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Abstract. In many control applications, a specific set of output tracking
controllers of satisfactory performance have already been designed and
must be used. When such a collection of control modes is available, an
important problem is to be able to accomplish a variety of high level tasks
by appropriately switching between the low-level control modes. In this
paper, we define a concept of control modes, and propose a framework for
determining the sequence of control modes that will satisfy reachability
tasks. Our framework exploits the structure of output tracking controllers
in order to extract a finite graph where the mode switching problem
can be efficiently solved, and then implement it using the continuous
controllers. Our approach is illustrated on a helicopter example, where
we determine the mode switching logic that achieves the high-altitude
takeoff task from a hover mode.

1 Introduction

Large scale systems like automated highway systems, air traffic management
systems, unmanned aerial vehicles are multi-agent, multi-objective systems that
operate in many modes of operation. This results in systems of very high com-
plexity which may dramatically limit the applicability of current analysis and
design methods. A natural way to reduce the complexity of system design uses
compositional methods which solve a complex problem by decomposing it into
a sequence of smaller problems of manageable complexity. For example, in so-
phisticated flight management systems [3], modern aircraft fly from origin to
destination while satisfying a large number of aerodynamic, scheduling, and air
traffic constraints by switching among a finite set of flight modes, where each
flight mode essentially corresponds to a different output tracking controller.

More generally, given a continuous control system, a control mode is defined
as the operation of the system under a controller that is guaranteed to track a
certain class of output trajectories. Different outputs of interest correspond to
different control modes. Given a set of control modes, the mode switching prob-
lem attempts to find a finite sequence of the control modes as well as switching
conditions in order to satisfy various tasks. In this paper, we focus on reachability
tasks.
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Problem 1. Given a control system and a finite set of control modes for the
system, determine whether there exists a finite sequence of modes that will steer
the system from an initial control mode to a desired final control mode. If such
a sequence exists, then determine the switching conditions.

Clearly, in this setup, many more interesting problems can be formulated. For
example one can ask what are the optimal switching conditions, where optimality
can mean minimum time, or minimum number of switchings. Furthermore, one
can ask whether a set of modes is sufficient for performing a reachability, or
more general, task. In this paper, we focus on Problem 1, while setting up the
framework for considering these more general questions in the future.

In its full generality, Problem 1 can be tackled using controller synthesis
methods for hybrid systems [1,7,12,14]. However, termination conditions for such
synthesis procedures are limited [6], and the computational complexity of such
procedures could be prohibitive due to nested reachability computations. It is
therefore evident that in order to scale our methods to real-life examples, struc-
ture must be imposed on the system, and subsequently exploited in our analysis
and synthesis methods.

In order to reduce the complexity of the mode switching problem, we start
by assuming that output tracking control laws have been designed for each con-
trol mode. Feedback greatly simplifies the continuous models in each discrete
location since the complexity of the continuous behavior is now reduced to the
complexity of the trajectories we design. Therefore, many reachability compu-
tations that are required in our approach can be greatly simplified by properly
designing the desired trajectories. Even though feedback control simplifies the
continuous complexity, the problem of having nested reachability computations
is still present. In order to avoid such expensive computations, we place a con-
sistency condition in our mode switching logic which is reminiscent of the notion
of bisimulation. We propose an algorithm which given an initial set of control
modes, constructs a control mode graph which refines the initial control modes
but is consistent. Construction of the mode graph can be done off-line or every
time a new control mode is designed, allowing the mode switching problem to
be efficiently solved on-line, in real time.

2 Problem Formulation

Throughout this paper, we consider a nonlinear system modeled by differential
equations of the form

ẋ(t) = f(x(t)) + g(x(t))u(t), x(t0) = x0, t ≥ t0 (2.1)

where x ∈ R
n, u ∈ R

p, f(x) : R
n → R

n and g(x) : R
n → R

n ×R
p. The system is

assumed to be as smooth as needed. We now define a concept of control mode.

