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Abstract

This paper presents a hierarchical flight control system for unmanned aerial vehicles. The proposed system executes high-level
mission objectives by progressively substantiating them into machine-level commands. The acquired information from various
sensors is propagated back to the higher layers for reactive decision making. Each vehicle is connected via standardized wireless
communication protocol for scalable multi-agent coordination. The proposed system has been successfully implemented on a
number of small helicopters and validated in various applications. Results from waypoint navigation, a probabilistic pursuit-evasion
game and vision-based target tracking demonstrate the potential of the proposed approach toward intelligent flying robots.
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1. Introduction

Deployment of intelligent robots has been made
possible through technological advances in various
fields such as artificial intelligence, robotics, wireless
communication, and control theories. There is little
doubt that intelligent robots will be employed to
autonomously perform tasks, or embedded in many
systems, and extend our capabilities to perceive, reason
and act, or substitute human efforts in applications
where human operation is dangerous, inefficient and/or
impossible. Subscribing to this idea, BErkeley AeRobot
(BEAR) project aims to organize multiple autonomous
agents into integrated and intelligent systems with
reduced cognition and control complexity, fault-toler-
ance, adaptivity to changes in task and environment,
modularity and scalability to perform complex missions
efficiently.

Rotorcraft-based unmanned aerial vehicles (RUAVSs)
have unique flight capabilities such as hover, vertical
take-off/landing, pirouette, and side-slip, which cannot
be achieved by conventional fixed-wing aircraft. These
versatile flight modes are useful for various situations
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including reconnaissance, ground target tracking, and
operations with limited launching space such as a
shipdeck or in cases that require frequent landings and
take-offs (Fig. 1).

The last decade has witnessed remarkable progress in
RUAY research including modeling (Mettler, Tischler,
& Kanade, 1999), control theory (Shim, Koo, Hoff-
mann, & Sastry, 1998; Corban, Calise, & Prasad, 1998;
La Civita, Papageorgiou, Messner, & Kanade, 2002)
and avionics (Gavrilets, Shterenberg, Dehaleh, & Feron,
2000). However, the current status still falls short of
implementing solutions to most real-world applications
and exploiting the full capabilities of the rotorcraft. The
BEAR research project has been directed toward
improving the performance of RUAVs as members of
a networked intelligent team consisting of multiple
heterogeneous robotic vehicles. To achieve this objec-
tive, it is essential that each flight control system be
endowed with well-suited autonomy, i.e., capabilities to
independently sense, reason, plan and act in coordina-
tion with other robots or environments. This paper
presents the synthesis of a hierarchical flight manage-
ment system (FMS) for RUAVs that provides autono-
my while allowing coordination among team members.

The dynamics of an RUAYV is identified by applying a
parametric identification method to the collected flight
data. This paper presents two control approaches: a
multi-loop proportional-integral—differential controller
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Fig. I. A Berkeley RUAV in an autonomous flight with ground
robots.

and a nonlinear model predictive tracking controller.
The former has been successfully validated in various
scenarios including those presented in this paper. The
latter is a relatively new approach, which is very
effective in addressing nonlinearity, coupling, input
and state saturations.

The low-level vehicle stabilization layer is connected
to the higher-level strategy planner using vehicle control
language (VCL), a script language interface for auton-
omous agents as well as human operators to command
the host vehicle. Each autonomous agent is a part of a
wireless communication network, by which complex
tasks may be performed in a coordinated manner.

As benchmark problems, the following scenarios are
considered: waypoint navigation, pursuit-evasion,
ground target tracking, and vision-based landing. These
scenarios exemplify one or more functionalities of the
hierarchical multi-agent system. In waypoint navigation,
the functionality of the guidance layer using the VCL
framework is highlighted. The pursuit-evasion addresses
probabilistic reasoning for strategy planning, multi-
agent coordination over a wireless network, dynamic
VCL operation, and vision-based sensing. The ground
target tracking and vision-based landing experiments
high-speed position tracking control, target recognition
and tracking technology of the onboard vision proces-
sing unit as a strategy planner.

