be its basin of attraction.
It is well known that its boundarya, 8} is f-invariant. Since
a € [a,1) and [a,1) is f-invariant, it follows thata is a
fixed point of f. Therefore,a = a. This means that for every

€ (a,1), f¥(x) — 1, ask — <.
Now suppos{z,y,z] € A, > a,z > a. Then

which implies{[z,y,z] € A:x >a, 2> a} C Zc. and using additivity of error from faulty gates, we get
To show the opposite inclusion, assume the contrary, i.e., .
that there exists a poini = [x,y,z] € B¢ such thatp ¢ p— (1—e)G(p) + 5[,

{lz,y,2] € Az >a, 2> a}. Thenz < a or z < a. In the _ ) )
former casef*(x) does not converge to 1, and in the lattelVhe€rée = ep+ep andg is the effective channel with perfect
f¥(z) 4 1, contrary to our assumption thatis in the basin gates. In other words, faulty gates only contract the iterated
of attraction of[1, 1,1]. m Mmap by(1—¢). As a result, the coding ma@® (see Eq. (2))
changes tcﬂ?, the coding map with faulty gates, as
IV. FAULTY GATES

c
We want to extend the analysis in [5] to include faulty gatle

o_perz_itlons both in the error correction and in the c_omputatlc]JF]e entries of the matrig for the coding map change as

circuits. Gate errors are a common form of noise in quantum

. : . . c

information processing. We show how to incorporate faulty Gl = (1= 6)Goor + =6516511, (10)

gates into the current framework and how they change the 2

effective channel and the coding map. where we have used the fact that the coding map whose only

non-zero entry i€z, represents a mapping pfto the identity
A. A simple noise model matrix. In other words, the incorporation of faulty gates into

Our first approach is to start with a very simple error mod@Ur @nalysis results in an affine mapping of the coding map:
for faulty unitary gatesG: G is contracted by(1 — ¢) and the elemertd,; is added.

1 1
:N—>(1—€)DONO(€+E§I=(1—8)904—651.

1
G:p— (1—e)GpG + ex (8)

This error model is rather generic. It has the additional It is not difficult to extend this analysis to more general
advantage that noise from sequential gateadditive if we noise in the gates and general noise on the qubits. Let us
combine two faulty operations as in Eq. (8), we obtain assume that instead of the restricted noise model of Eqg. (8)
we are dealing with generic noise of rateWe can write
G20G1 p GQ ((1*61)G1PGJ{+%[) g g

B. More general noise

G:p— (1-e)GpG' +eNg(p),

= (1—e)(1—e1)GaGipGiGH
+ (- 52)‘2] -y where N¢ is some genera! noise operation. .
N N ) The analysis of the previous Section IV-A goes through line
~  (1—e1—e2)GaGip(G2Gh) by line. The noise process is additive (wiliN in Eq. (9)
L fate I, (9) replaced by G2 N, (p)GL + eaNe, (p)). The encoding and
N decoding operations can then be written as
i.e. a faulty process witlk = ¢; + 5. As we have seen, \  €E
the effective dynamics of one level of concatenation is simply Ep + p—(1—¢ep)UppUp + ~!
encoding, noise and decoding, i.e. = (1-ep)&(p) +exNE(p)

G=DoNo&. D., : p— (1—ep)D(p)+epNp(p),



where Ng and N are the noise resulting from encoding resp. V. ANALYSIS OF CHANNELS

decoding. Concatenating yields In this section we will give several technical results about
channel maps, which we will subsequently use to analyze vari-
p— (1-e)G(p) +eNpE ous diagonal and non-diagonal channels and to give examples.

: . . . In particular we will study in detail how non-diagonal elements
with ¢ = eg + ep and the cumulative noise can be written tg . .
first order as of a noise channel affect its convergence and threshold.

eNpp = DN (Ne(p)) + enNp(N(E(p)) A. The two-point theorem
We look at bounds for a general channel, resulting in Thm.
. The new coding map with faulty gates is then very similgs.4.

to before: Lemma 5.1:For any non-identity Pauli matrix,
2 2 2 2
Q? : N — (1—e)DoNoE+eNpg(p) = (1—)Qc+eNpE. Nix + Noy + N5z < (1= [Noil) (11)
(Nx1+ Nxo)? + (Ny1 + Ny, )? (12)
In other words, faulty gates introduce a perturbation to the +(Nz; £ Nyp)2 < 1.