Definition 1 (Control Modes). A control mode, labeled by qi where i ∈
{1, . . . , N}, is the operation of the nonlinear system (2.1) under a closed-loop
feedback controller of the form
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u(t) = ki(x(t), ri(t)) (2.2)

associated with an output yi(t) = hi(x(t)) such that yi(t) shall track ri(t) where
yi(t), ri(t) ∈ R

mi , hi : R
n → R

mi , ki : R
n × R

mi → R
p for each i ∈ {1, . . . , N}.

We assume that ri ∈ Ri, the class of output trajectories associated with the
control mode qi, when the initial condition of the system (2.1) starts in the set
Si(ri) ⊆ Xi, output tracking is guaranteed and the state satisfies a set of state
constraints Xi ⊆ R

n.

The trajectory ri(t) is the desired output trajectory, and yi(t) is the output
vector which shall track ri(t). Notice that in general the initial set may be
a function of the trajectory ri, thus we denote it as Si(ri). This is because
even though trajectory tracking controllers are guaranteed to converge for any
initial condition, trajectory tracking in the presence of state constraints or input
constraints can be guaranteed only if the initial tracking error is sufficiently
small. In this paper we are interested in switching between controllers, rather
than the design of output tracking controllers. We therefore make the following
assumption.

Assumption 1 For each control mode qi, i ∈ {1, . . . , N}, we assume that a
controller of the form (2.2) has been designed which achieves output tracking
such that yi(t) shall track ri(t) where ri ∈ Ri 6= ∅, while the state satisfies the
set of state constraints x(t) ∈ Xi ⊆ R

n, when the initial condition of the system
(2.1) starts in the set Si(ri) ⊆ Xi ⊆ R

n.

The above assumption is justified given the maturity of output tracking con-
trollers for large classes of linear and nonlinear systems [15]. Based on different
design methodologies, the notion of output tracking could be different as it could
be uniform asymptotic, exponential, etc. Depending on the complexity on the
computation, one may choose a specific notion of tracking for solving Problem
1. In order to motivate the discussion, we present a planar helicopter model
and a set of controllers in which each controller satisfies Assumption 1 but with
different output functions and state constraints.

Example 1. Multi-Modal Control of a Planar Helicopter Model. In this
example, a helicopter model [4] described in longitudinal and vertical axes with
simplified force and moment generation processes is considered. The x, z-axes of
the spatial frame are pointing to north and down directions. The body x-axis
is defined from the center of gravity to the nose of the helicopter, and body
z-axis is pointing down from the center of gravity. The motion of the helicopter
is controlled by main rotor thrust, TM and longitudinal tilt path angle, aM . The
pitch angle is defined by θ. The equations of motion can be expressed as:

[
p̈x(t)
p̈z(t)

]
=

1
m

[
cos θ(t) sin θ(t)

− sin θ)(t) cos θ(t)

] [ −TM (t) sin aM (t)
−TM (t) cos aM (t)

]
+

[
0
g

]
(2.3)

θ̈(t) =
1
Iy

(MMaM (t) + hMTM (t) sin aM (t)) (2.4)
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The state vector and input vector are defined as x = [px, ṗx, pz, ṗz, θ, θ̇]T ∈ R
6

and u = [TM , aM ]T ∈ R
2, respectively.

Control Mode Output Reference Constraint
q1: Hover y1 = [px, pz]T r1 X1
q2: Cruise y2 = [ṗx, ṗz]T r2 X2
q3: Ascend y3 = [ṗx, ṗz]T r3 X3
q4: Descend y4 = [ṗx, ṗz]T r4 X4

Define X1 = X2 = R × (vx, vx) × R × (vz, vz) × (−π/2, π/2) × R, X3 = R ×
(vcr

x , vx)×R×(vz, v
as
z )×(−π/2, π/2)×R, and X4 = R×(vcr

x , vx)×R×(vde
z , vz)×

(−π/2, π/2) × R where vx < 0 < vcr
x < vx and vz < vde

z < 0 < vas
z < vz. To sat-

isfy Assumption 1, several control design methodologies can be used to design a
controller for each discrete control mode qi where i ∈ {1, 2, 3, 4}. Each controller
implementation can be specified as u = ki(x, ri) with ri ∈ Ri where Ri defines
the class of admissible output trajectories in mode qi, and the performance of the
closed-loop system can be specified by initial set, Si(ri), and flow, φi(t, ri, x0)
where x0 ∈ Si(ri).