Section 2 presents an overview of a hierarchical flight
control system for RUAVs. Section 3 describes the
identification and regulation of vehicle dynamics, and
trajectory generation. In Section 4, the proposed FMS is
applied to aforementioned examples. Section 5 sum-
marizes our results.

2. Flight management system for intelligent unmanned
aerial vehicles

An “intelligent agent” continuously (1) perceives
dynamically changing conditions in its environment,
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Fig. 2. Multi-functional hierarchical flight management system im-
plemented on Berkeley RUAVs.

(2) reasons to interpret perceived information, to solve
problems and to determine appropriate action, and (3)
acts appropriately to affect conditions in its environ-
ment. Based on these attributes, this section describes
each layer in the hierarchical flight management system
shown in Fig. 2.

2.1. Sensing

Dynamically changing conditions in the environment
and vehicle states are perceived by various onboard
sensors. Motion-related information, which is vital for
vehicle control and high-level operation, is measured by
the onboard navigation sensors such asinertial naviga-
tion system (INS) and global positioning system (GPS).
Additional sensors such as ultrasonic sensors and laser
range-finders are used to acquire the environment-
specific information including relative distance from
the ground surface, or to detect the objects in the
vicinity of the host vehicle. A computer vision system
(Sharp, Shakernia, & Sastry, 2001) is used to detect
objects of interest based on their color or shape.

2.2. Reasoning and coordination

Fig. 2 shows three types of strategy planners to be
implemented for each experiment in Section 4. The
appropriate strategy planner for a given mission is
selected by a switching layer.

When the current state of the world is not fully
measurable, the world is modeled as a partially
observable Markov decision process (POMDP), as
described later in Section 4.2. The strategy planner then
updates each agent’s belief (information) state, i.e.,
probability distribution over the state space of the
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world, given measurement and action histories, and
generates a policy, i.e., a mapping from the agent’s belief
state to its action set. Search of the optimal policy is
computationally intractable in most problems, thus
usually sub-optimal policies are implemented (Kim,
Vidal, Shim, & Sastry, 2001), or, the class of policies to
search through is limited (Ng & Jordan, 2000). Algo-
rithms are typically run on real-time operating systems
to satisfy hard real-time constraints.

The strategy planner also manages communication
networks. Evolved from a simple telemetry for data up/
down link, the communication plays a vital role in the
real-time coordination and reconfiguration of multiple
agents in dynamic environment as a tightly coordinated,
reconfigurable, distributed networked intelligence.
Moreover, it is desirable to have the support of a high
quality-of-service (QoS) wireless communication system
with minimal latency, in the presence of ambient noise
or signal jamming for secure operation.

2.3. Action

Finally, the UAV is instructed to move to the strategic
locations that are computed by the decision making
process. In doing so, the UAV should be able to
autonomously guide itself through the reference trajec-
tories or waypoints. Each vehicle platform is equipped
with stabilizing controllers as will be described in
Section 3.3. Action-sensing coordination occurs at a
very fast rate in order to cope with contingencies, for
example, such as detection and avoidance of collisions.

1391
3. Vehicle-level control and trajectory coordination

This section describes the components at the vehicle-
level of the hierarchy for autonomous flight: the vehicle
platform (Section 3.1), dynamic model identification
(Section 3.2), control and trajectory generation using
multi-loop PID (Section 3.3) and a nonlinear model
predictive method (Section 3.4).

3.1. Vehicle platform

A UAV is tightly integrated with mechanical and
electronic components, including an airframe, naviga-
tion sensors, computers, batteries and other onboard
sensors, aimed at performing autonomous tasks with
minimal intervention by a remote human operator.
Berkeley RUAVSs are constructed on off-the-shelf radio-
controlled helicopters of various sizes and payloads. In
the experiments described below, a radio-controlled
helicopter, Yamaha R-50 is used. The onboard compo-
nents are categorized into the followings: (1) flight
control computer, (2) navigational sensors, (3) commu-
nication module, and (4) onboard power system (Fig. 3).

