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Abstract. Embedded systems composed of hardware and software com-
ponents are designed to interact with a physical environment in real-time
in order to fulfill control objectives and system specifications. In this pa-
per, we address the complex design challenges in embedded software by
focusing on predictive and systematic hierarchical design methodologies
which promote system verification and validation. First, we advocate a
mix of top-down, hierarchical design and bottom-up, component-based
design for complex control systems. Second, it is our point of view that at
the level closest to the environment under control, the embedded software
needs to be time-triggered for guaranteed safety; at the higher levels, we
advocate an asynchronous hybrid controller design. We briefly illustrate
our approach through an embedded software design for the control of a
group of autonomous vehicles.

1 Introduction

Embedded software is designed to process information to and fro between the
information and physical worlds. Advances in software, computation, commu-
nication, sensing and actuation have enabled the rapid realization of high-
performance and sophisticated multi-vehicle systems. The rapidly growing de-
mand for high-confidence embedded software that is required in order to control
new generations of autonomous vehicles for collectively delivering high levels
of mission reliability, is putting tremendous pressure on control and software
designers in industry.
A high-confidence system should have the following characteristics: correct-

ness by construction and fault-tolerance, and resistance to information attack. In
fact, the cost of system development is mainly due to prohibitively expensive em-
bedded software integration and testing techniques that rely almost exclusively
on exhaustively testing of more or less complete versions of complex systems.
Formal methods are hence introduced for the synthesis and verification of em-
bedded software in order to guarantee that the system is correct by construction
with respect to a given set of specifications. The system design should also be
fault-tolerant so that it can handle all anticipated faults that might occur in the
system and possibly recover from them after the faults have been detected and
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identified. Furthermore, the design should also ensure that the system is not vul-
nerable to attack from the information world by taking into account models of
attack. While this last item is important we do not address it in this paper since
it would require a lengthy discussion of models of attack of embedded systems.
In this paper, we address this bottleneck by focusing on systematic hierarchi-

cal design methodologies. We briefly illustrate our approach through an embed-
ded software design for the control of a group of autonomous vehicles. Consider
that the task consists of flying a group of autonomous vehicles in a prespecified
formation. We assume that each vehicle is equipped with the necessary sensing,
communication, and computation capabilities in order to perform a set of pre-
determined tasks. The control of the multi-vehicle systems can be organized as
a distributed hierarchical system. The meaning of a distributed system refers
to a system comprised of several subsystems which are spatially distributed.
Large-scale systems ranging from automated highway systems (AHS) [1], air
traffic management systems (ATMS) [2], and power distribution networks are
typical examples of distributed systems. However, large-scale systems are sys-
tems of very high complexity. Complexity is typically reduced by imposing a
hierarchical structure on the system architecture. In a such a structure, systems
of higher functionality reside at higher levels of the hierarchy and are therefore
unaware of lower-level details. A component-based design provides a clean way
to integrate different models by hierarchical nesting of parallel and serial com-
position of heterogeneous components. This hierarchical composition also allows
one to manage the complexity of a design by information hiding and by reusing
components.
To cope with these complex design challenges, we advocate a mix of top-

down, hierarchical design and bottom-up, component-based design for complex
control systems. Hierarchical design begins with the choice and evaluation of an
overall distributed, multi-layered system architecture; component-based design
begins with the derivation of robust mathematical control laws and decision-
making procedures.
Hybrid systems, in general, are defined as systems built from atomic discrete

and continuous components by parallel and serial composition, which is arbitrar-
ily nested. Hybrid systems refers to the distinguishing fundamental characteris-
tics of embedded control systems, namely, the tight coupling and interaction of
discrete with continuous phenomena. The coupling is inherent to embedded sys-
tems since every digital software/hardware implementation of a control design
is ultimately a discrete approximation that interacts through sensors and actua-
tors with a continuous physical environment. There has been a large and growing
body of work on formal methods for hybrid systems: mathematical logics, com-
putational models and methods, and automated reasoning tools supporting the
formal specification and verification of performance requirements for hybrid sys-
tems, and the design and synthesis of control programs for hybrid systems that
are provably correct with respect to formal specifications.
Depending on the level of abstraction and domain-specificity of design prac-

tice, different models of computation (MOCs) [6] which govern the interaction
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among components can be chosen and mixed for composing hybrid systems.
There are a rich variety of models of computation that deal with concurrency
and time in different ways. As mentioned in [7], MOCs such as continuous-time
(CT), synchronous data flow (SDF), finite-state machine (FSM), synchronous/
reactive (SR) [8,9,10,11], discrete-event (DE), and time triggered (TT) [13,14]
are useful for the design of embedded systems.

