
Bisimulation Based Hierarchical System

Architecture For Single-Agent Multi-Modal
Systems

T. John Koo and Shankar Sastry

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, CA 94720
{koo,sastry}@eecs.berkeley.edu

Abstract. In this paper, a hierarchical system architecture for single-
agent multi-modal systems is proposed. The layered system is designed
to promote proof obligations so that system specification at one level
of granularity conforms with that at another level and vice versa. The
design principle for the construction of the hierarchy is based on bisimu-
lation with respect to reachability specifications. Therefore, a higher-level
system and a lower-level system are bisimilar. Our approach is illustrated
by designing a system architecture for controlling an autonomous agent.

1 Introduction

Control of multi-agent systems focus on the control of individual agents to ac-
complish a mission collectively, while satisfying their dynamic equations and
inter-agent formation constraints, for an underlying communication protocol be-
ing deployed. Advances in embedded software, computation, communication, and
new methods of distributed sensing and actuation are revolutionizing the devel-
opment of advanced control technologies for distributed, multi-agent systems.
These advances also enable the conduct of missions deemed impossible in the
recent past.

Imposing a hierarchical structure on the system architecture has been used
for solving the control problem of large-scale systems[5, 15, 17, 19]. A desired
hierarchical structure should not only provide manageable complexity but also
promote verification. There are several approaches to understanding a hierarchy
depending on the design perspective. In particular, two distinct approaches have
been shown in [20] for the design and analysis of AHS [19]. One approach to the
meaning of hierarchy is to adopt one-world semantics, and the other approach
is referred to as multi-world semantics.

In one-world semantics for hierarchical systems as shown in [18], a higher-level
expression is interpreted in a process called semantic flattening: the expression
is first compiled into lower-level expression and then interpreted. In other words,
an interpretation at each level is semantically complied into a single interpreta-
tion at the lowest-level in the imperative world. Furthermore, semantic flattening

implies that checking any high-level truth-claim can be performed by an auto-
matic procedure if there is a facility for automatically verifying the lowest-level
interpretation. This approach provides a unique interpretation to system descrip-
tion and verification. However, a major drawback to one-world semantics is that
higher-level syntax and truth-claims have to be reformulated if there are some
changes at any of the lower levels. The advantage of using one-world semantics
for hierarchical systems is gained at the heavy cost of a rigidity of framework
that makes it unsuitable for most complex and heterogeneous system. On the
other hand, in multi-world semantics for hierarchical systems, an expression at
each level is interpreted at the same level. Therefore, checking the truth-claim at
that level is performed in its own declarative world. This approach conforms with
common system design practice. However, relating these disconnected worlds to-
gether is a nontrivial task. In the following, we will present a multi-agent system
to motivate our discussion on the design of hierarchical system architecture.

Consider a mission of controlling a group of autonomous agents in the pursuit
of multiple evaders. Assume that each agent is a UAV equipped with necessary
computation, communication, and sensing capabilities to accomplish the mission.
Different approaches have been proposed in solving the pursuit-evasion game
either in deterministic [14, 16] or probabilistic framework [7, 8] based on complete
or partial information about the environment. In the common setting of the
game, the game is performed on a finite graph G = (S, E) with node s ∈ S
and all allowed motions for the players are represented by edges e ∈ E ⊆ S × S
connecting the nodes. Each node may be occupied by more than one agent. The
game is then performed on the discrete graph G, and each action of an agent
depends on a discrete event generated from a given strategy. Depending on the
level of centralization and the nature of the game, a specific set of strategies can
be selected to accomplish the mission. In the game, an evader is captured if the
evader and one of the pursuers occupy the same node.

abstraction

refinement

Fig. 1. A hierarchical system for solving the Pursuit-Evasion game is designed as a
two-layered system in which decision-making procedures for solving the game on the
discrete graph are performed at the top level and motions being generated in the
physical world by agents are exhibited at the bottom level.

However, the actual game is taken place in a continuous space X ⊆ R3 by
the agents. In order to implement the discrete game in the continuous space X ,
one has to construct a partition of X which contains a finite number of cells
Xj for j = 1, . . . , M with each cell corresponding to a node on the graph G.
Furthermore, for an agent, each allowed motion on the graph has to be refined
to feasible motions by exhibiting multi-modal behaviors. Hence, the system is
designed as a two-layered system in which decision-making procedures for solving
the game on the discrete graph are performed at the top level and motions
being generated in the physical world by agents are exhibited at the bottom
level. Between these two worlds, state information at the bottom level is being
abstracted at the top level and control information at the top level is being
refined at the bottom level.