The onboard flight computer is central to the
guidance, navigation, and control of the host vehicle.
It is in charge of real-time vehicle control, sensor
integration, and inter-agent communication. The flight
management software is implemented in the QNX™
real-time operating system. The input to the servo
control system is computed at 50 Hz using the flight
control algorithms described in Section 3.3.
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The navigation system is built around INS and GPS.
INS provides position, velocity, attitude angles and rates
at an arbitrarily high rate. A drawback of INS is the
unbounded error growing rapidly over time. This can be
effectively corrected by an external position sensor such
as GPS. Due to the complementary natures of INS and
GPS, a combination of these sensors has become a
standard configuration for UAVs. In order to acquire
the environment-specific information such as the relative
distance from the ground or nearby objects, laser range
finders, ultrasonic sensors, and vision sensors are used as
well.

Berkeley RUAVs based on the Yamaha R-50 are
equipped with an onboard vision processing unit (VPU)
and a camera mounted on a pan-tilt platform. The VPU
tracks markers of special pattern and estimate the
relative motion between the camera and the target. For
autonomous take-off and landing, a vision-based sen-
sing estimates the relative distance and inclination
angles to the marker on the landing spot. The VPU
estimate is adjusted with navigation data from the flight
computer via a serial link (see Sharp et al. (2001) for the
detail on the vision system).

Wireless network is used to achieve the remote
accessibility and connectivity among multiple agents.
The information flow on the communication link is
defined in a standardized message format, which enables
the interoperability of heterogeneous agents, i.c., aerial
or ground-based agents. This feature is highlighted in
the pursuit-evasion example (Section 4.2).

Detailed description on the theoretical and the
practical issues in designing and building an RUAV
are described by Shim (2000).

3.2. Helicopter dynamics

A helicopter is a highly nonlinear multi-input
multi-output (MIMO) system, which is exposed to
severe disturbance such as its own rotor wake and
wind gusts. The modeling of the helicopter deserves
a devoted coverage and the detailed explanation
of the dynamic models, from which the pro-
posed control laws are designed, is found in Shim
(2000).

The overall dynamics of a RUAYV are modeled as a set
of nonlinear differential equations, which is divided into
the kinematics (Egs. (1) and (2)) and the system-specific
dynamics (Eq. (3)):

[+%, 5%, 25T = RO™S1a%, B, 2P, M

d ¢ 1 singtanf cos¢tanf | |p

T 0| =10 cos ¢ —sin ¢ ql, 2)
v 0 sin¢cos cos¢pcosO| |r

X2 (1) = fo(xP (1), u(p)), (3)

where
x = [xK, xPTeR™,
K T
XK =[x%,3%,2%,¢,0,y1",
D T
X" = [Ll, v, M}apaq5r5al_¥:b1x5 Vfb] >

T n
u= [ualxa Upls, Ugy, s urm/] eR™.

Here S and B denote spatial and body coordinate.
xB, vB,and 28 (u, v, and w respectively, will be used for
notational simplicity) denote velocity with respect to the
body-coordinate frame. ¢, 0, and  denote roll, pitch,
and yaw, and p, ¢, and r are their rates, respectively.
The parameters a;; and by, are longitudinal and lateral
flapping angles, and ry, is the feedback gyro system state
(Mettler et al., 1999). The dynamic model (Eq. (3)) has
four inputs. u,;; and uy,; control lateral and longitudinal
cyclic pitch, respectively. The cyclic pitch changes the
individual pitch of each rotor blade during a cycle of
revolution to vary the direction of the thrust vector. uy,,
is the servo input for the main rotor collective pitch. The
collective control changes the pitch of all blades and
hence changes the magnitude of the thrust vector. Ur, s
controls the magnitude and direction of the tail rotor
thrust, which counteracts the anti-torque of the main
rotor and thus controls the heading angle. Due to the
complexity and the uncertainty inherent to aerodynamic
systems, the dynamic model was identified as a whole by
applying a parametric identification algorithm to a set of
test flight data. A test pilot gives frequency sweeping
signals to the instrumented RUAV in longitudinal,
lateral, heave and yaw channels in turn, while maintain-
ing the overall stability of the vehicle. The vehicle
response is measured by the navigation sensors and
downloaded to the ground station via a wireless link. The
recorded measurement is conditioned and then processed
by prediction error method, a time-domain parametric
identification method (Ljung, 1997). The resulted model
for Eq. (3) is a linear time-invariant system with states
and inputs defined above. Fig. 4 compares the state
variables predicted by the identified model, which shows
a satisfactory match with the true flight data.