original coding map studied in the previous section. They can
be treated in the same way as noise on the qubits. In fact &% elements of the channel are real.
see that the occurence of faulty gates is the same as a processProof: 4" preserves hermiticity, and is positive (sends
with increased noise on the gates and perfect gates. Howe§f)-negativep to non-negativep) [?]. The first condition
if the noise on gates is small compared to the noise on qubj@plies that the elements are real. Then the adjoint channel,
we can treat it as a perturbation to the original coding map. Wlich has the map#fp = 3=, AfpAy, is also positive. A
will show how to incorporate such perturbations in the analystnple calculation shows that a matyix= c; [ +cx X+ey Y+
with the following Lemma. Here|h||c: denotes the?! norm ¢z Z is non-negative if and only i, > \/c% +c§ + c%.
of a smooth map on its domain, that is, the maximum of Letc= /N2y + N2, + N2, and apply
the suprema ofh| and || Dh||. N (eI £ (NyxX + NoyY + N, 2 2)),

Lemma 4.1:SupposeU C R" is an open setf : U — R" _ ) _
is smooth (at leasC?), f(p) = p and X\ = |Df(p)|| < 1. wh|ch givescy = ¢, andc, = cN,j £ c2, so the non-negative
Then for small enough > 0 and every smooth map: U —  condition g|ves]gN(,I + | < ¢, from which we getc® <
R", if |lg — fllor < < theng has a fixed poing such that (1= [Nor|)?, which gives equation 11.
IDg(q)|| <1 and|g—p| < g/(1— \). Let byor = NxoNxo' + NyoNys + Nz Nzo. NOw let

In other words, if a map has an attracting fixed poinf = V11 +boo & 2015 Then, apply./" to

then any sufficiently smalC! perturbation of it also has an el —(Nx; X+ Ny1Y+Nz1Z)+(Nxo X +NyoY +Nyo Z),
attracting fixed point which is close to the original one.
This is a standard fact from the theory of dynamical syste
for completeness, we supply a proof here. Proof: Let
M be an upper bound dfD?f|| on some relatively compact
neighborhoodV of p. Since A < 1, there exists- > 0 such
that f maps the closed balB[p, r| into itself andB[p,r] C V.
Without loss, we can take so small thatr < (1 — A)/M.
Assumel < ¢ < min((1 — A)r,1 — X — Mr). Then it is
not difficult to show that for every: € Bp,r], |g(x) — p| <

e + Ar < r, which means thay takes B[p,r] into itself.
Therefore, by the Brouwer fixed point theoregnhas a fixed
point, sayq, in Blp,r]. Since

m\ghich givescy = ¢ — bjy £ by, andc, = —byy + byy, SO
c=br b, > |-brs + boe|, Which givese > brr + byo
2b;, = ¢, soc < 1, which gives equation 12.
This proof extends naturally to multi-qubit channels.
[ |
Corollary 5.2: Each row of a quantum channel” in the
Pauli basis has norm at mokt
Proof: Since|N,| <1, we havel —N2; > (1—|N,|)?,
and so the result follows from Eq. (11). ]
Corollary 5.3: Let A = N3, + N, + NZ, be the non-
unital portion of the channel. Then we have that any other
column of the channel in the Pauli basis Hashorm squared
N)2(<7+N12/0'+N%U S 1-A.

lg=pl = lgla) =l Proof: Follows immediately from Eq. (12). ]
< lgla) = f(@ +[f(a) = pl Theorem 5.4 (Two-point theorem:)f two of Nxx, Nyy,
< e+ Ag-pl, Nzz arel, then the channel is the identity channel.
Proof: Let o1, 02, 03 be some permutation of the Pauli
we obtain|g — p[ <e/(1 = A). matrices such thal,,,, = N,,,, = 1. From Corollary 5.2,

To show thay is an attracting fixed point fog, let us show N, . andN,,,, are the only non-zero elements in their rows.
that |[Dg(q)|| < 1. Observe first thalD f(¢)|| < M7+ X < Hence, the non-unital part must beFrom Corollary 5.3, with
1 —e. Therefore||Dg(q)|| < [[Dg(q) —-Df(g)I+[Df(a)l < A =0, N,,,, and N,,,, are the only non-zero elements in
L B their columns. It then follows that the channel is diagonal.
It is clear from (10) that the coding ma(pJ? of a code with From the conditions on diagonal channels given in Eq. (5), it
faulty gates is aC'' small perturbation of the coding m&y~ easily follows that if two terms are equal 19 the 3¢ term
with perfect gates. must equall, and so we have the identity channel. ]