Given two control modes, one cannot simply switch from one control mode
to another due to incompatible constraints. A natural question is then whether
this mode reachability task can be achieved by a finite sequence of modes. Based
on the above example, we can now define the mode switching problem that we
will address in this paper.

Problem 2 (Mode Switching Problem). Given an initial control mode qS with
desired reference rS , does there exist a sequence of control modes such that the
system can reach a desired mode qF with reference rF ? If so, then determine
a mode sequence qS → · · · qi → qj · · · → qF along with trajectories ri for each
control mode qi, as well as conditions for switching between the control modes.

For the control modes defined in Example 1, one can define a task of having
the Hover mode q1 as an initial mode and ask for a finite control mode sequence
to reach the Ascend mode q3. Any solution to this problem leads to a feasible
execution of the task called high-altitude takeoff according to flight instruction for
helicopter pilots. Note that Problem 2 is a reachability problem. More generally,
one can envision more complicated tasks that can be specified in temporal logic,
but in this paper we restrict our attention to reachability specifications.

3 A Mode Switching Condition

In its full generality, Problem 2 can be posed as a controller synthesis problem
for hybrid systems [7,12]. Such synthesis methods involve nested, and possibly
cyclic reachability computations, where each reachability computation involves
computing the capture set of a differential game. Furthermore, termination guar-
antees for controller synthesis methods are rather limited [6].
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In our mode switching problem, however, there is enough structure to take
advantage of in order to simplify the complexity of the synthesis task. First of all,
the continuous controllers are assumed to have been designed, and therefore we
do not have to design the continuous part of the system, but simply determine
the mode switching conditions. Furthermore, by imposing certain conditions on
the allowable mode switches, we reduce the complexity of the synthesis problem,
by maximally decoupling the discrete and continuous aspects of the synthesis.

To address the problem, we have to characterize the reachable set of each
mode and switching condition among them. Let φi(t, ri, x0) denote the flow of
system (2.1) operating in mode qi with the controller defined by (2.2) for initial
condition x0, and desired output trajectory ri.

Definition 2 (Predecessor set). Given a set P ⊆ Xi, a trajectory ri ∈ Ri,
the reach set Prei(P, ri) in mode qi is defined by

Prei(P, ri) = { x0 ∈ Xi | ∃t ≥ 0 ∃x ∈ P such that x = φi(t, ri, x0) } (3.1)

Therefore Prei(P, ri) consists of all states that can reach the set P in mode qi

for a given output trajectory ri, at some future time. Furthermore, because of
Assumption 1, we have a guarantee that throughout the whole trajectory, the
state constraints are satisfied, that is φi(t, ri, x0) ∈ Xi for all t ≥ 0.

Given control modes qi, and qj , one would typically allow a switch from mode
qi to qj if during the operation of the system under mode qi for some ri ∈ Ri,
the state reaches the allowable set of initial conditions Sj(rj) for some rj ∈ Rj ,
i.e. there exist ri ∈ Ri and rj ∈ Rj such that

Si(ri) ∩ Prei(Sj(rj), ri) 6= ∅. (3.2)

If one allows this type of mode switching, then reachability critically depends on
the particular choice of initial conditions since some initial conditions in Si(ri)
may reach the set Sj(rj) of mode qj while others may not. If this is the case,
then nested reachability computations seem necessary for the solution of the
mode switching problem. However, such nested computations can be avoided if
one places the following condition on mode switching.