3.3. Stabilization and tracking using multi-loop controller

Based on the identified model in Section 3.2, a
stabilizing control law is designed. In the first approach,
multiple single-input, single-output (SISO) control loops
are designed around the four inputs of longitudinal/
lateral cyclic pitches and main/tail collective pitches.
This approach has obvious advantages in terms of a
simpler structure, straightforward design process, and
low computing load. On the other hand, it does not
provide a systematic way to account for uncertainty,
disturbance, and saturation. Moreover, it has very
limited means to alleviate the coupling among channels.
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The proposed controller consists of three loops: (1)
innermost attitude controller, (2) mid-loop linear velocity
controller, and (3) outer loop position controller (Fig. 5).

The attitude controller feeds back only the deviation of
the roll and pitch angles from the trim condition (nonzero
angle needed to maintain an equilibrium), not the noisy
angular rates p and ¢ measured by rate gyros. This
approach yields a controller that is simpler and more
robust to mechanical vibration. The adequate angular
feedback gains for roll and pitch channels are determined
to have acceptable response speed and damping ratio.

The translational velocity dynamics of small helicop-
ters are unstable with the attitude feedback only. They
should be stabilized with velocity feedback, which is
determined by a combination of root locus and step
response methods.

For hover control, the position control loops in x-, y-,
and z-axis are added on top of the linear velocity and
attitude feedback. The position control involves internal
coordinate transformation to compensate the heading
change. The position gains are found by applying the
similar methods described above to the augmented
RUAYV dynamics with velocity and attitude feedback.
Finally, integral actions are added to eliminate steady-
state errors and trim mismatch.

The vertical and heading dynamics are inherently
stable due to the interaction between the inflow and
the induced lift. The vertical response is improved
by artificial damping using negative velocity feed-
back. For yaw tracking, the heading error and its
integral are fed back on top of the built-in rate gyro
system.
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In summary, the multi-loop PID (MLPID) control
law is given as the following simple equation:

S — KI},/eys de,

Upls = _KOQ - Ku— K, e.s — le/exs dl)

ugs = —Kgp — Kv— K, e

ug,, = —K,w— K. e.s — K. / e,s di,

u,.re/. = —Kl/,lp — Kh/,/el/, de, (4)

where e s, e,s, and e_s denote the position error, and ey,
denotes the heading error.

Fig. 6 shows the experiment result of hovering
controller tested on R-50 UAV. The RUAYV showed a
stable and accurate regulation response with
(£0.3, £0.4, +£0.1 m, +2°) accuracy in (x,y,z,)-
axis. Roll, pitch, translational velocity in x and y
directions are regulated very well altogether.

3.4. Stabilization and tracking using nonlinear model
predictive controller

In the previous section, we have shown that the
conventional multi-loop control performs reasonably
well. In order to improve the tracking performance
for complex trajectories by taking into account of
nonlinear characteristics, coupling among modes, and
input/state saturation, we also consider a nonlinear
model predictive controller (NMPTC) as a tracking
layer.

At each sample time, a NMPTC computes a finite
control sequence, which minimizes a cost function,
typically a weighted quadratic sum of states and inputs
over a finite horizon. We used a discretized internal
model obtained from a partially nonlinear continuous-
time model (with nonlinear force terms and full
nonlinear kinematic equations).