To achieve high level of mission reliability, it is desirable that the layered sys-
tem is designed to promote proof obligations so that system specification at one
level of granularity conforms with system specification at another level. Consider
two levels of a system and system specification at a lower-level conforms with
system specification at a higher-level. Hence, there is a tight relation between
the levels since each detailed state at the lower-level corresponds to an abstract
state at the higher-level, and each transition at the lower-level corresponds to a
transition at the higher-level. This relation is captured mathematically by the
notion of simulation. If system specification at the higher-level conforms with
system specification at the lower-level, the detailed system at the lower level and
the abstracted system at the higher level are called bisimilar.

In this paper, we are interested in the design of a hierarchical system archi-
tecture for a single-agent multi-modal system based on bisimulation with respect
to reachability specification. Therefore, if the abstracted system at the top level,
which utilizes the graph G, and the detailed system at the bottom level, which
is a hybrid system containing a collection of control modes, are bisimilar with
respect to reachability specification, then the reachability problem for the hy-
brid system can be converted to an equivalent reachability problem on the finite
graph G. If, in addition, the equivalent problem can be performed in a com-
putationally feasible way, then the reachability problem for the hybrid system
is decidable. An agent model inspired by the motion capability of helicopter is
used as an example to demonstrate the effectiveness of the proposed concepts
for solving the control system design problem.

2 Single-Agent Multi-Modal Systems

Given the motion capability of an agent, we assume that there exist control
strategies such that a finite number of directions of motion can be generated.
Any control strategy may utilize a single controller or a sequence of controllers
for generating the motion directions. In this paper, we consider that an agent
can only move in a horizontal plane and assume that it has five possible motion
directions. In general, depending on the choice on a control strategy, one can
have different sets of motion directions. However, we will show that the feasible

motion directions would affect the construction of the partition which are used
for abstracting state from detailed system to abstracted system.

2.1 Hybrid Automaton

Motivated by an design example of a helicopter based UAV shown in [10], we
consider that the detailed system is modeled as a multi-modal system with five
control modes [9]. In each control mode, there is a closed-loop dynamics em-
bedded. The system can further be modeled as a hybrid automaton [13]. As
depicted in Figure 2, the hybrid automaton H which models the multi-modal
system is defined as a collection H = (Q × X, Σ, Y, Init, f, h, I, G, R) where
Q = {q1, q2, q3, q4, q5}, X ⊆ R3 and Σ = {σ1, σ2, σ3, σ4, σ5}, Y ⊆ R3, with the
hybrid state (q, x) ∈ Q × X , the input σ ∈ Σ, and the output y ∈ Y . Let

q

2

y=h(q

2

;x;û)

xç =f(q

2

;x;û)

(x;û)2I(q

2

)

q

1

y=h(q

1

;x;û)

xç =f(q

1

;x;û)

(x;û)2I(q

1

)

q

3

y=h(q

3

;x;û)

xç =f(q

3

;x;û)

(x;û)2I(q

3

)

q

5

y=h(q

5

;x;û)

xç =f(q

5

;x;û)

(x;û)2I(q

5

)

q

4

y=h(q

4

;x;û)

xç =f(q

4

;x;û)

(x;û)2I(q

4

)

(x; û) 2 G(q

1

; q

4

)

x :2 R(q

1

; q

4

; x; û)

(x; û) 2 G(q

4

; q

1

)

x :2 R(q

4

; q

1

; x; û)

(x; û) 2 G(q

1

; q

2

)

x :2 R(q

1

; q

2

; x; û)

(x; û) 2 G(q

2

; q

1

)

x :2 R(q

2

; q

1

; x; û)

(x; û) 2 G(q

5

; q

1

)

x :2 R(q

5

; q

1

; x; û)

(x; û) 2 G(q

1

; q

5

)

x :2 R(q

1

; q

5

; x; û)

(x; û) 2 G(q

3

; q

1

)

x :2 R(q

3

; q

1

; x; û)

(x; û) 2 G(q

1

; q

3

)

x :2 R(q

1

; q

3

; x; û)

Fig. 2. Hybrid automaton models the multi-modal behaviors of an agent.

x = [px, py, pz] to specify the location of an agent in the state space X . The

vector field is defined by

f(q, x, σ) =


(0, 0, 0) if q = q1,
(ε2, 0, 0) if q = q2,
(−ε3, 0, 0) if q = q3,
(0, ε4, 0) if q = q4,
(0,−ε5, 0) if q = q5

where εi > 0 for i = 2, 3, 4, 5. The output map is defined by h(q, x, σ) = x for
q ∈ Q. The invariant is defined by

I(qi) = X × {σi} for i = 1, . . . , 5.

