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Abstract. By combining notions from geometry, signal processing and
harmonic analysis, we propose a new method for the estimation of the
motion between two omnidirectional cameras. We show that a densely
sampled likelihood function can be obtained on the space of essential
matrices via a convolution of two signals. The first signal expresses the
epipolar geometry of two views, and the second signal encodes the simi-
larity of intensities (or some other measure) between a pixel in one image
and a pixel in another image. The proposed method is analogous to a
Hough or Radon transform on the space of essential matrices, and is
a first step to integrating signal processing and geometry. For compu-
tational reasons, we are not aware of researchers attempting a Hough
transform on the space of essential matrices, so we are not aware of
similar work. Nevertheless, there are some similarities between the pro-
posed method and the recent work of Makadia and Daniilidis [1] and
Wexler et al. [2]. In the former case the authors propose rotation esti-
mation using a shift theorem in SO(3), and the latter investigates the
estimation of arbitrary epipolar geometries. The breakthrough in this
paper is that we can efficiently compute the convolution using spherical
and rotational harmonic representations of the signals. Estimation using
the proposed method has several advantages: we can automatically rep-
resents ambiguities; we are able to estimate multiple motions; and we
obtain a framework which can take into account arbitrary, non-Gaussian
sensor noise models such as simple blob correspondence.



§ 1 Introduction

The problem of recovering the motion between two cameras is an old and im-
portant problem in computer vision. Its solution has applications in robotics,
virtual reality and movie-making. In robotics, for example, digital cameras offer
a passive way to correct and update odometry with respect to a world reference
frame. Most methods for egomotion or structure-from-motion estimation in two
views can be put into two categories: (1) small time-scale, small motion estima-
tion utilizing optical flow or otherwise linearization of the brightness constancy
constraint, including direct methods; or (2) discrete, wide baseline motion esti-
mation by fitting an essential or fundamental matrix to point correspondences.
This paper falls into the latter category, in the sense that we are interested
in discrete, possibly large, motions. However, we aim, like some of the former
methods, to use all of the information in contained in the signal to perform the
estimation.

The spirit of two papers pervade this one. The first is recent work by Wexler
at al. [2] on the non-parametric and featureless estimation of arbitrary epipolar
geometries. In comparison, we exploit the symmetries of the epipolar geometry
of calibrated cameras to regularize the estimation. The second is the work of
Makadia and Daniilidis [1] where the authors propose a method of rotation
estimation by taking advantage of a shift theorem for the spherical harmonic
representation of functions on the sphere.

In this paper we combine these two approaches into one. We propose to
develop an analog to the Hough transform for the space E of essential matrices.
The transform defined here is not performed on a per-point basis as is done in
voting schemes [3]. Instead, any point correspondence are represented using a
function defined on the space of all point pairs, S2 × S2—the direct product
of the viewing sphere with itself—which is peaked at point correspondences.
Though potentially any function encoding a likelihood of correspondence could
be used. The transform is computed by convolving said function with an epipolar
mask, equivalently, the characteristic function of the set of points obeying a
canonical epipolar constraint. This transform can be computed efficiently using
spherical and rotational harmonics. An advantage of this formulation is that the
result can be interpreted as a likelihood function evaluated discretely on E . It is
trivial to find a global maximum of the function, and furthermore ambiguities
are automatically exhibited in the likelihood.

What can this paper contribute to the enormous body of literature relating
to relative pose estimation? First, we believe new problems are driving new
paradigms for structure-from-motion problems. For example, given a distributed,
wireless network of cameras, what is the minimum amount of information that
is necessary to transmit between cameras to recover the relative positions? In
the absence of reliable correspondences, how can we approach these problems?
In this paper we argue for a signal processing approach and propose to develop
tools to jointly analyze signals and geometry.

What follows is a review of two-view geometry and the typical paradigm
for structure-from-motion estimation. We then show that a Hough transform on
E is equal to a convolution, and then develop the tools to efficiently evaluate



such a convolution. We end with a description of an implementation and several
experiments.