Hybrid systems have been used in solving synthesis and verification problems
of some high-profile and safety-critical applications such as conflict resolution [27]
for multi-vehicle platforms, and multi-modal control [20] and envelope protec-
tion [17] for single vehicle platforms. In the above words, the hybrid system is a
composition of CT and FSM. Any transition in system discrete states can occur
only when the transition guard, which is a function of discrete/continuous states
and inputs, becomes true. The continuous state in a discrete location evolves
continuously according to differential equations, as long as the location’s invari-
ant remains true. Each transition is asynchronous since it can happen any time
as long as the guard condition is satisfied.

Embedded systems composed of hardware and software components are de-
signed to interact with a physical environment in real-time in order to fulfill
control objectives and system specifications. In the real-time computing litera-
ture, the word time means that the correctness of the system depends not only
on the logical result of the computation but also on the time at which the results
are produced. In the implementation of control laws using digital computers, the
necessary computational activities for the implementation of control laws are de-
composed and translated into periodic tasks. Hence, there is a hard deadline in
time for the task to meet in each period of execution. Failure in meeting the
deadline may cause catastrophic consequences on the environment under con-
trol. The word real indicates that the reaction of the systems to external events
must occur during their evolution. Notice that the notion of time is not an in-
trinsic property of a control system but it is strictly related to the environment
under control. For example, the design of a real-time embedded system for flight
control has to take the timing characteristics of a vehicle into consideration.

It is our point of view that at the level closest to the physical systems un-
der control, the embedded software needs to be time-triggered for guaranteed
safety. At higher levels, we advocate asynchronous decision-making procedures.
In Section 2, a hierarchical architecture which allows modular verification will
be introduced for the construction of embedded systems. Next, in Section 3,
we will show the state-of-the-art in verification and synthesis of control laws
and decision-making algorithms based on formal methods. Motivation and im-
plementation of the control design in embedded software using a time-triggered
framework will be presented in Section 4. Finally, we conclude our work in Sec-
tion 5.
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2 Hierarchical Architecture for Multi-vehicle
Multi-modal Systems

Imposing a hierarchical structure on the system architecture has been used for
solving the control problem of large-scale systems. A desired hierarchical struc-
ture should not only provide manageable complexity but also promote verifica-
tion. There are several approaches to understanding a hierarchy depending on
the design perspective. In particular, two distinct approaches have been shown
in [3] for the design and analysis of AHS [1]. One approach to the meaning of
hierarchy is to adopt one-world semantics, and the other approach is referred to
as multi-world semantics.
In one-world semantics for hierarchical systems, a higher-level expression is

interpreted in a process called semantic flattening: the expression is first com-
piled into lower-level expression and then interpreted. In other words, an inter-
pretation at each level is semantically complied into a single interpretation at
the lowest-level in the imperative world. Furthermore, semantic flattening im-
plies that checking any high-level truth-claim can be performed by an automatic
procedure if there is a facility for automatically verifying the lowest-level inter-
pretation. This approach provides a unique interpretation to system description
and verification. The main drawback to one-world semantics is that higher-level
syntax and truth-claims have to be reformulated if there are some changes at any
of the lower levels. On the other hand, in multi-world semantics for hierarchical
systems, an expression at each level is interpreted at the same level. Therefore,
checking the truth-claim at that level is performed in its own declarative world.
Moreover, this approach conforms with common system design practice. How-
ever, relating these separate worlds together is a nontrivial task.
To take advantage of the two approaches, a decision structure has been sug-

gested in [3] for providing connections between the multiple world of declarative
semantics and the single world of imperative semantics. The construction of the
structure is based on the following ideas: 1. Ideal compilation - a higher-level
expression is complied into an idealized lower-level expression and then inter-
preted; 2. Usage of Invariants - higher-level truth-claims are conditional lower-
level truth-claims; 3. Modal decomposition - Splitting multi-world semantics into
multiple-frameworks, each dealing with identified faults, should be done if one-
world interpretation leads to falsification of higher-level claims that are true in
multi-world semantics.
Ideal compilation and usage of invariants are enablers for performing formal