The guard and the reset relation are defined by{
G(qi, qj) = X × {σj}
R(qi, qj , x) = {x} ,

for (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)
(1, 4), (4, 1), (1, 5), (5, 1)}.

The initial set is defined by Init = {q1}×X . When the multi-modal system is
in q1 mode, since the vector field is a zero vector the continuous state x remains
the same. If there is an input σ2, the guard G(q1, q2) is enabled and the discrete
state becomes q2 and px keeps increasing while py, pz remain the same. This is
because in control mode q2, the first component of the vector field is a positive
number and the other components are zero. If we use the North-East-Down
coordinate system for defining x, y, z axes, then when the system is in q2 mode
the agent is moving in north direction and hence when the system is in q4 mode
the agent is moving in east direction. The situations are similarly defined for the
system being in q3 and q5 modes.

After defining the motion capability of an agent, we are interested in the
issues related to reachability. Consider x′, x′′ ∈ X , σi-labeled transition is defined
as x′ σi→ x′′ iff there exists δ ≥ 0, and a curve x : [0, δ] → Rn with x(0) =
x′, x(δ) = x′′ and for all t ∈ [0, δ] it satisfies ẋ(t) = f(qi, x(t), σi). Notice that
the continuous transitions are time-abstract transitions, in the sense that the
time it takes to reach one state from another is ignored. Now, we define another
transition relation which is used for taking a transition from q1 to qi then back to
q1. Therefore, after taking the transition, the state of the multi-modal system is
always q1. Consider x′, x′′ ∈ X , σi-labeled cyclic transition is defined as x′ σi⇒ x′′

iff x′ σi→ x′′ σ1→ x′′. The above definitions of transition relations are motivated by
the similar definitions defined in [1] for timed automata.

2.2 Partition and Its Induced Equivalence Relation

Having the transition relations defined, we can start discussing the partition of
the continuous space. To address this issue, we consider an equivalence relation
∼ over the state space X . Consider that the continuous space X is decomposed
into a finite number of cells Xj for j = 1, . . . , m and we denote the family of
subsets X as π = {Xj}. Define I = {1, . . . , m}. If we require that each location

of an agent in the space can belong to exactly one cell, π should be a partition
of X which satisfies the following properties:

X =
⋃
j∈I

Xj , (2.1)

Xi ∩Xj = ∅, ∀i 6= j. (2.2)

Therefore, the cells of the partition π cover the space X and do not overlap.
Here, the induced equivalence relation is called cell equivalence, which is defined
over the space X . For two locations x′, x′′ ∈ X , x′ ∼ x′′ if ∃j ∈ I such that
x′, x′′ ∈ Xj .

However, in order to obtain a stable partition [1], the motion capability of
an agent has to be taken into consideration. Consider the multi-modal system,
the partition is designed by putting a two-dimensional grid over the state space
and each boundary of a cell is parallel to exactly one possible motion direction.
Therefore, we obtain a partition π composed of rectangular cells and each cell
is a Cartesian product of two half-open intervals. The partition is depicted in
Figure 3.

y

x

z

y

x

z

X

1

X

2

Fig. 3. Graphical illustration of the partition and the possible agent motion directions.

Given a cell Xj ∈ π, define Ij = {i ∈ I \ {j}| |∂Xj ∩ ∂Xi| > 1}. Thus,
every Xi ∈ π is adjacent to Xj for i ∈ Ij . Hence we have the following lemma
concerning the local motion capability of the agent.

Lemma 1 (Local Motion Capability). Given a cell Xj ∈ π and an adjacent
cell Xi ∈ π with i ∈ Ij, ∃σ ∈ Σ ∀x′ ∈ Xj ∃x′′ ∈ Xi such that x′ σ⇒ x′′.
Proof: Given the partition, due to the definition of adjacent cells, there are only
four possible adjacent cells for each cell. For an adjacent cell, since there exists
exactly one motion direction that parallel to each boundary, one can simply pick
a motion direction that could make an agent go towards the adjacent cell. Due to
the simple reachability property of the multi-modal system, one can easily show
that an agent could start from any where within the cell and could reach some
where inside the adjacent cell in some time.

