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Abstract. The prevailing efforts to study the standard formulation of
motion and structure recovery have been recently focused on issues of
sensitivity and robustness of existing techniques. While many cogent ob-
servations have been made and verified experimentally, many statements
do not hold in general settings and make a comparison of existing tech-
niques difficult. With an ultimate goal of clarifying these issues we study
the main aspects of the problem: the choice of objective functions, op-
timization techniques and the sensitivity and robustness issues in the
presence of noise.
We clearly reveal the relationship among different objective functions,
such as “(normalized) epipolar constraints”, “reprojection error” or “tri-
angulation”, which can all be be unified in a new “ optimal triangulation”
procedure formulated as a constrained optimization problem. Regardless
of various choices of the objective function, the optimization problems all
inherit the same unknown parameter space, the so called “essential man-
ifold”, making the new optimization techniques on Riemanian manifolds
directly applicable.
Using these analytical results we provide a clear account of sensitivity
and robustness of the proposed linear and nonlinear optimization tech-
niques and study the analytical and practical equivalence of different
objective functions. The geometric characterization of critical points of
a function defined on essential manifold and the simulation results clarify
the difference between the effect of bas relief ambiguity and other types of
local minima leading to a consistent interpretations of simulation results
over large range of signal-to-noise ratio and variety of configurations. 1

1 Introduction

While the geometric relationships governing the motion and structure recovery
problem have been long understood, the robust solutions in the presence of
noise are still sought. New studies of sensitivity of different algorithms, search
for intrinsic local minima and new algorithms are still subject of great interest.
The seminal work of Longuet-Higgins [9] on the characterization of the so

called epipolar constraint, enabled the decoupling of the structure and motion
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problems and led to the development of numerous linear and nonlinear algo-
rithms for motion estimation (see [14,7,21] for overviews). The appeal of linear
algorithms which use the epipolar constraint (in the discrete case [21,7,9,14] and
in the differential case [6,13]) is the closed form solution to the problem which,
in the absence of noise, provides true estimate of the motion. However, a further
analysis of linear techniques revealed an inherent bias in the translation esti-
mates [6,7]. The sensitivity studies of the motion estimation problem have been
done both in an analytical [1,18] and experimental setting [19] and revealed the
superiority of the nonlinear optimization schemes over the linear ones. Numerous
nonlinear optimization schemes differed in the choice of objective functions [23],
different parameterizations of the unknown parameter space [22,23,5] and means
of initialization of the iterative schemes (e.g. monte-carlo simulations [21,17], or
linear techniques [6]). In most cases, the underlying search space has been pa-
rameterized for computational convenience instead of being loyal to its intrinsic
geometric structure. Algebraic manipulation of intrinsic geometric relationships
typically gave rise to different objective functions, making the comparison of the
performance of different techniques inappropriate and often obstructing the key
issues of the problem. The goal of this paper is to evaluate intrinsic difficulties
of the structure and motion recovery problem in the presence of large levels of
noise, in terms of intrinsic local minima, bias, sensitivity and robustness. This
evaluation is done with respect to the choice of objective function and opti-
mization technique, in the simplified two-view, point-feature scenario. The main
contributions presented in this paper are summarized briefly below:

1. We present a new optimal triangulation procedure and show that it can be
formulated as an iterative two step constrained optimization: Motion estima-
tion is formulated as optimization on the essential manifold and is followed
by additional well conditioned minimization of two Raleigh quotients for esti-
mating the structure. The procedure clearly reveals the relationship between
existing objective functions used previously and exhibits superior (provable)
convergence properties. This is possible thanks to the intrinsic nonlinear
search schemes on the essential manifold, utilizing Riemanian structucture
of the unknown parameter space.

2. We demonstrate analytically and by extensive simulations how the choice of
the objective functions and configurations affects the sensitivity and robust-
ness of the estimates, making a clear distinction between the two. We both
observe and geometrically characterize how the patterns of critical points
of the objective function change with increasing levels of noise for general
configurations. We show the role of linear techniques for initialization and
detection of these incorrect local minima. Further more we utilize the sec-
ond order information to characterize the nature of the bas relief ambiguity
and rotation and translation confounding for special class of “sensitive” mo-
tions/configurations.