verification of the truth-claim at each level of hierarchy. Modal decomposition
suggests that the system should be modeled as a multi-modal system which has
multiple modes of operation. Abstraction is a key concept for providing ways
to connect disjointed worlds together. In [4,5], the notions of abstraction, or
aggregation, refer to grouping the system states into equivalence classes. De-
pending on the cardinality of the resulting quotient space, there may be discrete
or continuous abstractions. Truth-claims made at each world are then based on
a consistent notion of abstraction in order to have a well-defined definition. Fur-
thermore, at different levels of abstraction, the definitions of environment could
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also be different. In general, the environment is defined as the entities which
could not be designed.
Here, we describe the construction of a hierarchical architecture which keeps

the advantages of the multiple world of declarative semantics and the single
world of imperative semantics. Consider the control laws and decision-making
procedures as the basic components for the construction of the hierarchical sys-
tem for controlling the environment. Any changes in the scenario are triggered
by a fault in the lower level. Each fault, defined in each world, triggers a change
in scenario. The construction is formalized by using component-based design
approach.
A component-based design provides a clean way to integrate different models

by hierarchical nesting of parallel and serial composition of heterogeneous com-
ponents. This hierarchical composition also allows one to manage the complexity
of a design by information hiding and reusing components. In addition to the
syntactic issues mentioned in above, for interpreting the syntax, semantic issues
have to be addressed in the design. A semantics gives meaning to components
and their interconnections. A collection of semantics models which are useful for
embedded software design have been codified in [6] as models of computation
(MOCs). Thus, in the design, the selection of a MOC governing interactions
between components depends on whether its properties match the application
domain.
CT models represented by differential equations are excellent for modeling

physical systems. Execution in FSM, which is a strictly ordered sequence of state
transitions that are not concurrent, and FSM models, are amenable to in-depth
formal analysis. In DE models of computation, an event consists of a value and
time stamp. There is no global clock tick in DE, but there is a globally consistent
notion of time. This model has been realized in a large number of simulation
environments. In TT, systems with timed events are driven by clocks, so that
signals with events are repeated indefinitely with a fixed period. Time-triggered
architecture (TTA) [13] is a hardware architecture supporting this highly regular
style of computation. The Giotto programming language [14] provides a time-
triggered software abstraction which, unlike the TTA, is hardware independent.
It is intended for embedded software systems where periodic events dominate.
As defined in [7], a model is a hierarchical aggregation of components, which

are called actors. Actors encapsulate an atomic execution and provide commu-
nication interfaces to other actors. An actor can be atomic or composite. A
composite actor can not only contain other actors but can also be contained by
another composite actor. Hence, hierarchies can be arbitrarily nested. A MOC
associated with a composite actor is implemented as a domain. A domain defines
the communication semantics and the execution order among actors. Consider
the multi-modal system [12] for single vehicle control depicted in Figure 1. It
is constructed by hierarchically nesting parallel and serial compositions of het-
erogeneous components. There are two levels of hierarchy introduced. At the
first level, in the CT domain, the multi-modal controller is modeled as a com-
posite component and the vehicle dynamics is modeled as ordinary differential
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ODEs

FSM

CT DE

FSM

CT

CT

Fig. 1. A multi-modal control system

equations (ODEs). The multi-modal controller is hierarchically refined by two
components in the DE domain due to the asynchronous interaction between
them. At the second level, the component on the top, models the mode switch-
ing logic and the other component, on the bottom, models the control switches
by FSM. In each discrete state of the FSM, the component is further refined to
model the continuous-time control laws. Notice that domain DE is chosen due
to the asynchronous behaviors exhibited by the models. The model assumes a
fault-free scenario.