Therefore, if an agent starts at any location x′ ∈ Xj , then it can move to any
adjacent cells Xi of cell Xj and reach some location x′′ ∈ Xi in some time. By

construction, the reachability computation of the hybrid automaton is greatly
simplified. Therefore, sophisticated reach set computation is avoided.

3 Bisimulation

Consider an agent starting from a location in a cell XS ∈ π and we are interested
in determining whether it can reach a final cell XF ∈ π. Now, we define a
transition system which preserve the reachability property of the multi-modal
system. A transition system T = (X, Σ,⇒, XS, XF) is constructed to consist of
a set X of states, an alphabet Σ of events, a transition relation ⇒⊆ X×Σ×X ,
a set XS ⊆ X of initial states, and a set XF ⊆ X of final states. The σi-labeled
cyclic transition (x′, σi, x

′′) ∈⇒ is simply denoted as x′ ⇒ x′′. The transition
system is infinite since the cardinality of X is infinite. Given an equivalence
relation ∼⊆ X×X which partitions the state space into a number of equivalence
classes. Let X/ ∼= {Xj} denote the quotient space. For a region X ′ we denote
by X ′/ ∼ the collection of all equivalence classes which intersect X ′. If a set is
a union of equivalence classes, it is called a ∼-block.

Definition 1 (Bisimulation). Given T = (X, Σ,⇒, XS, XF), and ∼ an equiv-
alence relation over X, ∼ is called a bisimulation if:

1. XS is a union of equivalence classes;

2. XF is a union of equivalence classes;

3. For all σ ∈ Σ, if X ′ is a ∼-block, Preσ(X ′) = {x′ ∈ X | ∃x′′ ∈ X ′ : x′ ⇒ x′′}
is a ∼-block.

By using Definition 1, we can show that the equivalence relation defined in
previous section is a bisimulation.

Theorem 1 (Bisimulation). The equivalence relation ∼ is a bisimulation.
Proof: By construction, each cell in the partition π is an equivalence class. There-
fore, XS, XF are ∼-blocks since XS , XF ∈ π. For all σ ∈ Σ and for every ∼-block
X ′ , the predecessor set defined by Preσ(X ′) is a ∼-block since by Lemma 1 the
predecessor can only be the union of all adjacent cells of X ′. Hence the result.

The complexity of the reachability problem is reduced by using special quo-
tient transition systems. The quotient transition system is defined as T/ ∼ =
(X/ ∼, Σ,⇒∼, XS/ ∼, XF / ∼) where the transition relation ⇒∼ on the quo-
tient space is defined as follows: for X1, X2 ∈ X/ ∼, X1 ⇒∼ X2 iff there exists
x′ ∈ X1 and x′′ ∈ X2 such that x′ ⇒ x′′. T/ ∼ is a reachability preserving
quotient system. Since the cardinality of X/ ∼ is finite, T/ ∼ is called finite.
Furthermore, we have the following result.

Theorem 2 (Bisimular Systems). T and T/ ∼ are bisimilar.

T = ø

T

Fig. 4. T/ ∼ and T are bisimilar.

T and T/ ∼ accept the same language [6]. Furthermore, the checking reach-
ability for the detailed system T can be equivalently performed on the finite,
discrete, quotient graph. Since the quotient graph is finite, the reachability al-
gorithm will terminate. Given the partition, since the equivalent reachability
problem on the finite graph can be performed in a computationally feasible way,
the reachability problem for the hybrid system is decidable.

In the next section, we will show how to use the quotient transition system
to construct a hierarchical system architecture for the single-agent multi-modal
system.

4 System Architecture

In this section, we are interested in the design of a hierarchical system architec-
ture for the single-agent multi-modal system by considering the transition system
T and its reachability preserving quotient transition system T/ ∼. Hence, a two-
layered system architecture is naturally suggested. The abstracted system, N ,
on the top layer is associated with T/ ∼ whereas the detailed system, M , on the
bottom layer is associated with T . The hierarchical system F is the composition
of the two systems, i.e. F = N‖M .