§ 2 Two-view geometry

This section contains a brief review of two-view geometry, we refer to [4] for fur-
ther reference. We assume familiarity with camera matrices and some projective
geometry. Let P and Q be the projection matrices induced by two calibrated
perspective cameras. If p = PX and q = QX , then it is known that the pair
(p, q) is constrained to lie in a proper subset of P2 × P2—the direct product of
the projective plane with itself. In particular if we assume that P = (I, 0) and
Q = (R, t) for some R ∈ SO(3) and t ∈ R3, then there is a bilinear constraint
on p and q, namely:

qTEp = 0 (1)

where E is known as an essential matrix, and is equal to t̂R, where t̂ is the skew
symmetric matrix such that t̂s = t × s for all s. Equation (1) is known as the
epipolar constraint.

If E denotes the set of all essential matrices, then it is known that a given 3×3
matrix is an element of E if and only if its two non-zero singular values are equal.
Consequently any essential matrix E is at most pre- and post-multiplications by
special orthogonal matrices from the canonical essential matrix E0 = ẑ, i.e.:

E = UE0V
T (2)

where U, V ∈ SO(3). This demonstrates that SO(3) × SO(3) parameterizes E .
An explicit parameterization can be obtained by using ZYZ-Euler coordinates to
parameterize each rotation matrix, i.e., R(θ, φ, ψ) = eθẑeφŷeψẑ. Then a 6-tuple
(θ1, φ1, ψ1, θ2, φ2, ψ2) yields:

eθ1ẑeφ1ŷeψ1ẑ

︸ ︷︷ ︸

U

E0 e
−ψ2ẑe−φ2ŷe−θ2ẑ

︸ ︷︷ ︸

V T

.

This follows from the rules x̂T = −x̂ and
(
eA

)T
= eA

T

. Since E0 commutes with

rotations about the z-axis, i.e., eψ1ẑE0e
−ψ2ẑ = e(ψ1−ψ2)ẑE0 the parameterization

is redundant. Thus we can reduce the number of parameters by one, considering
only the angle δ = ψ1 − ψ2.

For a given essential matrix E, equation (1) defines a subset in the space of
image pairs (p, q):

PE = {(p, q) ∈ S2 × S2 : qTEp = 0} .

It is reasonable to substitute S2 ×S2 for P2 ×P2, where S2 is the unit sphere in
R3, as long as we maintain the equivalence relation induced by P2. However, this
precaution is not necessary and later we will show that cheirality ambiguities can



be resolved automatically. Continuing, by equation (2), there is a relationship
between any PE and PE0

, namely

PE = (U−1, V −1) · PE0
,

denoting the pairwise multiplication of every element of PE0
by (U−1, V −1). Con-

sequently the set of subsets {PE} can be indexed by 5-tuples (θ1, φ1, δ, θ2, ψ2).

§ 3 Essential matrix estimation

Motion estimation is now equivalent to finding an essential matrix E such that
PE contains a given set of point pairs {xi = (pi, qi)}. Most methods to estimate
E rely on regression, wherein one generally supposes that the data set {xi}
satisfies an implicit equation fξ(x) = 0, where fξ is taken from some family

indexed by ξ ∈ X . An estimate ξ̂ is obtained from the data by minimizing the
cost function

∑

i ρ(fξ(xi)), over ξ, where for example ρ(x) = x2. In this case
f(p, q) = qTEp and X = E .

An alternative, not yet used for essential matrix estimation, is the Hough
transform, which was motivated by the problem of finding subatomic particle
tracks in particle acceleration experiments [5]. The idea has been generalized to
the aforementioned regression problem as follows: (1) begin with an accumulator
image in the parameter space X ; (2) for every data point xi increment those bins
corresponding to parameters ξ ∈ X such that fξ(x) < ε; (3) ideally, the true
model exhibits itself as a peak in the accumulator, and the location of this peak
is the estimate.

Because the space of essential matrices is five dimensional, the accumulator
for a Hough transform on a discretization of E can be quite large. In addition,
computation is costly since the transform requires that for each data point one
determines those bins that need to be incremented. We presume the computa-
tional costs, storage requirements, and the existence of other robust methods
are reasons for the understandable lack of interest in a Hough transform on the
space of essential matrices. The following sections, however, show that the com-
putational costs can be reduced and some of these objections can be overcome.