ODEs

FSM

CT DE

FSM CT

CTFSM

CT

Fig. 2. A multi-modal control system with fault handling

In order to handle anticipated faults such as failures in sensors and actuators
or even changes in dynamics, the single world has to be split into two modes of
operation in order to handle different scenarios: a non-faulty mode and a faulty
mode. The switching between framework is caused by two events generated after
fault detection and fault recovery. Therefore, FSM domain is introduced for
handling the execution. As shown in Figure 2, a FSM is introduced and there
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are two discrete states representing the two modes. In the non-faulty mode, the
component is refined by a FSM for modeling control switches, and then further
refined by continuous-time control laws. While in the fault mode, the component
is refined by a continuous-time controller for handling the anticipated fault.
In order to to reconcile different world views, we propose a hierarchical ar-

chitecture for the control of multi-vehicle multi-modal systems. It is shown in
3. On the lowest level, the dynamics of the vehicles are combined and modeled
by ODEs and the composite components represent the controllers for the vehi-
cles. Consider the hierarchy inside the controller for vehicle 1. At each level of
hierarchy, there is a non-fault mode and fault modes. The operation of the non-
fault mode assumes that no fault happened in the lower level. The transitions
among modes are governed by FSM. Then, the component of each discrete state
of FSM can further be refined by the control laws. DE is chosen for the domain
to govern the asynchronous communications between levels. In DE domain, al-
though the execution is asynchronous, there is still a globally consistent notion
of clock. Similarly, one can construct more levels by further defining and refining
the composite components.

ODEs

CT DE

FSM

DE

FSM

Vehicle 1 Vehicle 2

Fig. 3. Proposed hierarchical architecture for multi-vehicle multi-modal systems

3 Design of Multi-vehicle Multi-modal System
Components

A hierarchical architecture for multi-vehicle multi-modal systems has been pro-
posed in the previous section. In this section, the components with which the
system is composed are presented. The task assigned to the system is decom-
posed and then executed by the components, according to the system architec-
ture. Each component has to be designed so that it provides a guarantee on its
performance under certain assumptions. Consequently the truth-claims of the
whole system can be inferred. Formal methods for the synthesis and verification
of the components are presented.
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Reconsider that a task for a group of autonomous vehicles is to keep flying
in a prespecified formation. In the group, one vehicle is assigned to be the leader
of the group. The leader is responsible for making decisions on the route and
formation pattern for the group. In a bigger picture, leaders from different groups
can exchange information and negotiate with other group leaders via a global
communication network to perform a mission collectively, for example a pursuit-
evasion game [32,33]. Among group members, assume that there exits a local
communication network for distributing information for performing the task.
According to the mission along with the information and assumptions made

about current environment, the leader has to compute the best possible route
and formation for the group with the maneuverability of the vehicles taken into
consideration. The set of maneuvers by which a vehicle can perform depends on
the available controllers being designed and coded in the embedded software.
As in most of the designs of large-scale systems for autonomous vehicle con-

trol, the task is decomposed into four subtasks which are responsible for the
control of the vehicle, control mode switching, maneuver sequence generation
and route selection. Furthermore, possible faults in each subtask due to the
violation of the underlying assumptions of the design and the corresponding
fault-handling procedures are presented.

3.1 Control Law Synthesis

Modern control design methodologies [15,16] have enable the synthesis of robust
and high-performance control systems. Consider each vehicle dynamics modeled
by differential equations of the form

ẋ(t) = f(x(t)) + g(x(t))u(t), x(t0) = x0, t ≥ t0 (3.1)

where x ∈ R
n, u ∈ R

p, f(x) : R
n → R

n and g(x) : R
n → R

n × R
p. The system

is assumed to be as smooth as needed. The controllers are synthesized with a
given set of performance specifications and design criteria with assumptions on
the vehicle dynamics, sensor and actuator models which describe sensor noise,
actuator dynamics and anticipated structured disturbance. Therefore, the va-
lidity of the claim about the control system, at a higher-level, depends on the
validity of the assumptions made on the vehicle dynamics, sensor, and actuator
models at a lower-level. However, in the presence of sensor and actuator faults
or unanticipated disturbance, in order to keep the vehicle in safe operating con-
dition, least restrictive control is introduced in [17] by keeping the vehicle states
within the flight envelope so that no catastrophic consequences can happen. The
controllers guarantee the safe operation of the vehicle under multiple anticipated
fault scenarios. In each scenario, game theoretic approach is used to synthesize
the so-called least restrictive control laws, and the maximal safe set for keeping
the vehicle state safe is obtained by solving the corresponding Hamilton-Jacobi
equation. The Hamilton-Jacobi equation is a partial differential equation of the
form

∂J

∂t
(x, t) = −H∗(x,

∂J

∂x
(x, t)) (3.2)
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where H∗ is the so-called Hamiltonian determined from the appropriate sets
and the game between the controllable and uncontrollable actions. A computa-
tional tool is designed by [18] for computing the reachable set based on a level
set technique developed by [19], which computes the viscosity solution to the
Hamilton-Jacobi equation, ensuring that discontinuities are preserved.