However, there are two technical issues have to be addressed before the design
of the hierarchical system can take place. First, two transition systems have
different notions of time. This is because the continuous transitions defined are
time-abstract. However, it does take some time for the continuous state to make a
transition. Therefore, although T and T/ ∼ accept the same language, the time
accepting an event could be badly mismatched. Second, the use of transition
systems is mainly for reachability analysis but they are not suitable to be used
as system models to perform actual computation.

For the first issue, we suggest to use a synchronization scheme for keeping a
close correspondence between two layers so that state transitions can be synchro-
nized. Next, since T/ ∼ is a purely discrete transition system, it literary suggests

that finite automaton would be sufficient to be used to represent the quotient
transition system for performing actual computation, and since T exhibits hy-
brid behaviors, hybrid automaton could be used to model the transition system.
Therefore, the proposed hierarchical system is composed of a finite automaton
and a hybrid automaton. To simplify future discussion on system composition,
we will use the hybrid formalism to express the finite automaton. Regarding the
formal treatment of the composition of hybrid automata, please refer to [2].

4.1 A Design Example

In this design example, we assume that there are only 4 equivalence classes in a
partition and initially an agent is located at x ∈ XS = X1.

y

x

z

y

x

z

X

1

X

2

X

3

X

4

û

2

û

3

û

4

û

5

û

2

û

3

û

4

û

5

Fig. 5. Four equivalence classes, namely X1, X2, X3, X4, are illustrated. An agent is
located in X1 and it is capable of moving in four different directions

For the quotient transition system T/ ∼, we associate it with a hybrid au-
tomaton N which is a collection N = (S, P×Σ, S×Σ, InitN , fN , hN , IN , GN , RN)
where the state s ∈ S = {s1, s2, s3, s4}, the input (p, σ) ∈ P × Σ with P =
{p1, p2, p3, p4}, the output (s, δ) ∈ S × Σ, the initial set InitN = {s1}, the
vector field fN (s, p, σ) = ∅, the output map hN (s, p, σ) = (s, σ), the invari-
ant IN (s) = ∅, the reset map RN (si, sj) = ∅ ∀i, j ∈ {1, 2, 3, 4}, and the guard
GN (si, sj) = {pi} × {δij} with

δij =


σ2 for (i, j) ∈ {(2, 1), (4, 3)}
σ3 for (i, j) ∈ {(1, 2), (3, 4)}
σ4 for (i, j) ∈ {(1, 3), (2, 4)}
σ5 for (i, j) ∈ {(3, 1), (4, 2)}

.

Each state si represents an equivalence class Xi for i ∈ {1, 2, 3, 4}. For each si,
there is also a corresponding state pi provided from the bottom layer as an input
to N for synchronizing the two layers.

For the transition system T , we associate it with a hybrid automaton M .
Since σi-labeled cyclic transition is introduced in the construction of the tran-
sition system, the hybrid automaton H has to be augmented in order to be
able to accept the same language as T does. Consider M is composed of two

hybrid automata K and H , i.e. M = K‖H . Hybrid automaton K is a col-
lection K = (P, X × Σ, P × Σ, InitK , fK , hK , IK , GK , RK) where the state
p ∈ P = {p1, p2, p3, p4, p12, p21, p13, p31, p42, p24, p43, p34}, the input (x, δ) ∈
X × Σ, the output (p, σ) ∈ P × Σ, the initial set InitK = {p1}, the vector
field fK(p, x, δ) = ∅, the invariant IK(p) = ∅, the reset map RK(pi, pj) = ∅
∀i, j ∈ {1, 2, 3, 4}, the output map hK(pi, x, δ) = (pi, σ1) ∀i ∈ {1, 2, 3, 4},

hK(p12, x, δ) = (p1, σ3), hK(p21, x, δ) = (p2, σ2),
hK(p13, x, δ) = (p1, σ4), hK(p31, x, δ) = (p3, σ5),
hK(p42, x, δ) = (p4, σ5), hK(p24, x, δ) = (p2, σ4),
hK(p43, x, δ) = (p4, σ2), hK(p34, x, δ) = (p3, σ3),

and the guard GK(si, sij) = {δij} with

δij =


σ2 for (si, sij) ∈ {(p2, p21), (p4, p43)}
σ3 for (si, sij) ∈ {(p1, p12), (p3, p34)}
σ4 for (si, sij) ∈ {(p1, p13), (p2, p24)}
σ5 for (si, sij) ∈ {(p3, p31), (p4, p42)}