As for the internal model, Eq. (2) is discretized to

Xier1 = f (X, we) 2 fa(Xk) + Baug,
Ja(x) & xp + Tof o(xp0),
B,AT,B., Q)

where T is the sampling time. For tracking, we define a
cost function

N-1
J=¢Fn) + Y Lk, §xo ), (6)
k=0
JNUNR S
(p(yN):EyNPOyN, (7
L(Xk,yk,uk)=§)’KQYk +§XkSXk +§ukRuk, (®)

where 2y, —y, y= CxeR™, y, is the desired trajec-
tory, and S is introduced to bound the state variables
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that do not directly appear in y. By introducing a
sequence of Lagrange multiplier vectors {)L/CE[R”X}?:],
Eq. (6) can be written as

N-1

T=$EN)+ Y L%k, T w) + 2501 (%, w) = Xl (9)
k=0
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By defining the Hamiltonian function as
Hie = L(Xk, §ieo W) + Ay o f (X We). (10)
Eq. (6) can be written as

N-1
J = d(xy) = inxn + > [Hi — Axi] + Ho. (11)
k=1

Since we want to choose {uk}éV ! that minimizes J, we

take a look at

o 1 0H, OHj. OH
dJ = Ay |dxy +—=——dx dyo +—4d
L,)N N] N+ao 0+6§'0 YOJraOllo
N-1
H H, H
+ M—)»,E dxk—f—a—deS’k—f-a—kduk :
—l 6xk 6yk allk
Choosing
09
T 5T
Ay = axN NPoC, (12)
1O oH
k= an ayk an
T ok .t
_ka—i—/lkHa -y oC (13)
yields
H,
dJ = Z 0 kduk + AT dxg (14)
and
OHi _ 1 I
R . 1
a wy + j'kJrl ou uy ( 5)
With an initial value of the input sequence {u(O)}

obtained using a MLPID controller and a given
Xg, {xk}iv are first computed using (5). Then, for k =
N, ..., 1, ) are computed recursively using (12) and
(13), and for k=1,...,N,(0H;/du;) are computed
using (15) and used for the gradient descent. By
initializing w; at the beginning of the optimization at
each time step with the u; of the previous time sample,
the iteration count reduces significantly.

3.4.1. Trajectory generation and tracking under input/
state constraints

To generate physically realizable trajectories, input
constraints are enforced by projecting each u; into the
constraint set. In our helicopter model, this corresponds
to [Ua1s, Up1s, Upy, > Up, ] €1, 1]4. State constraints are also
incorporated as an additional penalty in the cost
function J:

S(xi) 2 Z S max(0, |xi (k)| — x5, (16)
=1

3.4.2. Performance of MPC
Here we evaluate the performance of the nonlinear
model predictive tracking controller designed above for

a spiral ascent profile shown in Fig. 7 under the impact
of model uncertainty. For comparative study, MLPID is
put into the same scenario. An additional constraint is
imposed on the heading of an RUAYV so that its nose
pointing toward the center of the spiral trajectory, i.e.,

upward spiral trajectory
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Fig. 7. Tracking of a spiral ascent trajectory in the presence of 20%
model uncertainty: Trajectory using (a) a nonlinear model predictive
controller (NMPTC), (b) a multi-loop PID (MLPID) controller, and
(c) control inputs using NMPTC and MLPID, respectively.
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x5, 5,25, ,] = [R(2) cos(2m/10)z, R(?)sin(2n/10)t, —
(4n/10)t, m+ (2n/10)f], for 0<t<30s, R(f) = 5+ (¢/2) ft.
This particular trajectory is chosen to differentiate the
capability of controllers to handle the nonlinear kine-
matics as well as the multivariable coupling in the
system dynamics. In this comparative study, we
introduced up to 20% perturbation to all system
parameters except for the gravity terms and evaluated
the tracking performance for the spiral ascent profile
identical to that used in the previous case. In Fig. 7(a),
an RUAV controlled by the NMPTC follows the given
spiral trajectory and desired heading ;. As shown in
Fig. 7(b), when the RUAYV is controlled by MLPID
controller, the deviation from the spiral trajectory
increases as time elapses. Fig. 7(c) presents the tracking
error of x3(¢), y3(¢), z5(t) and Y(f) under the two
controllers. The controller output u(¢) of both cases are
shown in Fig. 7(d). The failure of the linear controller to
follow complex trajectory is attributed to its deficiency
to handle the coupling as well as the nonlinear
kinematics of rigid-body motion.