3.2 Control Mode Switching Synthesis

Given a specific set of controllers of satisfactory performance, a variety of high-
level tasks can be accomplished by appropriately switching between low-level
controllers. Here, we define a control mode as the operation of the system under
a controller that is guaranteed to track a certain class of output trajectories.
Formally, we have:

A control mode, labeled by qi where i ∈ {1, . . . , N}, is the operation of the
nonlinear system (3.1) under a closed-loop feedback controller of the form

u(t) = ki(x(t), ri(t)) (3.3)

associated with an output yi(t) = hi(x(t)) such that yi(t) shall track ri(t) where
yi(t), ri(t) ∈ R

mi , hi : Rn → R
mi , ki : Rn × R

mi → R
p for each i ∈ {1, . . . , N}.

We assume that ri ∈ Ri, the class of output trajectories associated with the
control mode qi, when the initial condition of the system (3.1) starts in the set
Si(ri) ⊆ Xi, output tracking is guaranteed and the state satisfies a set of state
constraints Xi ⊆ R

n.

Consider a reachability task as reaching a desired final control mode from an ini-
tial control mode. For this reachability task, [20] has derived a formal method
for the synthesis of control mode graph. Therefore, if there exists at least one
path between an initial control mode to a desired final control mode on the
control mode graph, the reachability problem is solvable with a finite number
of switching of control modes and, furthermore, the switching conditions can be
derived. Switching of controllers [17] with multiple objectives can also be formu-
lated within the same framework, and the partial orders on objectives can be
used to bias the search for feasible solutions. The approach consists of extract-
ing a finite graph which refines the original collections of control modes, but
is consistent with the physical system. Thus, proof of “control mode switching
problem is solvable” is conducted in the semantics of directed graphs. Computa-
tional tools based on hybrid system theory have been developed for computing
exactly, or approximately reachable sets [17,21,22,23,24] for solving the reacha-
bility problem.
However, the design is valid under the free-space assumption in the prox-

imity of the vehicle. Failure in sensing the rapid unanticipated changes in the
environment may lead to the vehicle colliding with the environment. Since avoid-
ing obstacles can be formulated as a reachability problem, obstacle avoidance
algorithms should be designed to reuse the existing low-level controllers.
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3.3 Maneuver Sequence Synthesis

With the availability of a local communication network, vehicles can commu-
nicate with each other to perform tasks together. Reconsider the problem of
formation. As shown in [25], with consideration on different levels of central-
ization for formation, one can determine differential geometric conditions that
guarantee formation feasibility given the individual vehicle kinematics. Infor-
mation requirements for keeping a formation while maintaining mesh stability,
i.e. any transient errors dampen out as they travel away from the source of errors
within the formation, has been studied in [26].
While there is a communication failure within the network, the group vehicles

may not be able to maintain minimum separation with each other. Any conflict
resolution algorithm must use available, probably local, information to generate
maneuvers that resolve conflicts as they are predicted. In [27], given a set of flight
modes which are defined as an abstraction of the control modes by considering
the kinematic motion of the closed-loop system, the conflict resolution could
synthesize the parameters of the maneuver, i.e. a sequence of flight modes, and
the condition for switching between them. The result would be a maneuver that
is proven to be safe within the limits of the model used. The algorithm is based
on game-theoretic methods and optimal control. The solution is obtained by
performing a hybrid game that is a multi-player structure in which the players
have both discrete and continuous moves. Hybrid games have been classified with
respect to the complexity of the laws that govern the evolution of the variables
and with respect to the winning conditions for the players. This has been studied
in the timed game [28,29] for constant differential equations of the form ẋ = c,
the rectangular games [30,31] for rectangular differential inclusions of the form
ci ≤ ẋi ≤ di for i ∈ {1, . . . , n}, and the nonlinear hybrid games [27] for nonlinear
differential equations with inputs.
Regardless of the availability of communication, the formations and the ma-

neuvers should be generated with the consideration of anticipated, static obsta-
cles in the environments.

3.4 Routing Sequence Verification

Given a discretized map which can be represented as a directed graph under
the assumption made on its maneuverability, the existence of a route for going
from an initial node to a desired final node can be verified by using discrete
reachability computation. This is important for performing tasks such as pursuit-
evasion games [32,33] over graphs. Again, the validity of the claim depends upon
the compiled ideal-typical behavior at the lowest-level.