,

or the guard GK(sij , sj) = Xj ∀i, j ∈ {1, 2, 3, 4}.
To implement the σ-labeled cyclic transition, for each possible transition from

pi to pj an intermediate state pij are introduced so that two different symbols σ
and σ1 can be emitted via the output to the hybrid automaton H . To explain the
idea, the following scenario is considered. Assume that the system starts from
p1 and the output is (p1, σ1). Now, there is an input σ4 and hence an transition
from p1 to an intermediate state p13 is enabled. At p13, the output is (p1, σ4).
Therefore, the symbol σ4 can enable the evolution of the continuous state in H .
Before the condition x ∈ X3, p1 is still being indicated at the output. When
x ∈ X3, a transition from p13 to p3 is enabled and the output becomes (p3, σ1).
Hence, M = K‖H can be used to generate the transition system T .

We have shown the construction of a hierarchical system F = N‖M . Since N
and M accept the same language, every sequence accepted by N would also be
accepted by M . Hence, checking reachability of the system can be equivalently
performed on the finite, discrete graph. Furthermore, in execution, the archi-
tecture guarantees that two different worlds residing in two different layers are
synchronized. Between these two worlds, state information at the bottom level
is abstracted at the top level and control information at the top level is refined
at the bottom level.

4.2 System Realization

We have described the construction of a hierarchical system architecture which
promotes proof obligations while conforming with common design practice. Here,
we are interested in the realization of the system design. Control laws and
decision-making procedures can be considered as the basic components for the
construction of the hierarchical system. To realize a system design, component-
based design provides a clean way to integrate heterogeneous models by hier-
archical nesting of parallel and serial composition of components. A semantics

gives meaning to components and their interconnections. A collection of seman-
tics models which are useful for system design have been codified in [12] as models
of computation (MOCs). Here, we outline some of the most useful MOCs, such as
continuous-time (CT), finite-sate machine (FSM), and discrete-event (DE). CT
models represented by differential equations are excellent for modeling physical
systems. Execution in FSM is a strictly ordered sequence of state transitions and
FSM models are amenable to in-depth formal analysis. In DE model, an event
consists of a value and a time stamp. There is no global clock tick in DE, but
there is a globally consistent notion of time.

q

1

q

2

q

3

xç = u

u

x

û

x

î

p

ODEs
CT

DE

FSM

DE

PS

FSM

FSM

Realization

in Ptolemy II

û

s

H

K

N

q

4

p

1

p

2

p

3

p

4

s

1

s

2

s

3

s

4

Fig. 6. Hierarchical system architecture for single-agent multi-modal systems and its
realization in Ptolemy II [11] by hierarchical aggregating components.

For the proposed hierarchical system architecture for single-vehicle multi-
modal systems, we suggest a realization of the system by hierarchical aggregat-
ing components such that components are hierarchically refined. As depicted in
Figure 6, there are four levels of hierarchy introduced. At each level of hierarchy,
a MOC is chosen to govern the interaction between components. The hybrid au-
tomaton H is realized by mixing FSM and CT together to exhibit multi-modal
behaviors. The interaction between H and K is governed by DE since events

consisting of values and time stamps are exchanged between components. The
FSM models the abstracted system N which interacts with the detailed system
M in DE domain. Since the interaction between N and any component at higher
levels is pure asynchronous, a specific MOC such as publisher-subscriber (PS)
could be used.

5 Conclusion

In this paper, a hierarchical system architecture for single-agent multi-modal
systems has been proposed. The design principle for the construction of the
hierarchy is based on bisimulation and therefore a higher-level system and a
lower-level system are bisimilar. The layered system is designed to promote proof
obligations so that system specification at one level of granularity conforms with
system specification at another level and vice versa. Hence, it can be guaranteed
that the system is correct by construction with respect to a given set of specifica-
tions. Our approach is illustrated on designing a system architecture for execut-
ing a mission of controlling a single autonomous agent. We have shown that the
construction of a transition system and the corresponding quotient transition
system. They both capture the reachability properties of the agent within the
environment but at different levels of granularity. Furthermore, we have shown
that both systems bisimilar. Thus, one can guarantee that for every action made
on the abstracted system there is a refined action on the detailed system; for
every event occurred on the detailed system there is an abstracted event on the
abstracted system. However, for any concurrent game being played by multiple
players, one may have to use alternating simulation[3, 4] for obtaining a useful
abstraction. Therefore, with this simulation notion, one can guarantee that for
any game being played at the higher-level there is a corresponding game played
at the lower-level.