The proposed algorithm has been implemented in C
language and tested during the simulation. It has been
shown that the C implementation could be reasonably
solved in real time on a Intel Pentium III class CPU.
Using a dual-computer architecture, the NMPTC
algorithm is solved in real-time on a secondary flight
computer, while the primary flight computer handles the
hard real-time control (Shim, 2000).

3.5. Trajectory generation

A trajectory generation layer is responsible for
generating a desired trajectory or a sequence of flight
modes and enacting the proper control law in the
stabilization/tracking layer. Each helicopter flight from
take-off to land can be described as a sequence of flight
modes as shown in the diagram in Fig. 8. In this

Pirouette

Bank-to-
turn

Forward

Ascend/
Descend

Fig. 8. State transition diagram for flight modes.

research, a framework called vehicle control language
(VCL) is proposed. VCL is implemented as a script
language or a binary data format that describes a given
mission as a sequence of flight segments, which are
associated with the target waypoint, flight mode, and
other attributes, as will be shown in Sections 4.1 and 4.2.
By abstracting away the details of sensing and control of
each agent, the unified interoperability for high-level
planning across heterogencous platforms is achieved.
Yet by considering the dynamics of each vehicle in high-
level planning, the overall system can achieve real-time
performance. A VCL module consists of the user
interface on the ground station, the language inter-
preter, and the sequencer on the FMS. The VCL code
may be generated for the entire flight as a batch file, or
command by command for a dynamic operation mode.

4. Experiments with different strategy planners

In this section, the performance of the proposed
hierarchical FMS is evaluated in a series of test flights of
three distinct scenarios: (1) waypoint navigation using a
batch (or preprogrammed) VCL mode, (2) a pursuit-
evasion game employing a dynamic VCL mode, and (3)
high-speed tracking of a moving target assisted by the
onboard vision computer.

4.1. Waypoint navigation: Batch VCL mode

In this mode, the VCL execution module assumes the
highest hierarchy in the guidance of the RUAV. For
example, when a lawn-mowing pattern followed by a
series of waypoints with fixed heading as shown in Fig. 9
is a desired trajectory, the corresponding VCL codes are
generated in the strategy planner into a data file. The
flight mode, waypoint, and other optional parameters
are extracted in each line of VCL code and then sent to
the trajectory coordination layer. Upon receiving a new
VCL command, it activates a control law for the
optimal flight mode associated with the target waypoint
and other options. The real-time control outputs
generated by the stabilization/tracking layer are sent to
the actuators on the host RUAV. The navigation
measurements are reported to all the layers for feedback
control and other supervisory tasks.

4.2. Pursuit-evasion game: Dynamic VCL mode

This experiment evaluates the performance of the
FMS in a probabilistic pursuit-evasion game (PEG)
(Kim et al., 2001). The goal of pursuers is to “capture”
evaders in a given grid-field. An evader is considered as
captured when it is located within a certain range (e.g.,
1.5 m) from a pursuer and it is in the pursuer’s visibility
region. The initial locations of evaders are unknown a
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priori. At each discrete time instant, the group of
pursuers, consisting of RUAVs and/or unmanned
ground vehicles (UGVs), is required to go to the
requested waypoints and take measurements of their
own locations and of any evaders within their visibility
regions using sensor-suites. This measurement is used to
decide the pursuers’ next action that minimizes the
capture time. From the pursuers’ point of view, this
PEG is modeled as a POMDP, ie., a tuple
(LA, T, Z,0,R):

® & is a finite set of states of the world, i.e., the
configurations of the pursuers and evaders in the
given field;

® o/ is a finite set of actions, i.e., movement to adjacent
cells or stay in the same position;

o T:9xo—->PD(¥) is a transition function.
T(s,s,a,) = P(s(t+ 1) =5 |s(t) = s,a(t) = a,) is the
probability of landing in the state s'e.S under the
action ac A from the state seS, thus the actuation
model is reflected here;

® ¥ is a finite set of observations the pursuer can
experience of its world, i.e. the location of pursuers
themselves and evaders and obstacles within the
visibility region;

® 0:9x.o->PD(Z) is the observation function.
Oz, 8, ai1) = P(a(t) = z,|s(1) = 5/, a(t — 1) = a,-1)
is the probability of making observation z
given that the pursuer took action a;, and
landed in state s’, which reflects the sensing
capability;

® R:¥ x .o xZ—-Risareward function. r(s, a;, z;) =
1 if s corresponds to the evader-captured configura-
tion and 0 otherwise.