Definition 3 (Consistent mode switching). Assume that control mode qi

satisfies Assumption 1, that is φi(t, ri, x0) ∈ Xi for all t ≥ 0 with initial condi-
tions starting from Si(ri) where ri ∈ Ri. A transition from mode qi to mode qj

is allowed only if there exist ri ∈ Ri and rj ∈ Rj such that

Si(ri) ⊆ Prei(Sj(rj), ri) (3.3)
⇔ ∀x0 ∈ Si(ri) ∃t ≥ 0 ∃x ∈ Sj(rj) such that x = φi(t, ri, x0) (3.4)

Therefore, if there exist trajectories ri (in mode qi) and rj (in mode qj) such
that, if the system starts at any x0 ∈ Si(ri), then switching from mode qi to qj

can occur at some time t such that φi(t, ri, x0) ∈ Sj(rj). The consistent mode
switching condition is shown in Figure 1. The condition expressed in Definition 3
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x1 t

Xi

Si(ri)

Sj(rj)

x2

Fig. 1. Visualization of consistent mode switching condition

is a consistency condition that guarantees that our ability to get from mode
qi to mode qj for the particular trajectory pair (ri, rj) is independent of the
choice of initial condition in Si(ri). The condition is reminiscent of the time-
abstract bisimulation property from formal verification [8]. In this case, however,
Definition 3 is quite different since no partitioning of the state space is involved.
Now define

Rij = {(ri, rj) ∈ Ri × Rj | condition (3.3) is satisfied } (3.5)

Hence, if Rij 6= ∅, then mode switching from qi to qj is possible since there exists
a trajectory ri ∈ Ri that will steer the system state to an initial set Sj(rj) with
rj ∈ Rj independently of where we start in Si(ri). Therefore, every trajectory
pair (ri, rj) ∈ Rij will steer the system from mode qi to mode qj . For each
(ri, rj) ∈ Rij , the only thing that depends on the initial condition is when the
state will reach Sj(rj), but not if the state will reach Sj(rj).

To test the mode switching condition (3.3), and compute the sets Rij , one
needs to compute the predecessor set Prei(P, ri). Even though there is exten-
sive research in computing exactly, or approximately such reachable sets [7,9,12,
11,13], there is limited research for parametric reachability computations [10].
Furthermore, in our problem we take advantage of the fact that in each control
mode, the output is tracking a reference trajectory ri. Therefore, by designing
trajectories we design part of the reachable space whereas the part of the state
is not reflected in the output remains within the set Xi. Choosing simple, or
better computable, classes of trajectories Ri will allow us to efficiently perform
reachability computations for Prei(P, ri) with parameters ri ∈ Ri. To continue
discussion, we assume that the Prei operators are available to us, and defer this
important issue to Section 5.

4 Mode Sequence Synthesis

The mode switching condition (3.3) makes the mode switching problem much
more tractable since we can ignore the initial sets and focus on the trajectory
sets Rij . Furthermore, the construction presented in this section will abstract
the mode switching logic into a purely discrete graph. Therefore one can first
determine the sequence of modes using standard algorithms for discrete graph
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reachability, and then determine the continuous parameters ri for each mode.
This will decouple the discrete from the continuous aspects of the problem, and
allow continuous techniques for continuous problems, and discrete techniques for
discrete problems.

Given a collection of control modes Q = {q1, . . . , qN}, the first attempt at
solving the mode switching would construct a graph as (Q,→) where the vertices
of the graph would be the set of control modes Q, and we would define the
transition relation →⊆ Q × Q as

(qi, qj) ∈→ ⇐⇒ Rij 6= ∅ (4.1)

In other words, there would be a transition qi → qj , if there exist trajectory pairs
(ri, rj) ∈ Rij that can transfer the system from mode qi to qj . This approach,
however, leads immediately to problems because if qi → qj and qj → qk there
may not exists a trajectory rj , which will take a point x ∈ Si(ri) to Sk(rk)
via Sj(rj), if Rij ∩ Rjk = ∅. Hence, transitivity fails, and our mode switching
graph is not a consistent abstraction as the high level mode switching logic is
not implementable at the lower level by the continuous controllers.