Acknowledgments

The authors would like to thank G. J. Pappas, H. J. Kim, and R. Majumdar for
stimulating discussions and valuable comments. This work is supported by the
DARPA SEC grant, F33615-98-C-3614.

References

1. R. Alur and D. Dill. A theory of time automata. Theoretical Computer Science,
126:183-235, 1994.

2. R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In Proceed-
ings of the Eighth International Conference on Concurrency Theory (CONCUR),
pages 74-88, 1997.

3. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement
relations. In Proceedings of the Tenth International Conference on Concurrency
Theory (CONCUR), pages 163-178, 1998.

4. L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-
state games. In Proceedings of the 12th International Conference on Concurrency
Theory (CONCUR), 2001.

5. Datta N. Godbole, John Lygeros, and Shankar S. Sastry. Hierarchical hybrid con-
trol: an IVHS case study. In Proceedings of the 33th IEEE Conference on Decision
and Control, pages 1592-1597, 1994.

6. T.A. Henzinger. Hybrid automaton with finite bisimulstions. In Z. Fülöp and F.
Gécseg, editors, ICALP 95: Automata, Languages, and Programming, pages 324-
335, Springer-Verlag, 1995.

7. J. P. Hespanha, H. J. Kim, and S. Sastry. Multiple-agent probabilistic pursuit-
evasion games. In Proceedings of IEEE Conference on Decision and Control, pages
2432-2437, Phoenix, Arizona, December 1999.

8. H. J. Kim, R. Vidal, H. Shim, O. Shakernia, and S. Sastry. A hierarchical approach
to probabilistic pursuit-evasion games with unmanned ground and aerial vehicles.
In Proceedings of IEEE Conference on Control and Decision, Orlando, Florida,
December 2001.

9. T. J. Koo, G. Pappas, and S.Sastry. Mode switching synthesis for reachability spec-
ifications. In M. D. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid
Systems: Computation and Control, Lecture Notes in Computer Science, Vol. 2034,
pages 333-346, Springer Verlag, 2001.

10. T. J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli, and S. Sastry. A formal ap-
proach to reactive system design: a UAV flight management system design exam-
ple. In Proceedings of IEEE International symposium on Computer-Aided Control
System Design, pages 522-7, Kohala Coast, Hawaii, September 1999.

11. E. A. Lee. Overview of the ptolemy project. Technical Report UCB/ERL M01/11,
University of California, Berkeley, 2001.

12. E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models
of Computation. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 17(12):1217-1229, December 1998.

13. J. Lygeros, C. Tomlin, S. Sastry. Controllers for reachability specifications for hy-
brid systems, Automatica, Volume 35, Number 3, March 1999.

14. N. Megiddo, S. L. Hakimi, M. R. Garey, D.S. Johnson, and C. H. Papadimitriou.
The complexity of searching a graph. Journal of the ACM, 35(1):18-44, January
1988.

15. A. Pant, P. Seiler, T. J. Koo, and J. K. Hedrick. Mesh stability of unmanned
aerial vehicle clusters. In Proceedings of American Control Conference, pages 62-
68, Arlington, Virginia, June, 2001.

16. T. D. Parsons. Pursuit-evasion in a graph. In Y. Alani and D. R. Lick, editors,
Theory and Application of Graphs, pages 426-441, Springer-Verlag, 1976.

17. S. Sastry, G. Meyer, C. Tomlin, J. Lygeros, D. Godbole, and G. Pappas. Hybrid
control in air traffic management systems. In Proceedings of the 1995 IEEE Con-
ference in Decision and Control, pages 1478-1483, New Orleans, LA, December
1995.

18. M.P. Singh. Multiagent systems. A theoretical framework for intentions, know-how,
and communications. Berlin, Germany: Springer-Verlag, 1994.

19. P. Varaiya. Smart Cars on Smart Roads: Problems of Control, IEEE Transactions
on Automatic Control, 38(2):195-207, February 1993.

20. P. Varaiya. A question about hierarchical systems, System Theory: Modeling, Anal-
ysis and Control, T. Djaferis and I. Schick (eds), Kluwer, 2000.