B. Example: Generalized Shor codes than their diagonal counterparts, as the parameters span a
In this section we give give a first application of oudimensional manifold. However, we will show that in certain

formalism and the general bounds we obtained. We stu@§Ses these channels converge to diagonal channels, and will
generalised Shor codes, which are bit flip and phase flip codigcuss when these converge to the identity channel.
concatenated with each other. We will assume a diagonalVe can decompose the single qubit noise operatoms
channel[z, y, z] in what follows. Note that Thm. 5.4 is easy N =L+eM, (13)

to prove in this case; it follows immediately from Eg. (5). where L is the diagonal part, and is chosen such that/

b) Bit fli hase flip: The n qubit bit flip code is a . : .
.) P. P P q e has no term with absolute value more thgnt contains the
classical code om qubits that corrects all bit flip errors on : o o

" . off-diagonal terms. We show thatdfis sufficiently small and
less than3 qubits and none of the errors on greater than

5 qubits; if n is even it also corrects half of the errorsd = 3, then repeated application of the coding map yields

on exactly 2 qubits. The coding map i€/ [z,y, 2] — a diagonal matrix. This will allow to restrict our analysis to
5 . 2l = : X .
[z™, hp (2,9, 2), fn(2)]. TO see this note that the code does néi[|agona! channels, at least in certain regimes. _
correct phase fiipsi{ or Z errors), and so ip = py -+ the We wish to analyize the absolute values of the difference
P P . ' ~ by Pz, Fhat the non-diagonal terms make on the channel after we
p-component of the coding map must be a function of only . : . .
p. Sincex = 1— 2(py + py) = 1 — 2p, it follows that the pply the coding map. Define the difference matrix

x-component of the coding map must be a function of only r'=Q%)—QL).

z. The only such element of th¥ equivalence class gives US| ¢t us assume that the code is 4, k, d]] stabilizer code?]

" (it encodesk qubits inton qubits, and has distaneg which
To see that the-component depends ononly, note that g the minimal weight of an undetected error). Letbe the

the code can correct bit flipsi(or Y errors), sending them 10 inimal weight of a non-identity stabilizer element.
I'or Z errors, respectively), and sojif = px +py, by similar  Thegrem 5.5:The non-diagonal terms of the difference
reasoning as above we observe thatitheomponent depends matrix T have absolute value at masi?. The diagonal terms

only onp’ and hence that the-component is a function of of 1 4re at most,,,e™ in absolute value. These coefficients
only z. Now, assume onlyX" errors. Then: =1 —2px, and  gre hounded above by

fa(2) =1—2g(35%), whereg(p) is the failure probability as - -

a function of anX error rate ofp. We can obtainy(p) from max(cq, cm) < 2" | Drgn| <A™, (14)
the propoerties of the classical bit flip code.

Since the functiom., (x,y, z) does not affect the: and z

Proof: We can rewrite Ea. (4) as

components of the channel, from Thm. 5.4, we may ignore it Goo =DeNEs, (15)
for the purposes of convergence to the identity channel.  where &, is the o column of & and similarly forD. The
Some values off,, are (non-zero) entries of; are the stabilizer elements, and the
_ _ non-zero elements of, ares times the stabilizer elements,
hi@) = fa(w) = v herew is th ded hat,, | |
o) = falx) = By — Ly® w e/reo |Et e encoded. We note t ats,, is non-zero only
Fo(x) = folx) = LBz 545 4 345, if o/ anda are in the same equivalence cla.ss(.IJifS) modglo
8 4 8 S, whereS is the stabilizer group, and(S) is its centralizer
For the phase flip code we get similar@?/[z,y,z] = (see P] for more detailed definitions).
[fn(z), bl (x,y, z), 2] by exchanging the roles af and z. Now the non-diagonal elements &f depend on the non-
These codes will have two critical values, and z.. If zero elements of,, and&,. with o # ¢’, which correspond to
x > xz. thenz — 1, and similarly forz. the o and o’ equivalence classes 61(S), which differ on at

c) Specific codesWe can now obtain sharper resultdeastd qubits. Then from Eq. (4) resp. Eq. (15), it follows that
for the error threshold of concatenated bit flip and phase flipe non-diagonal terms involve at leashon-diagonal terms

codes, extending [5]. of V' and are henc®(c?) from Eq. (13). The difference of
The often discussed[[9,1,3]] Shor code has thethe diagonal elements corresponds to elements of the same
coding map: Q5" [x,y, 2] = QPBQMs[x y 2] = &, which differ on at leastn qubits, sincen is the minimal