In order to obtain a consistent control mode graph, denoted as (Qc,→c), that
has feasible low level implementations, our original attempt must be refined. In
particular, each control mode qi gets refined to 2N submodes, where N submodes
stand for entering mode qi from any other mode qj , and N more copies for exiting
mode qi towards any other mode qj . This refinement is illustrated in Figure 2,
where mode q1 has two submodes, q12

1 which is the operation of the system in
mode q1 on the way to mode q2, whereas q21

1 is the operation of the system under
mode q1 after being in mode q2. Therefore, this control mode graph has some
discrete memory, in the sense that each state represents not only which mode
the system is in, but also which mode will either precede it or has preceded it.

q121

Mode q1

q211 R
12 = R12

1 â R
12
2

q122 q212R
12
2 \ R

21
2

R
21 = R21

2 â R
21
1

Mode q2

Fig. 2. Refining the mode switching logic by introducing submodes in order to obtain
a consistent control mode graph

The N2 pairwise reachability computations in order to compute the sets Rij ,
can immediately be embedded in the graph (Qc,→c). The computed sets Rij

can be used to go from submode qij
i to qij

j . After this initial step, the graph
contains only isolated transition pairs between different modes as no transitions
between submodes are considered.

If the set Rij can be expressed as a decoupled product of the form Rij =
Rij

i × Rij
j where Rij

i = {ri ∈ Ri | (ri, rj) ∈ Rij} and Rij
j = {rj ∈ Rj | (ri, rj) ∈

Rij}, then the choice of trajectory ri ∈ Rij
i in mode qi would work for any
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trajectory rj ∈ Rij
j in mode qj , i.e.

∀ri ∈ Rij
i ∀rj ∈ Rij

j condition (3.3) is satisfied.

This decoupling allows us to consider switching via submodes. In Figure 2, if
R12

2 ∩R21
2 is non empty, then that means that there exists a trajectory r2 which

is common for both submodes. Notice that in this case, we do not have to do any
reachability computations, we simply have to compute intersections of trajectory
sets. Therefore, within each mode, we can check for submode consistency by sim-
ply performing set intersections. Since there are maximally 2N submodes of N
modes, a total of N(N)2 = N3 intesections must be computed. We now summa-
rize the ideas and present an algorithm for constructing the consistent control
mode garph. The algorithm starts with the pairwise reachability computations
(3.3,3.5), and performs the submode interconnections.

Algorithm 1 : (Consistent Control Mode Graph)
Input Control Modes Q = {q1, . . . , qN}
Output Control Mode Graph (Qc,→c)
Initialize Qc := ∅, →c= ∅

Determine Mode Interconnections
for i = 1 : N

for j = 1 : N
Compute sets Rij using (3.3) and (3.5)
if Rij = Rij

i × Rij
j ;

qij
i := qi, qij

j := qj ,

Qc := Qc ∪ {qij
i , qij

j },

→c:=→c ∪{(qij
i , qij

j )}
end if

end for
end for

Determine Submode Interconnections
for j = 1 : N

for all qij
j ∈ {qnj

j ∈ Qc|∃n s.t. (qnj
n , qnj

j ) ∈→c}
for all qjk

j ∈ {qjm
j ∈ Qc|∃m s.t. (qjm

j , qjm
k ) ∈→c}

if Rij
j ∩ Rjk

j 6= ∅;
→c:=→c ∪{(qij

j , qjk
j )}

end if
end for

end for
end for
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Overall, Algorithm 1 requires N2 reachability computations for the mode
interconnections, and N3 set intersections for the submode interconnections.
After applying Algorithm 1, we obtain a finite control mode graph (Qc,→c)
which, as the following proposition shows, is consistent.