§ 4 A Hough transform on E

The goal of this section is to show that a Hough transform on E can be written as
a kind of convolution. We suppose that (pi, qi) is a list of point correspondences
and that h is their Hough transform on E . In particular, for every essential matrix
E we expect h(E) to equal the number of pairs satisfying |pTi Eqi| < ε for some
ε. Let PE,ε be the set of point pairs in S2 × S2 which satisfy this inequality.
Recall that PE is the set of pairs exactly satisfying the epipolar constraint and
therefore equals the intersection of all PE,ε.

In order to count the number of point pairs lying within a given PE,ε we
integrate the product fE,ε · g, where fE,ε is the characteristic function of PE,ε
and g is a sum of Dirac delta functions centered at point correspondences. In



particular, we let fE,ε(p, q) = 1 if (p, q) ∈ PE,ε and 0 otherwise, and g is defined
to be:

g(p, q) =
∑n

i=1 δ
[
(p, q) − (pi, qi)

]
≈

∑n
i=1 e

−λ
h

(cos−1pT pi)
2

+(cos−1qT qi)
2

i

. (3)

The product fE,ε · g effectively masks out all point pairs lying outside of PE,ε;
its integral counts only those point pairs lying within PE,ε, and therefore,

h(E) =

∫

S2×S2

g(p, q)fE,ε(p, q)dpdq =

∫

S2×S2

g(p, q)fE0,ε(V
−1p, U−1q)dp dq , (4)

for any U, V ∈ SO(3) such that E = UE0V
T . Since any pair of rotations (U, V )

determines an essential matrix, we can redefine h so as to be a function of
the pair. Recall, though, that using a pair of matrices to parameterize E intro-
duces a one-parameter redundancy. In this case, the redundancy exhibits itself
because of the invariance of fE0

to identical rotations about the z-axis, i.e.,
fE0,ε(e

θẑp, eθẑq) = fE0,ε(p, q) for all θ and p, q ∈ S2.
For now, ignore the redundancy and notice that equation (4) is the convolu-

tion of fE0
and g, where in the usual case what would be the translation of the

kernel we have pair-wise left-multiplication by (U−1, V −1). Thus the convolution
takes two functions on S2×S2 and yields a function on SO(3)×SO(3). How can
we compute this convolution efficiently? In the next two sections we show that
using harmonic representations of fE0

and g allow efficient calculation of such a
convolution.

§ 5 Rotational harmonics

Fast convolution algorithms for 2π-periodic functions are well-known, and often
used in signal processing. We aim in this section to relate some of the corre-
sponding results for functions on SO(3), the space of rotations. To begin with,
note that the usual Fourier series representation is simply a projection onto the
orthonormal basis {ek(θ) = e−iθk}k∈Z. Each ek satisfies ek(θ + φ) = ek(θ)ek(φ)
and is therefore a homomorphism from [0, 2π) to SU(1)—the set of unit com-
plex numbers. It should be easy to convince oneself that the homomorphism
property gives rise to the shift and convolution theorems for Fourier series. In
fact, there is a similar set of basis functions for functions for SO(3), sharing
the homomorphism property and giving rise to its own shift and convolution
theorems.

In particular, the corresponding basis for functions on SO(3) is generated by
the following family of functions written in terms of ZYZ Euler coordinates:

Dl
m,n(e

θẑeφŷeψẑ) = e−imθP lm,n(cosφ)e−inψ ,

where l is non-negative, |m| and |n| 6 l, and the P lm,n(x) are called associated

Legendre polynomials. The Dl
m,n are known as the Wigner D-functions and ref-

erences on their properties can be found in [6] and [7]. Fig. 1 shows contour plots



Fig. 1. Three left columns: spatial contour plots of the real parts of first degree basis
functions for L2(SO(3)) in log-space, i.e., Dl

m,n(ep̂) for m = −1, 0, 1, n = −1, 0, 1 and
|p| ≤ π. Right column: contour plots of real and imaginary parts of first degree spherical
harmonic basis functions, described in §6.

of these basis functions for l = 1. The properties of the functions Dl
m,n are more

apparent if we collect them all in a matrix for constant l. In particular, for each
l we can form the (2 l+ 1) × (2 l+ 1) matrix

Dl(R) =










Dl
−l,−l(R) · · · Dl

−l,0(R) · · · Dl
−l,l(R)

...
. . .