4 Embedded Software Design

Given a system architecture and the components for composing the system, the
high-level truth-claims rely heavily on the ideal-typical behaviors of the lower
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levels. For this reason the correct execution of the control laws at the lowest-level
must be enforced to avoid any catastrophic consequences from occurring. In this
section we discuss the embedded software that is close to the environment under
control.
Control laws are decomposed and translated into sets of periodic compu-

tational tasks in order to be implemented in embedded software. Along with
functionality specifications, timing specifications are also given for the execution
of the tasks in order to ensure that the implementation is consistent with the de-
sign. There are precedence relations not only defined among computational tasks
but also specified for the logical ordering of event executions: sensing, control,
and actuation.
In such an embedded system, processors, memory, inputs/outputs (I/O), sen-

sors, and actuators are considered hardware components. We assume that the
hardware components and some software components, such as the operating sys-
tem (OS) and I/O drivers are given and are not parts of the design. Hence, the
embedded software that is referred to here is made up of software components
which are supported by the services provided by the OS. Therefore, the embed-
ded software layer must work within the timing and scheduling framework of the
underlying OS.
Another given in the system is that the basic design for an embedded con-

troller includes a reliance on I/O and I/O rates in order to run any computational
tasks. The system as a whole is then assumed to be driven by various local clocks
and data processes that may occur at differing rates. Hardware components, such
as sensors and actuators, exchange data with the embedded software via the I/O
handled by the OS.
Operating systems, including real-time operating systems (RTOS), are de-

signed under the same basic assumptions made in timesharing systems, where
tasks are considered as unknown asynchronous activities activated at random
instants. Except for the priority, no other parameters are provided to the sys-
tem. The problem of scheduling a set of independent and preemptable periodic
tasks has been solved under fixed and dynamic priority assignments [34], using
the Rate-Monotonic algorithm and Earliest Deadline First algorithm. Given the
precedence constraints and the Worst Case Execution Time (WCET), an effi-
cient solution is provided by [35] for classes of the static scheduling problem.
However, in order to implement the embedded software correctly, domain ex-
pertise is required for solving the scheduling problems on these heterogeneous
computing platforms.
In the following, we discuss an embedded software example where the above

configuration is utilized, and where the expected timing and ordering issues arise.
We then continue and suggest adding a middle layer to the embedded software
setup that eliminates these problems with, and dependencies on, any particu-
lar operating system. Consider a typical system configuration of a flight control
system as depicted in Figure 4. This is motivated by our design experience
on the development of embedded software for our helicopter-based unmanned
aerial vehicles developed at the University of California, Berkeley. In the sys-
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Fig. 4. Current configuration of system components is illustrated in Component Dia-
gram. Communication between components via asynchronous and synchronous meth-
ods are shown. Notice that the software components are highlighted by grouping them
together.

tem, there are hardware and software components running concurrently. Notice
that the sensors, namely the Inertial Navigation System (INS) and the Global
Positioning System (GPS), push the data asynchronously to separate software
components. Because the INS and GPS each have their own internal clock, it
is difficult to predict the times at which each of these two software processes
will execute. Not only do these components have their own clocks, but they also
must run at disparate rates as dictated by the design: the GPS at 5Hz, the INS
at 100Hz, and the Servos at 50Hz. The rate of the Servos dictates that the con-
trol laws have to be applied at the same rate. The combination of the differing
rates and the inherent variations of the clock edges creates random lags in the
overall system. Furthermore, the execution of most of the software components
relies on the timing of other software components. For example, the Data Pro-
cessing task waits until it is triggered with data sent from the INS Handler,
and the Controller waits until it is triggered by the Data Processing task. Due
to the distinct clocks and rates of different software components, the interde-
pendency of components allows for drastic uncertainty of the deadlines for each
task. Consider that the Rate-Monotonic scheduling scheme is used for assigning
priorities among tasks. Since the scheduling scheme does not take into account
these dependencies between tasks, no guarantee can be made on the execution
of the software components. Consequently, jitter may occur and it affects the
regularity in time for computing the control results.