[f3(x), h"(x,y,2), f3(2%)]. We define d[25,1,5]] code to be weight of different elements in the same equivalence class
025 = Qr/sbfs and a[[15, 1, 3]] code to beN!® = QP/5Os (non-zero elements of the sardg). Hence they are(<™).

The [[25, 1,5]] code has critical values af. = 0.916208, From Eq. (15) it is easy to see that the coefficientsand
andz. = 0.645611. The[[15, 1, 3]] code has critical values of c¢,,, are bounded above by

T = 0.794438 and z. = 0.850432. If = = 2, the [[15,1, 3]] ek
¢ ¢ ’ . (70//50.///0/ S ool gﬂ///a/ S 4 s
code performs much better than th25, 1, 5]], even though it Z |2 | ; |7 ‘Z| |

11 11

is less redundant. 77 T .
where we used that each coefficient is at mbsh absolute
) value and the cardinality of the stabiliser group. ]
C. Convergence of non-diagonal channels Note that in certain cases we have explicit expressions for

In this section we will establish some general results for,_,, |Z,,~|, which can come from calculations with a diag-
non-diagonal channels in the case of stabilizer codds [onal noise channel and can give us tighter bounds oand
Non-diagonal channels are in general much harder to analyze than the generid™*.



d) Convergence to the identityBuppose we concatenatéWheren is the linear homomorphism defined in Sec. Il Eq.
the above coding maptimes. Then the absolute values of th&. In particular note that i commutes with all recovery
off-diagonal terms are bounded above &y whereay = ¢, operatorsi;, then.9,, = 1, and if & anti-commutes with all
anda, 1 = cda;{. Then, from Thm. 5.5, of the recovery operators the#,, = —1. Then, from [5] we
obtain for the decoding matrix

ilgl i
a; = ng]:o Ed _ 60(5)(1 ,

€0 9 = &'T. (29)
wheregg = 4 é is defined ford > 1. Since these affectthe Lemma 5.6:The non-zero elements @y must be con-
diagonal terms by at most,,c™, we can bound the correctiontained in Xg, and similarly for Z, although usually not for
for the diagonal terms as Y

In particular this implies that it = X or o = Z, then¥,,
depends only onV,;, N,x, Nyy, and N,z. Then to find
(16) convergence of th&l and Z rows, we can look at these rows
Now we assume that the non-diagonal terms g@,tavhich separately.
means that < ¢(, and saz; andb; both go montonically t®. Proof: SinceZ; = I, the non identity stabilizer elements
From Thm. 5.5, we can see that if the m@p (L®") —c,,e™1 must commute with half of the recovery operators. Only the
converges to withirD(¢™) of the identity matrix, then so doesnon-zero elements o, don't commute with exactly half
QC (L ®"). However, we can get a tighter bound than this.of the recovery operators. This implies that each non-identity
Let Lo = [0, Yo, 20] be the diagonal part of the channelelement ofS(X) commutes with half of the elements Bf; =
We defineL; = Q¢(L;_1) — b;I. We can think of theL; R(ex,Z), and similarly forS(Z) and Rx = R(ez, X). If
as a lower bound on the diagonal part of the channel. Thémlf of either Rx or Rz commute with some element df,
the channel goes t, 1,1], if L; — [1,1,1]. These coding then half of all of the the recovery operators commute with
maps are€d’ (L) = QF(L;_1) —b;I, andQ§ (L) = QF(Ly) — it. Now, pick some non-zero element= X®"sys, of &,
cme™I. The channel converges to identity if wheres; € S(i). If ¢ ¢ Ax thensz # I. Then, if an element
C O r € Ay, it follows thatn(r,c) = n(r,sz), and so, half of
-0y oL =1,1,1]. Rx commutes withc. Then, ¢ must commute with half of
the recovery elements, and so must be zer@jp. Then the

tZ’Z:Q dJ i—1 g i—1

m =0 md m md

bi = cmai’ | = cmey € = el (6—) .
0

D. CSS codes oh qubit with a generalized noise channel ngn_zerg elements oy are inAy. -
In this section we tighten our result in the case of CSS codesTheorem 5.7:There exists functions f(a,b,c,d) and
(2, 17, [?] fa(a,b,c,d) such that the following are is true fa¥ =