...
...

Dl
0,−l(R) · · · Dl

0,0(R) · · · Dl
0,l(R)

...
...

. . .
...

Dl
l,−l(R) · · · Dl

l,0(R) · · · Dl
l,l(R)










.

One can show, see [6] for example, that the resulting mapping from the space
of rotations to a subset of (2 l + 1) × (2 l + 1) matrices is a homomorphism.
In particular, for all R and S in SO(3) one has: (a) Dl(R

T ) = Dl(R)†; (b)
Dl(R ·S) = Dl(R) ·Dl(S); and (c) Dl(R) ·Dl(R)† = I , where X† = XT . Thus
Dl is a homorphism from SO(3) to SU(2 l+ 1).

In continuation with the analogy with ek, the rotational harmonic coefficients

of some f : SO(3) → C are the projections to the set of orthonormal functions



{Dl
m,n}:

f lm,n =

∫ 2π

0

∫ π

0

∫ 2π

0

f(θ, φ, ψ)Dl
m,n(θ, φ, ψ)† cosφ dθ dφ dψ .

We use the measure dR = cosφ dθ dφ dψ, which is known as the Haar measure
[?,?] and has the property that

∫
fdR is invariant to pre- or post-rotation of f .

For convenience we write fl to denote the matrix of degree-l coefficients. The
homomophism property of the Dl gives rise to shift and convolution theorems.
For example, if we define shift operators

(ΛRf)(S) = f(RS) and (ΓRf)(S) = f(SR) ,

then by the homomorphism property, a constant Dl(R) factors and the shifted
coefficients obey:

(ΛRf)l = Dl(R
−1) · fl and (ΓRf)l = fl ·Dl(R

−1) ,

i.e., matrix multiplication by Dl(R
−1) on the left or right for each individual

l-degree matrix of coefficients. Furthermore, if we define the convolution of two
functions f, g : SO(3) → C to be:

(f ? g)(R) =

∫

f(S)g(S−1R)dR (5)

then one can show that

(f ? g)l = fl · gl,

which is again matrix multiplication of the degree-l coefficients yielding the
equivalent convolution result for rotational harmonics.

We have implemented a fast, discrete rotational harmonic transform (RHT)
consisting of a FFT in the θ and ψ coordinates, evaluated at θi, ψi = (i+ 1

2 )π/l,
0 6 i < l, followed by a projection to stored vectors of plm,n = [P lm,n(cosφi)]

evaluated at φi = (i+ 1
2 )π/2l, 0 6 i < l. In total this requires O(l4) computation

and O(l4) storage. The inverse transform has the same costs. In [?,?] the authors
prove that such a scheme is exact (in exact arithmetic) and that there is a
corresponding notion of a band-limited function in which an L-band-limited
function satisfies fl = 0 for all l > L.

§ 6 Spherical harmonics and convolution on the sphere

One possible definition of the sphere is that it is a quotient space of SO(3).
Consequently, spherical harmonics are a special case of the rotational harmonics.
The quotient is obtained by identifying S2 with an equivalence class on SO(3),
where R ∼ S if and only if Rz = Sz, with z = (0, 0, 1)T . The point on the
sphere corresponding to some R is the image p = Rz. Since Rz = z if and only
if R = eθẑ, we find that R ∼ S if and only if S = Reθẑ. For any function f



defined on SO(3)/ ∼, we expect that f(R) = f(S) for all R ∼ S. This condition
is equivalent to the requirement that f(R) be equal, almost everywhere, to its
average over its equivalence class:

f(R) =
1

2π

∫

f(Reθẑ) dR . (6)

This puts a condition on fl, in particular that fl = fl · (
∫

1
2π D

l(eθẑ) dθ). Since
Dl
m,n(e

θẑ) = δm,ne
−imθ, the integral produces a matrix consisting of a single

one in the middle column and row, yielding the equation

fl = fl ·








0 · · · 0 · · · 0

.