Proposition 1. For any j ∈ {1, . . . , |Q|}, if ∃qij
j ∈ {qnj

j ∈ Qc| ∃n such that
(qnj

n , qnj
j ) ∈→c}, ∃qjk

j ∈ {qjm
j ∈ Qc| ∃m such that (qjm

j , qjm
m ) ∈→c} and

Rij
j ∩ Rjk

j 6= ∅, then there exists ri ∈ Rij
i , rj ∈ Rij

j ∩ Rjk
j and rk ∈ Rjk

k such
that

Si(ri) ⊆ Prei(Prej(Sk, rk), rj).

Proof: Given (qij
i , qij

j ) ∈→c, we can pick any ri ∈ Rij
i and since Rij

j ∩Rjk
j 6= ∅ we

can pick any rj ∈ Rij
j ∩ Rjk

j , so that ∀x0 ∈ Si(ri) ∃t ≥ 0 ∃x ∈ Sj(rj) such that
x = φi(t, ri, x0). Then, pick any rk ∈ Rjk

k , since (qjk
j , qjk

j ) ∈→c, rj ∈ Rij
j ∩ Rjk

j

and the switching occurs whenever φi(t, ri, x0) ∈ Sj(rj), it can be easily seen
that ∃s ≥ 0 ∃y ∈ Sk(rk) such that y = φj(s, rj , φi(t, ri, x0)) = φj(s, rj , x).
The choice on the trajectories is illustrated in Figure 3. Since by Assumption 1,
φi(t, ·, ·) ∈ Xi and φj(s, ·, ·) ∈ Xj for the choice of initial conditions and reference
trajectories, by directly applying the definition we have shown the result. 2

q
jk
j

q
ij
i

Mode qi

q
ij
j

Mode qj

Mode qk

q
jk
k
rk 2 R

jk
k

ri 2 R
ij
i rj 2 R

ij
j \ R

jk
j

Fig. 3. Graphical illustration of feasible trajectories between control modes.

Without loss of generality, in the following discussion, we assume that the
given initial and final control mode in Q can be represented by qS ∈ Qc and
qF ∈ Qc respectively. Given an initial control mode qS ∈ Qc, the problem of
whether we can reach control mode qF ∈ Qc, can be efficiently solved using
standard reachability algorithms. Furthermore, one can determine the shortest
path (minimum number of mode switches) between mode qS and qF , in the con-
trol mode graph. The structure that we have imposed on our control mode graph,
immediately results in the following solution to the mode switching problem.

Theorem 1 (Mode Switching Solution). Given a collection of control modes
Q, consider the mode switching Problem 2. Construct the consistent control mode
graph (Qc,→c) as described in Algorithm 1. If there exists a path in the consistent
control mode graph between qS and qF with feasible trajectories rS and rF , then
Problem 2 is solvable.

Having determined the sequence of modes that can steer our system from
qS to qF , we are left with the problem of determining the parameters ri for
each mode of the sequence. By construction, such parameters exist and may
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be selected from the computed sets. Furthermore, it is reasonable to pose the
problem of choosing ri within mode qi as an optimization or an optimal control
problem. A key issue for this approach (as well as for most controller synthesis
approaches for hybrid systems), is to be able to compute Prei(Sj , ri) in order
to check condition 3. This is the focus of the following section of this paper.

5 Reachability Computations

There has been a growing interest recently in computing reachable sets for var-
ious classes of systems [9,11,7,13]. In particular, the approach of [9] has been
extended to classes of parametric linear control systems [10], which is highly
relevant for computing the operator (3.1).

In our case, however, the continuous dynamics are those of output-tracking,
closed-loop systems. Therefore part of the state is forced to converge to a tra-
jectory that we get to design, and part of the trajectory is guaranteed to satisfy
state constraints. This gives us the opportunity to obtain very reasonable approx-
imations of the reachable sets, and even design reachable sets by appropriately
designing output trajectories. The following example illustrates how continuous
controller design results in reachability computations which are very easy to
check.