The pursuers’ belief state, 5 =P(s(t) =s|A, 1 =
A, 1,2, = Z;) denotes the conditional probability that
the world is in state s given Q)£ P(so = s), and the
action and observation histories, i.e., A, £
{ag, ...,a;,_1}, and Z,&{z,...,z;}. Given that the
pursuer observes z,.| after applying a,, the recursive
belief state dynamics can be obtained by applying Bayes’
rule:

17;+1 _ P(siy1 =5, A=A, 21 =Z11)
« Yovey Pyt =5 Ar = ALy = Z11)
_ P(X', A1, Z1, a1, 2141)
C Yver PO A Zag zi)
_ P(z44 IS,a:) > e PS',8, 421,21, a)
B Zx’ey P(s', Ai-1, Z1, a1, 2141)
_ O(z41,5, ay) Zsey T(s,s, az)n(’s)

_Zx’ef/ O(Zl+1ﬂsl7af) Esef/ T(S/’S’a’)nzs)’

'Random variables are indicated in bold type according to the usual
convention.

: Takeoff To (0,0,-5)rel;

: Hover (0,0,0) rel heading = 270deg duration=7sec;

: Fly To (0,-5,0) rel vel = 0.5m/s stopover autoheading;
: Hover (0,0,0) rel heading = Odeg duration=7sec;

: Fly To (5,0,0) rel vel = 0.5mps stopover autoheading;
: Hover (0,0,0) rel heading = 90deg duration=7sec;

: Fly To (0,5,0) rel vel = 0.5mps stopover autoheading;
: Hover (0,0,0) rel heading =180deg duration=7sec;

: Fly To (-5,0,0) rel stopover autoheading;

© 0 N o O A~ W N P O

: Hover (0,0,0) rel heading =-90deg duration=7sec;

[
o

: Fly To (0,-5,0) rel vel = 0.5mps stopover autoheading;

i
[

: Hover (0,0,0) rel heading =-90deg duration=7sec;

[uy
N

: Fly To (0,5,0) rel vel = 0.5mps stopover autoheading;

[y
w

: Hover (0,0,0) rel heading =-90deg duration=7sec;

: Move To (0,-3,0) rel vel = 0.5m/s heading=180deg;
: Move To (0,3,0)rel vel = 0.5m/s heading=180deg;

: Move To (2,0,0) rel vel = 0.8m/s heading=180deg;

: Move To (-3,0,0) rel vel = 0.3m/s heading=180deg;
: Move To (4,4,0) rel vel = 0.2m/s heading=180deg;

: Move To (-1,-2,0) rel vel = 0.2m/s heading=180deg;
: Move To (-3,1,0) rel vel = 0.2m/s heading=180deg;
: Move To (3,-3,0) rel vel = 0.2m/s heading=180deg;

NN BB R R R
N P O © ® N O 0O &

: Hover (0,0,0) relheading =180deg duration=7sec;
: Land;
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Fig. 9. A VCL code for lawn-mowing pattern and x—y trajectory from
the flight experiment.

whose denominator can be treated as a normalizing
factor, independent of s'. The strategic planner imple-
ments a variety of computationally efficient sub-optimal
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policies, including a greedy policy with respect to
n*(s’), under which the location in the pursuer’s
one-step reachability region with the highest probability
of containing the evader at the next step is selected as the
waypoint for the pursuers (See Kim et al. (2001) for
detail on algorithms and experimental results). This
position command is sent to the pursuers in the dynamic
VCL format over the wireless communication and
processed by the VCL execution layer in the flight
computer (Fig. 10).