Let our code be §n, 1, d]] CSS code. From the construction¢(.4®m).
of CSS codes from classical codesnust be odd. Its stabilizer )
group is generated by — 1 generators, half of which depend Ixr= flAxr, Mxx,iMxy, Nxz)

only on tensor products afs andXs, and the other half are YIxx = fo(Nxx,iNxy, Nxz, VxT)
the same, except they haws replacing theX's. We can write Yxy = " foliNxy, Nxz, Nxx, Nx1)
the stabilizer groupS as the span of S(X), S(Z)}, where Gy = fo( Nz Nix,iNsy, Nxi)

S(A) € Ag, and Ag is the n-dimensional Pauli Matrices

2, which only depend on tensor products &fand A. Yz1= fi(Nzr, Nox,iVzy, Nz2)

The stabilizer elements i5(X) are used to correct against Gox = [o(Nzx,iNzy, Nzz, Nzr)
Z errors, and the stabilizer elements 6§{Z) are used to Gyy =  i"foliNgy, Naz, Nox, Nz1)
correct againstX errors, and so we can write the set of Gyy = o Nyg, NoxsiNoy, Nar).

recovery operators af(cx,Z) and R(ez,X), whereey _
are the components of the syndromes obtained by measurmtthermore these function’ (a, b, ¢, d) and fz(a, b, ¢, d) are

stabilizer generators fror(A), and eachR(e, A) € Ag. symmetric under permutations of ¢, andd.
The Pauli operators are encoded as Proof: The permutationX — Y — Z — X, sends
_ &1 = S to itself, and sends
X = X% ¢ Xg (17)
Z=Z®n€ZS (9@)(—>Z'”(§)y—>(gyz—>éoX.
Y =iXZ=(-1)"7 Y®" € Y. Then, from lemma 5.6, and the fact théit— Z sendsZx «

. . . . , f1 and fo must exist as stated.
To obtain a convenient representation of the decoding opera‘?o% .
. . As for the symmetrie depends o and &7. B
D, we define the average recovery function as Y S¥x1 dep x 1 By

permutingX, Y, andZ, we preserve the stabilizer elements
Rav = 1 ZR' which are the non-zero elements &f, and so¥x is fixed
|Ri| < v under permutations aVy x, iNxy, Nxz. ¥xx depends on
where theR; are the recovery operators (see Sec. II). L&t andéx. By permutmg_], Z, and .ZY’ we preserve the
T € Myn o be the the diagonal matrix given by non-zero elements aof, Whlc_h a_reX times the elemgnts of
’ &7 (see Eq. (17)), and s€x x is fixed under permutations of
oo = n(Rav, o) (18) Nxi, iNxy, and Nxz. The other cases follow similarlym



Lemma 5.8:Let o # ¢’ be single qubit Pauli matrices andf;(a, b, ¢, id) = f;(a,b,ic,d), and by definition
let o be a non-zero element &f,. Thenc’ appears tensored

an even number of times in”. gi(a,b,c,d) = fi(a, b, c,id). (20)
Proof: In the case where = 1, &, corresponds to the These; satisfy all the symmetries above and the convergence
stabilizer group. Sincé is generated by even weight elementgs|ations of Thm. 5.9 (without the factors 6f n

in X_S an_d even weight elements g, in order for it to be 2) Example:[[7,1,3]] CSS code:We use the example of
Abelian, it must have the above property. For generale ha [[7 1 3]] code, a doubly even CSS code commonly used
have &, = 75, and, usings is o on all qubits, the desired , tait tolerance calculations, to illustrate how to find the

result follows. B functions defined in Thm. 5.7 and use Thm. 5.9 to analyze
Theorem 5.9:A° CSS code takes a channel’" ihe convergence of channels under this code.

to the identity channel if an only if both vectors a) Computation of the coding map: The
(A1, Nxx, Nxz,iNxy] and [ANzr, Nz, Nzx,iNzy]  stabilizer group of this code is generated by the
converge t00, 1,0, 0] under the map elements IITXXXX,IXXIIXX,XIXIXIX  and
1177277 1ZZ11ZZ,Z1Z1Z1Z. Using the notation from
section V-C, the non-zero elements &f are the stabilizer

[a,b,c,d] —
group elements.