.

.
.
.
.

.

.

.
0 · · · 1 · · · 0

.

.

.
.
.
.

.

.

.
0 · · · 0 · · · 0







,

thereby constraining all but fl’s middle column to be zero. We can therefore
treat fl as a single column vector. The spherical harmonic transform (SHT) is
then the projection of functions on S2 ∼= SO(3)/ ∼ onto the basis {Dl

m,0(R)}.

Left cosets Right cosets Correspondence with sphere

Fig. 2. Left and right cosets of SO(3) in log-space. Each curve represents a coset
corresponding to a point on the sphere. The z-axis corresponds to the subgroup {eθẑ} '
SO(2), and, in the left-most diagram, the curves are examples of left cosets, {R · eθẑ},
which happen to correspond to points lying on the equator of the sphere shown on the
far right. The middle diagram shows examples of right cosets which twist in a direction
opposite that of the left cosets.

We can define a second equivalence class on SO(3) which would yield an
equally suitable represention of S2. In particular, suppose R ≈ S if and only if
zTR = zTS. The equivalence classes of ≈ are related to those of ∼ by transpo-
sition, or equivalently, inversion. In particular, R ∼ S if and only if RT ≈ ST .
Fig. 2 shows the difference between left and right cosets in SO(3) in logarithmic
coordinates. By similar arguments one finds that for a g defined on SO(3)/ ≈, gl
contains a single non-zero row, and is therefore equivalent to a row vector. If f
and g are defined on SO(3)/ ∼ and SO(3)/ ≈, respectively, and if they are equal

when their respective domains are identified with the sphere, then fl = g†l .



We can now define a convolution for the sphere, taking two functions f, g :
S2 → R and yielding a function h : SO(3) → R equal to the dot product of f
and (g ◦R−1) for all R. We use the following definition of convolution:

h(R) =

∫

f(p)g(R−1p) dp.

If f : SO(3)/ ∼→ R and g : SO(3)/≈ → R then this convolution can be rewritten
as follows:

h(R) =
1

2π

∫

f(S)g(S−1R) dS

which is effectively equation (5). Division by 2π accounts for the size of the
equivalence classes in SO(3). Then, by the convolution result,

hl = flgl.

Note that fl is a column vector and gl is a row vector, so that hl is an outer
product. If fl and gl are canonical spherical harmonic coefficients (where by
default we assume that S2 ∼= SO(3)/ ∼, and so both are column vectors) then

hl = fl · g
†
l .

§ 7 Implementation and experiments

We now have the necessary machinery to implement a Hough transform using a
fast convolution. The inset on the next page describes an algorithm to compute
a likelihood evaluated on a discrete subset of E from a set of points correspon-
dences. Because of space constraints, some details are omitted and will be made
available as a technical report.

To motivate further study, we include three synthetic experiments. In the
first case we wish to determine how well the likelihood is defined in the presence
of ambiguity. In particular, we will let our point correspondences be projections
of points infinitely far away. Thus, in the rotational component, we hope for a
well-defined mode. In the translational component, however, we expect a flat,
mode-less distribution. The upper-left diagram of Fig. 3 shows the marginal
likelihood function of the rotation component in log-space. The value that we
expect is indicated by the (red) coordinate axes. The resulting mode is indeed
centered near this ideal value. On the right side of Fig. 3, we plot the marginal
likelihood of the translation which is relatively flat.

Next, we perform a similar experiment though without ambiguity, and evalu-
ate the resulting likelihood. We generate twenty-five randomly distributed points
such that the depth is on the order of the distance between the viewpoints. The
resulting likelihoods in the rotational and translational components are shown
on the left and right sides of the middle row of Fig. 3, respectively. Finally, in the
third experiment we demonstrate estimation with two motions. The results are
shown on the bottom row of Fig. 3. Though not as well-defined as before, two
peaks do evidence themselves and are located near the true values indicated by
the (red and green) coordinate axes in the marginal of rotation, and the arrows
in the marginal of translation.