Example 2. Multi-Modal Control of a Helicopter Model(Continued) Re-
consider the four control modes shown in Example 1. We first present the con-
troller design to illustrate how to compute the reachable sets, then we show
how to check the consistent mode switching condition between control modes.
In this example, we assume that all output trajectories are constant trajectories,
therefore, all controllers are setpoint regulators. Choosing computable classes of
trajectories makes the reachability computations simpler.

Given the specifications for the control modes, a nonlinear control scheme
[5] based on outer flatness is applied for the design of the controllers.
For each mode, the closed-loop dynamics with states defined by xex =
[px, ṗx, pz, ṗz, θ, θ̇, TM , aM ]T ∈ R

8 can be decoupled into an inner system and
two outer subsystems which specify the dynamics in x and z directions. In the
following presentation, the Hover mode is presented to illustrate how the reach-
able set can be computed.

For q1, the output tracking controller is designed such that y1(t) shall track
r1 = [r1x, r1z]T and the output tracking error is uniformly ultimately bounded.
Furthermore, because of satisfying Assumption 1, the controller is designed with
initial set S1(r1) = B1([r1x, 0]T , ε1x)×B([r1z, 0]T , ε1z)×Sin where r1 ∈ R1 = R

2,
ε1x, ε1z > 0 and Sin ⊆ (−π/2, π/2) × R

3 such that for x(t0) ∈ S1(r1) then


‖e1x(t)‖ ≤ M1x exp(−α1xt)(‖e1x(t0)‖ + δ1inx),
‖e1z(t)‖ ≤ M1z exp(−α1zt)(‖e1z(t0)‖ + δ1inz),
xin ∈ Xin, ∀t0 ≤ t < t0 + T1;

and




‖e1x(t)‖ ≤ δ1x,
‖e1z(t)‖ ≤ δ1z,
xin ∈ Sin, ∀t ≥ t0 + T1

(5.1)
1 B(r, ε) = {η| ‖η − r‖ < ε}.
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for some T1 M1x, M1z, α1x, α1z, δ1inx, δ1inz, δ1x, δ1z > 0. In above, e1x =
[px − r1x, ṗx]T , e1z = [pz − r1z, ṗz]T , and xin = [θ, θ̇, TM , aM ]T . Equation (5.1)
explicitly over specifies the reachable set of the mode q1 by examing the stability
property. For other modes, although the control designs are slightly modified
for tracking different outputs, the reachable sets of other modes are similarly
computed. In Figure 4, we show the inital sets of all the control modes by

vx

vx

px

pçx

(r1x; 0)

Q
x S1(r1)

(a) (b)

vz

vz

pz

pçz

(r1z; 0)

Q
z S1(r1)

(a)

vx

vx

px

pçx

Q
x S2

(b)

vz

vz

pz

pçz

Q
z S2

(a)

vx

vx

px

pçx

Q
x S3

(b)

vz

vz

pz

pçz

Q
z S3

(a)

vx

vx

px

pçx

Q
x S4

(b)

vz

vz

pz

pçz
Q

z S4

Fig. 4. Projection of S1(r1), S2(r2), S3(r3), and S4(r4) onto: (a) px − ṗx plane; (b)
pz − ṗz plane

projecting them onto px − ṗx plane and pz − ṗz plane where the projection
operator is defined as Πi : xex 7→ (pi, ṗi) for i ∈ {x, z}. In summary, the control
modes can be specified by

Control Mode Trajectory Set Initial Set
q1 R1 = R

2 S1 = B(0, 4) × B(0, 4) × Sin

q2 R2 = [−3, 3] × {0} S2 = R × (−3.5, 3.5) × (−3.5, 3.5) × Sin

q3 R3 = [2, 4] × [−3, 0] S3 = R × (1.5, 4.5) × (−3.5, 0.5) × Sin

q4 R4 = [2, 4] × [0, 3] S4 = R × (1.5, 4.5) × (−0.5, 3.5) × Sin

where Sin = B(0, 0.2), Xin = (−π/2, π/2) × R
3 and the associated parameters

are defined as vx = −6, vcr = 1, vx = 6, vz = −6, vas
z = 1, vde

z = −1, vz = 6.
Given the set of control modes, we generated the consistent control mode