[fl(Cl,b, C, d)a f2(b7 C, da Cl),fg(c, d7a7b)a7:f2(d7a7ba C)]

In fact, it is sufficient that they converge {e, 1, x, . ~
Proof: Obviously, this is a necessary condition. From i

Lemma 5.8, we see that each of the varialiles, andd in (IILIIT + IXXTIXX)(ITIITIT + XIXIXTX)
fila,b,c,d), and fo(a, b, ¢, d) must appear an even number of T+ 111ZZZ7)
times in each term. So we may ignore any sign in front of (IIIIIIT+IZZIIZZ)IIIIIII+ Z1ZI1Z1Z)
Yxy or Yzy. From the symmetries we have, it then follows _ _
that the above map determines convergence onttend z We have X' = XXXXXXX, and Z = 222272ZZ.
rows. The rest of the theorem follows from Thm. 5.4. m One notices that there are terms that are some permuta-
Remark (Unital channels): In the case of unital channels, theion of IIIXXXX. Let p7(I[IXXXX) denote the sum
above reduces to the condition that bethy x, A 7, iNxy] OVer these permutationg; (IIIYYYY) andp;(I1IZZZZ)

and [ A%z, Ny x,iNzy] converge tl, «, ¥] under the map give us the corresponding permutations 6f/YYYY
and I11ZZZZ. Similarly, there are42 terms that are

&= s=(IIIIIT+IIIXXXX)

[a,b,c] — [fa(a,b,ic,0), fa(b,ic, a,0),if2(ic, a,b,0)]. —1ZZXXYY, up to some permutation, so we define a
) ) functionpse(—IZZX XYY') to sum over these. Then we can
Notice that this no longer depends ¢n write
Lemma 5.10:For CSS codes, we havmax(cq,c,) <
23(n=k) for ¢, andc,, as defined in Thm. 5.5. S =IIIIIIT +pya(—1ZZXXYY)

Proof: We use the bound of Thm. 5.5 for the non- 4, (ITIXXXX +IIIYYYY +11IZZ2Z7).
diagonal terms. In the case of a CSS code, we havd fer X )
or A = ZthatZ, C Ag, and so the non-zero entries are giveW'th é; = 70 We get
by S(A)A®"™. Therefore the sum in Eq. (14) has orlly=z

. - - - Ex = XXXXXXX +ppo(—XYYIIZZ)
entries, giving an overall coefficient af (n—k), ]

1) Doubly-even CSS code®oubly even CSS codes are +or(XX XTI+ XXXZ2Z2Z + XXXYYYY)
CSS codes that have weight divisible bjor S(X) andS(Z). &y = =YYYYYYY — pso(-YXXZZII)
For these codes we can strengthen Thm. 5.9. Define functions —p,(YYYZZZZ +YYYIIII +YYYXXXX)
g1 and g» that are the same as tlfg and f, defined in Thm. &y = 2227227 + pia(—ZITYY X X)

5.7, without the factors of.
Theorem 5.11:A doubly even CSS code takes a +p7(Z22YYYY + Z2ZZXXXX + ZZZ1T1I).

channel .4 to the |dent|ty channel if an Only if both The recovery Operators which depend Xnare
(Ax1, Nxx, Nxz, Nxy] and [Nz, Ngz, Nz2x, Nzy]
converge to0, 1,0,0] under the map R(ez, X) = {IIIIII1, XIIIIII,IXIIIII,

la, b, d] XTI INIXTTLITTIX T IIITITX T ITTTITX ).
a’) 7C’ -

[g1(a,b,c,d), g2(b, c,d, a), g2(c,d, a,b), g2(d, a, b, c)]. Combining these with the recovery operationgiitz x, Z), we
Proof: The stabilizer group is formed by generatars easily find all64 recovery operators. There aten the form
Xg, and generatorg Zg, each with weight divisible by 4. ITI1111, all 7 permutions of/[[I1I1X, all 7 permutations
Then X and Z together appear a number of times divisiblef I7171TY, all 7 permutations of/IIII1Z, and all 42
by 4 in each stabilizer element (and similarly f¢iX,Y}, permutations of 7777XZ. Eq. (19) now allows us to find the
{Y, Z}). Following similar reasoning to that of the proof ofelements of%,. We calculateZx from &x. X XXX XXX
lemma 5.8, we find that and ¢ together appear a divisible commutes withﬁﬁ4 recovery elementsX X X 1111 commutes
by 4 number of times in each term of; (j = 1,2). Then, with g—g recovery elements, ali XX 772727, XXXYYYY,