Algorithm 1. Global likelihood computation on E given a set of putative point
correspondences (pi, qi).

1. Prepare the canonical epipolar mask f(θ1, φ1, θ2, φ2), and correspondence like-
lihood g(θ1, φ1, θ2, φ2) as defined in equation (3). Discretely evaluate each at
θ1, θ2 = πk/L and φ1, φ2 = π(k + 1/2)/2L, where k = 0, . . . , 2L − 1.

2. Compute the fast, discrete, L-bandlimited, separable SHT’s of f and g using
the separable basis {Dl1

m1,0(θ1, φ1, 0)D
l2
m2,0(θ2, φ2, 0)}, yielding entries f l1,l2

m1,m2

and gl1,l2
m1,m2

for 0 ≤ l1, l2 < L, −l1 ≤ m1 ≤ l1 and −l2 ≤ m2 ≤ l2.

3. The rotational harmonic coefficients of g are computed from hl1,l1
m1,n1,m2,−n1

=

f l1,l2
m1,n1

“

gl1,l2
m1,−n1

”†

. Since g(θ1, φ1, ψ1, θ2, φ2, ψ2) is independent of ψ1 +ψ2, all

other terms are zero.
4. Compute discrete samples of h(θ1, φ1, δ, θ2, φ2) by applying the discrete in-

verse RHT in two passes to the entries hl1,l2
m1,n1,m2,−n1

, with modifications to
account for zero off-diagonal terms.

5. Each g(U,V ) is analogous to a sum of normally distributed random variables;
therefore, to emulate a likelihood, apply a saturation to g, i.e., p(U, V ) =

erf
`

(g(U,V ) − µ)/(
√

2σ)
´k

where k > 0, µ = Eg, and σ = Var(g)1/2.
6. Optionally, to compute marginals of p, revert to the frequency representation

by computing forward transforms. One can show that the unique decompo-
sition UE0V

T = Rt̂ yields marginals pt and pR, in translation and rota-
tion respectively, whose respective spherical and rotational coefficients are:
(pt)

l
m = p0,l

0,0,m,0 and (pR)l
m,n =

P

j(−i)j+2npl,l
m,j,−n,−j .

§ 8 Discussion

In this paper we have presented new techniques for motion estimation in omni-
directional cameras. We propose a transform analogous to the Hough transform
for estimating one or more motions capable of handling ambiguity in motion
estimation.

There are several avenues of research that hope to investigate in the future.
First, this is a first pass at an implementation and we hope that improvements
can be made. Second, note that computing the Hough transform in the manner
proposed allows substituting the correspondence likelihood function g with any
signal we can imagine. In particular, can we choose more vague correspondence
functions, taking into account sensor noise and mismatch? Suppose for example,
that we view objects which are constant color and for which it is difficult to
extract features. If we are presented with a “blob,” can we use such objects as
a basis for correspondence? Can the method be used to reduce a dependence on
features? One of the goals of this community has been to unite signal processing
and geometry. We hope that this work can contribute to this program.
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Experiment 1. We let E = e−πx̂/2ẑ and sim-
ulate points infinitely far away. As expected,
the resulting marginal in translation is flat,
though the mode is well-defined in the rota-
tional marginal.

Experiment 2. We suppose E =

eπx̂/2 ̂(1, 1, 1) and simulate points at a
depth on the order of the distance between
the viewpoints. Marginals in rotation and
translation are peaked at the true values.

Experiment 3. Suppose points obey either

E1 = eπx̂/2 ̂(1, 1, 1) or E2 = e(̂0,1,2) ̂(−1, 1, 1).
Two peaks arise close to true values in both
marginal likelihoods.

Fig. 3. Three experiments showing the applyication of a Hough transform to randomly
generated point correspondences. In the first and second cases, twenty-five points were
randomly generated. In the last case, twenty-five points were allowed per motion.
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