graph by applying Algorithm 1. In Figure 5, we illustrate the idea of computing
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the reachable sets on px − ṗx plan. One can easily see the advantage of using
feedback, since it is straight forward not only to check the consistent mode
switching condition but also to determine the feasible range of trajectory, that
is compute the sets Rij . In particular consider the pair (q1, q2), that is the
transition from hover to cruise. As can be seen from the left side of Figure 5, the
consistency condition is trivially satisfied since the ball S1(r1) will eventually
shrink towards the setpoint (r1x, 0), and as a result, will be totally contained
inside S2(r2) for any r2. Therefore, in this case R12 = R1 × R2. Therefore,
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Fig. 5. Graphical illustration of performing reachability computation for checking con-
sistent mode switching condition on px − ṗx plane: (a) q1 → q2; (b) q2 → q3

feedback allows us to check very easily the consistency condition and compute
the sets Rij . The right side of Figure 5 shows the similar graphical computation
for the mode transition (q2, q3), from cruise to ascend. In a similar manner, we
have checked the following pairs,

{(q1, q2), (q2, q2), (q2, q3), (q2, q4), (q3, q2), (q3, q3), (q3, q4), (q4, q2), (q4, q3), (q4, q4)}
All of the above reachability computations were extremely simple to check. The
result of applying Algorithm 1 is summarized in the control mode graph that is
shown in Figure 2.
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Fig. 6. Consistent control mode graph for the multi-modal helicopter control example

Recall the high-altitude takeoff task, which is the task of having the Hover
mode q1 as an initial mode and ask for a finite control mode sequence to reach
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the Ascend mode q3. We can now see that from Figure 2 that q1 has {q12
1 } as

a submode, and q3 = {q23
3 , q43

3 , q32
3 , q34

3 }, and there exit many paths which are
feasible for achieving the task. However, q12

1 q12
2 q23

2 q23
3 gives a solution to the

task with the minimum number of mode switches, i.e., q1 → q2 → q3. Given a
cost function with respect to the continuous variables, the performance of the
sequence can now be optimized with respect to the feasible trajectories. We have
therefore decoupled the problem in a purely discrete graph search problem, and
a collection of continuous designs within each mode.

Simulation results of the controlled system based on the selected sequence
are shown in Figure 2. In the simulation, we can choose r1 = [0 0]T ∈ R12

1 ,
r2 = [2 0]T ∈ R12

2 ∩ R23
2 and r3 = [3 − 1]T ∈ R23

3 . The initial conditions of the
outer system are px(0) = −2, ṗx(0) = −0.2, pz(0) = 1, ṗz(0) = 0.5. The initial
condition of the inner system, xin(0) ∈ Sin. Mode switchings occur at t = 20 for
q1 → q2 and at t = 45 for q2 → q3.
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Fig. 7. Projected trajectories of the helicopter along with the initial sets of the next
control modes from different view angles are shown. Notice that immediate transition
q2 → q3 after q1 → q2 is not allowed until x(t) enters the initial set S3(r3).

6 Conclusion

In this paper, we have considered the mode switching problem among a collection
of output tracking controllers for nonlinear systems. Our approach consists of
extracting a finite graph which refines the original collections of modes, but is
consistent with the physical system. Extracting a finite graph critically depends
on the fact the closed loop, output tracking controllers reduce the complexity of
the model to the complexity of the output trajectories.

Even though, our framework reduces the continuous complexity so that many
of the computations can be done by hand, obtaining a consistent mode graph
for a large scale helicopter or aircraft (a Boeing 747 has approximately 500
modes) will clearly require the development of a computational tool. Such a
mode switching tool can be used off-line for synthesizing the mode switching
logic every time a new mode is designed. The control mode graph can then be
used on-line for efficient and dependable real-time mode switching.
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