and XYYIIZZ each commute with32 of the recovery
elements. Then

b) Analysis: We consider the convergence of a row of
the channel matrifa, b, ¢,d] as in Thm. 5.11. We have from
. 3 Thm. 5.2 that
Ix = pr(XXXIIIT) - XXXXXXX PR <1 21)
If the channel is diagonal (or in general in the case where all
but one parameter, b, c or d are zero) we have a critical point
x. = 0.870807 such thatg(+z.,0,0,0) = +z.
Let us now analyze the behavior of non-diagonal channels

1
= iXXXIIII JrZXIIXXII

1
+  IXIXIXI +IIXIXX

+ i]IXXHX J%IXHXIX with small off-diagonal elements.
3 Theorem 5.12:If any of a, b, ¢, or d is within z. of 0, it
+ iX[IIIXX —ZXXXXXXX. must go to0.
Proof. This can be proved in general by a rather lengthy
A similar calculation shows tha; = —3ZZZZZZZ + calculation. To convey the main idea we will here only give

1p7(ZZ ZI11T), but Zy doesn't follow this pattern. the proof in the case where one of thevariables equal$

Now we wish to computey;. First we look at how (for example, a unital channel). Then our functigiecomes
the 1p;(XXXIIII) component ofZx contributes. From gla,b,c) = Ta® — 3a3(a* + 7b* +7c*). We want to show that

Nis = 010, it follows that only elements in7; that are that if 0 < |a| < z., we have thata| > |g(a,b, c)|. Without
identity on the lastt qubits contribute. This is just/I111I, |oss of generality, we may assume thds positive. Below the

1 7 .
so we getpr(; NxrNxrNxiNiNiiNirNir) = $N5 ;. For  critical valuex.., we havea > Ta® — 3247, so we only need to

the —2XXXXXXX component ofZy, everything iné; see ifa < —g(a, b, ¢), which is maximized by = v/1 — a2,

contributes. This gives a contribution of

3
- Z(NXINXINXINXINXINXINXI
+p7(Nx1NxiNxiNxxNxxNxxNxx
+ NxiNxiNxrNxy NxyNxy Nxy
+ NxiNxiNxiNxzNxzNxzNxz)

+ pa2(—Nx1NxzNxzNxxNxxNxyNxy)).

Together, these give

7 3
Yx1 = 1 X1 — Z(N;(I+7N§(I(N§(X + Ny

+N%z) — 42Nx;NxxNxyN% z).

A similar calculation shows that
7 3

Ixx = ZNgfx - Z(N)?(X + TN x(Nxr + Nxz
+Nxy) — 42Nxx N3 NizN%y)

—Yxy = ZNg(Y - g(N)?(Y + TNy (Nx; + Nix
+Nxz) — 42Nxy N3 N3 x N% 2)

Yxz = ZNg)(Z - %(N)?(Z +7N%z(Nxr + Nxy

+Nxx) —42NxzN% N3y Nix).

For the functionsy;, which are related tg; by Eq. (20), we

obtain
g(a7 bu c, d) = gl(au bv c, d) = 92(a7 bu c, d)
T 34 21 504 4 o2y, 03 990
—4a 4a 4a(b+c+d)—|—2abcd.
Note that
9xr = 9(Nxr,Nxx,Nxy,Nxz)
Yxx = 9g(Nxx,Nxv,Nxz,Nxr)
Yxy = —g(Nxv,Nxz,Nxr,Nxx)
9Yxz = 9g(Nxz,Nxr,Nxx,Nxy).

¢ = 0. A simple calculation shows that there is no solution.
Then it follows that|a| must monotonically go td. ]
From Thm. 5.12 and Eg. (21) we easily see that the vector
[a,b,c,d] must converge to a vector with at most one non-
zero coefficient. Now suppose thais slightly abover., and
thatb, ¢, andd have absolute values of at most some small
We wish to see how much changes the critical convergence
value fora. Let k := %(@000)| " 1 691859. Then,

g(a'7 b? C7 d) Z g(a7 67676)

63 63
> ¢(a,0,0,0) — Za384 ~k(a—z.)+x.— Za3£4.