In order to mitigate these undesirable conditions with which the embedded
software must work, we suggest reorganizing the system to include a middle layer
of software, middleware, that establishes a time-triggered architecture. The mid-
dleware should provide a suitable level of abstraction for specifying functionality



356 T.J. Koo et al.

and timing requirements of periodic tasks and ensure the correct execution of
the tasks in the lower level provided that the scheduling problem is feasible to
be solved. Next, in order to eradicate the problem of RTOS scheduling,
A middleware, named Giotto, is being developed by [14] in order to provide

a time-triggered software abstraction for the execution of the embedded con-
trol software to meet hard real-time deadlines. Giotto, like other middlewares,
is designed to provide the isolation between the embedded control software and
the underlying computing platforms. In the example, the embedded control soft-
ware refers to the software components, the Data Processing and the Controller.
Hence, the scheduling of processing recourses and I/O handling is handled by
the middleware. This modeling language is entirely time-triggered, and does not
allow for any event triggered occurrences.
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Fig. 5. The time line for the invocation of tasks in Giotto.

However, several changes are necessary to implement on the embedded sys-
tem in order to allow for the usage of the time-triggered middleware. The most
drastic change is that the entire system must now be comprised of synchronous
elements in both the hardware and the software. For this effect, we propose two
main changes in the hardware configuration. First, several local clocks in differ-
ent components have to be collapsed into one global clock to avoid any phase
differences. Second, due to the fact that the sensors are the basis of the current
event driven paradigm, the sensors have to be reconfigured into a pull configura-
tion so that the sensors would be synchronously queried for data by the software
components. These two changes would translate the hardware system from an
event-driven domain into a time-triggered one.
The software components must be slightly modified to fit into the Giotto

language semantics. Since the embedded software is originally made up of pe-
riodic tasks that run concurrently and have desired end times associated with
them, fitting the system into the framework of Giotto is relatively intuitive. The
only complication with this change in the software specifications is the intro-
duction of an increased, though bounded, delay. This delay is a function of the
time-triggered paradigm. Instead of acting on data immediately, as in the event-
driven scenario, a time-triggered architecture acts on data at a set time and,
in this way, introduces a stale data phenomenon. In order to curtail the added
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Fig. 6. Proposed configuration of system components is illustrated in Component Dia-
gram. Synchronous communication methods are used between components, except the
clocks, for communication.

delay in our modified example, the deadline times for the control computation
task are shortened. Since shortening the execution time allowed for a block nec-
essarily bounds the delay to the length of the block, the designer can regulate
the added delay in this manner. Figure 5 displays the embedded software design
under Giotto of the INS handler and the controller blocks. In order to bound the
delay in data usage without computing the control more than is necessary, the
control block deadline time is shortened but the control is only computed at the
rate necessary (on the blocks marked with a star). In this manner, the software
can be restructured to make use of the benefits of a time triggered middle layer
with a minimum of added bounded delay.

ODEs

CT TTDE

DE FSM

Fig. 7. Proposed embedded system hierarchy for a single vehicle
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The resulting synchronous hybrid system as shown in Figure 6does have a
predictable behavior and therefore is able to guarantee safety critical control
performance. The drawback to this approach is that there is an increase in delay
over the original unpredictable system. However, as long as the timing deadlines
set are within the tolerances of the control design, the performance of the over-
all system can be guaranteed. Since Giotto also supports multi-modal behavior,
the hierarchy of the system for a single vehicle can be further constructed and
the idea of the design is depicted in Figure 7. The hardware and software com-
ponents below the level of Giotto, labeled as TT domain, are represented by
a single component in DE domain to model the asynchronous behaviors of the
component.

5 Conclusion

In this paper, we have considered the design problem of embedded software for
multi-vehicle multi-modal systems. A hierarchical architecture which promotes
verification is presented for the construction of embedded systems. Hybrid con-
trol design techniques are an important design tool for rapid prototyping of
system components for real-time embedded systems. Motivated by our design
experience on the development of embedded software for our helicopter-based
unmanned aerial vehicles which are composed of heterogeneous components, we
believe that at the level closest to the environment under control, the embedded
software needs to be time-triggered for guaranteed safety; at the higher levels,
we advocate a asynchronous hybrid controller design. Current work focuses on
the realization of the system for hardware-in-the-loop (HIL) simulation. This is
especially challenging since it will demand the development of formal method-
ologies for the integration of multiple MOCs and for the analysis of the resultant
hybrid system.
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