Fig. 11 shows a PEG of one greedy aerial pursuer vs.
one ground evader in a 20 m x 20 m field. The role and
the number of participating agents can be easily changed
in the scalable architecture. The setup of one aerial
pursuer is shown so that the load on the RUAV is
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Fig. 10. Control inputs and state variables during a maneuver shown in Fig. 9:

maximized. Along with the trajectories for the RUAV
pursuer and the UGV evader, the evolution of the
probabilistic map is shown as the gray-scale background
and the square represents the visibility region of RUAV.
The RUAV pursuer catches the evader in 133 s. This
experiment shows that the proposed control law and
dynamic VCL are well-suited in a hierarchical control
structure for the PEG.

4.3. Target tracking

In this scenario, an RUAYV is required to track a
moving ground object. The vision computer estimates
the relative position of the ground target by extracting
a special feature of a marker (Sharp et al., 2001).
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the plots on the left column from top shows

X8, 0, q, up, z5, B, up,,, and the plots on the left column from top shows y5, ¢, p, uay, ¥, 7, U, » TESpectively.
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Fig. 11. Snapshots of 1 vs. 1 pursuit-evasion game: trajectory of Pursuer RUAV (P) and Evader UGV (E). ¢ denotes time in second.

High-rate position-tracking requests at 3 Hz are sent
to the VCL execution layer in the dynamic VCL format.
In Fig. 12, the trajectories of the RUAV and UGV
are shown. The FMS shows satisfactory tracking
performance with a small error attributed to wind
gusts. In the middle of the experiment, it was noticed
that the vision computer ceased sending the reference
trajectory for about 8 s. The FMS demonstrates its fail-
safe feature in this faulty situation by following
an expected trajectory of targets until the next command
is received.

4.4. Vision-based landing

The landing of a helicopter on a shipdeck poses a
significant workload on the pilot, especially when the
ship and the helicopter are exposed to a hostile weather.
A common solution of winching down the helicopter
using a steel cable may be lethal to the shipdeck crew
because of the huge amount of the static electricity
built up during the flight. The landing algorithm using
the vision-based tracking can be very useful not only for
the landing of manned helicopters but also for the
automatic retrieval of RUAVs. In this experiment,
the RUAYV is requested to descend onto the shipdeck
and then track the deck motion estimated by vision
as a precedent step for final touchdown. The experi-
ment is conducted with a motion simulator, which
reproduces the shipdeck motion on the sea using the
Stuart platform (Fig. 3(a)). The VPU estimates
the location of the marker as in Section 4.3, supervises
the landing sequence, and sends the reference trajectory

59.5 T T

sl / Starting point |

Y [m] West:+
al
~

56 58 60 62 64 66 68
X [m] North:+

Fig. 12. x—y trajectory of UAV and UGV in tracking experiment.

(x(1), y(¢), z(¢)) to the flight control computer at a higher
rate of 10 Hz for more accurate tracking. Fig. 13(b)
shows the landing approach procedure that consists
of the following phases: (1) relocation to the initial
position above the landing pad, (2) initial descent, (3)
acquisition of the marker, (4) descent to the point about
30 cm above the deck, and (5) tracking of the
deck motion. In Fig. 13(c), the actual trajectory (solid)
of the RUAYV is shown with the reference trajectories
(dashed) for about 3 min. This experiment demonstrates
the successful hierarchical coordination of the flight
computer and the VPU through the dynamic VCL
interface.
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Fig. 13. (a) An RUAYV landing on a deck, (b) landing procedure, and
(c) reference (dashed) vs. actual (solid) trajectory.

5. Conclusion

This paper presented a hierarchical RUAV flight
control system. The vehicle dynamics are identified as a
linear model from the test flight data. The tracking
control layer is designed using the following two
methods: multi-loop PID control and nonlinear model
predictive control. The performance of PID controller
has been validated in experiments that require a tracking
trajectories of moderate difficulty. The nonlinear model
predictive control has shown an outstanding tracking

performance in the presence of strong coupling and
control input saturation at the expense of heavier
computation load. The proposed multi-functional flight
management system was tested in the following exam-
ples: waypoint navigation, pursuit-evasion, tracking of a
moving targets and autonomous landing. Further
research effort will be made to expand the capability
of the flight management system with rich strategy
planning logics, increased robustness, and the wider
flight envelope, hence narrowing down the gap between
current RUAVs and highly maneuverable flying robots
with intelligence.
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