Sinceb, ¢, andd becomeO (%) = O(£?) up to 4th order of,
the vector converges {a, 0,0, 0] for k(a—=z.)+z.—Pa’e* >
x, Which implies that

k(a —zc) > @a:js‘l R~ @E (22 +3(a — 2.)?) ~ @5‘%2.
4 4 4
Solving up to first order for our new critical value, we get
3.4
a= 63228 + 2. = 6.14726¢* + z..

This implies that the off-diagonal terms affect the threshold to
fourth order (as implied by Thm. 5.5); but here we improved
the prefactore;. Note that Lemma 5.10 would have given a
prefactor of512.

If we choose a larger number instead ©fl4726, for
example 7, then our vector converges tf,0,0,0] from
[z, + 7e*, e, ¢,¢] for € as big as).3.

V1. CONCLUSION AND FURTHER QUESTIONS

c) Drawbacks of our approuch:The approach of in-
tegrating the sequence of concatenated encoding and noise
as a rather simple map from channels to channels is very
powerful. By abstracting away from the details of the encoding
and the noise process, it drastically reduces the number of
parameters, and makes the coding process amenable to a
dynamical systems type analysis. However, this approach
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sometimes comes at a price. By ignoring the details of tloé all of this syndrome information, and finding the optimal
coding and correction process, we might get error thresholelsor correction function seems to be computationally hard.
above the actual thresholds if we accounted for all these d) Open questionsWe have initiated a dynamica| sys-
details. The fO”OWing example illustrates this, introducing th%ms approach to quantum error Correction, ex[ending the
notion of a recovery function. result of Rahn et al. [5]. This only opens the road to further
Suppose we have fn, k, d]] stabilizer code. We define aanalysis and many questions remain open. We list a few of
recovery or error correcting functio®(e) [1] which maps them here.
the collection of syndromes measured by the codes to somg, oy analysis we have always assumed that an error
n qubit Pauli operatorf : Fyn-r — &,. We also define a correction process is successful, if the associated coding map
syndrome functiom : &, — 5.+, which maps Pauli errors tayes the noise channel to the identity channel. However, this
to some syndrome. With these definitions we must have thajght be too stringent a condition. Are there any other criteria

f# = e(R(B)), forany§ € &,. Note that we can chos&(5) for information retrieval, which are not equivalent to zero
up to elements of the stabilisér without any difference for (corrected) error?

error correction. Hence our choices f(f5) differ from each A iher question relates to the basin of correctable noise for

olt€her by elements of the pentrallzéT(S) are I|rr'1|'ted to the a code: If our noise channel lies outside the basin of attraction
4% elements of the Centralizer modulo the Stabilizer. They CaR o certain code. can we find another code that would “lift”
be written as an element af(5) times some representativey s noise into the basin of attraction of the old code? More

eLemenf OJS%.TO S:]Udy thg;roice/;f rec0vetr)y flJr]nct(i:ign on tTea“pecifically, given a codé€' (with d > 3) and a noise channel
channel, define the matrix® & .#4n 4~ to be the diagona p € A—%c, is there another cod&’ such that2® (p) € HB:?

matrix 1 , If the answer is positive, then the concatenation sch€fie”’
g . . .
15,5 = gn—k n(o, o). correctsp, ask — oo. It would be interesting to formalise
these ideas.

Then the matrix operato?, defined in Eq. (18), isT = . .
S TR, We have# = 3., %% = QC(¢'), where the quasi- Yet another .questlon concerns thg .shape of the region of
channel (they don't havé to preserve trace) correctable noise. Is there a (non-_trlwal) bound for the size
or shape of the domain of attraction? Can we characterize
gt — gtghi ye, regions of noise that are not correctable by any code? There
is a new and interesting bound on noise from which no circuit

is the contribution of a singléz; on the .channel map. can recover in [6]. However the methods used there are not
When we measure a syndrorseduring error-Correction, gynamical. Is it possible to make sharper statements?
we gain some information about the channel. Let the encoded

state be described by the density matix= p;7 + px X +
pyY + pzZ. We can re-write our channét = Q¢ (.4) as a
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