Based on analytical and experimental results, we will give a clear profile of the
performance of different algorithms over a large range of signal-to-noise ratio,
and under various motion and structure configurations.
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2 Optimization on the Essential Manifold

Suppose the camera motion is given by (R,S) ∈ SE(3) (the special Euclidean
group) where R is a rotation matrix in SO(3) (the special orthogonal group) and
S ∈ IR3 is the translation vector. The intrinsic geometric relationship between
two corresponding projections of a single 3D point in two images p and q (in
homogeneous coordinates) then gives the so called epipolar constraint [9]:

pTRŜq = (1)

where Ŝ ∈ IR3×3 is defined such that Ŝv = S × v for all v ∈ IR3. Epipolar
constraint decouples the problem of motion recovery from that of structure re-
covery. The first part of this paper will be devoted to recovering motion from
directly using this constraint or its variations. In Section 3, we will see how this
constraint has to be adjusted when we consider recovering motion and structure
simultaneously.
The entity of our interest is the matrix RŜ in the epipolar constraint; the so

called essential matrix. The essential manifold is defined to be the space of all
such matrices, denoted by E = {RŜ | R ∈ SO(3), Ŝ ∈ so(3)}, where SO(3) is a
Lie group of 3× 3 rotation matrices, and so(3) is the Lie algebra of SO(3), i.e.,
the tangent plane of SO(3) at the identity. so(3) then consists of all 3× 3 skew-
symmetric matrices. The problem of motion recovery is equivalent to optimizing
functions defined on the so called normalized essential manifold:

E1 = {RŜ | R ∈ SO(3), Ŝ ∈ so(3),
1
2
tr(ŜT Ŝ) = 1}.

Note that 1
2 tr(Ŝ

T Ŝ) = STS. In order to formulate properly the optimization
problem, it is crucial to understand the Riemannian structure of the normalized
essential manifold. In our previous work we showed [11] that the space of es-
sential matrices can be identified with the unit tangent bundle of the Lie group
SO(3), i.e., T1(SO(3))2. Further more its Riemannian metric g induced from
the bi-invariant metric on SO(3) is the same as that induced from the Euclidean
metric with T1(SO(3)) naturally embedded in IR3×4. (T1(SO(3)), g) is the prod-
uct Riemannian manifold of (SO(3), g1) and (S2, g2) with g1 and g2 canonical
metrics for SO(3) and S2 as Stiefel manifolds. Given this Riemannian struc-
ture of our unknown parameter space, we showed [13] that one can generalize
Edelman et al’s methods [3] to the product Riemannian manifolds and obtain in-
trinsic geometric Newton’s or conjugate gradient algorithms for solving such an
optimization problem. Given the epipolar constraint, the problem of motion re-
covery R,S from a given set of image correspondences pi, qi ∈ IR3, i = 1, . . . , N ,
in the presence of noise can be naturally formulated as a minimization of the

2 However, the unit tangent bundle T1(SO(3)) is not exactly the normalized essential
manifold E1. It is a double covering of the normalized essential space E1, i.e., E1 =
T1(SO(3))/ZZ2 (for details see [11]).
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following objective function:

F (R,S) =
N∑

i=1

(pT
i RŜqi)2 (2)

for pi, qi ∈ IR3, where F (R,S) is a function defined on T1(SO(3)) ∼= SO(3)× S2
with R ∈ SO(3) represented by a 3 × 3 rotation matrix and S ∈ S2 a vector of
unit length in IR3. Due to the lack of space below we present only a summary
of the Newton’s algorithm for optimization of the above objective function on
the essential manifold. Please refer for more details to [13] for this particular
objective function and to [3] for the details of the Newton’s or other conjugate
gradient algorithms for general Stiefel or Grassmann manifolds.
Riemannian Newton’s algorithm for minimizing F (R,S):

1. At the point (R,S),
– Compute the gradient G = (FR −RFT

RR, FS − SFT
S S),

– Compute ∆ = − Hess−1G.
2. Move (R,S) in the direction ∆ along the geodesic to (exp(R,∆1), exp(S,∆2)).
3. Repeat if ‖G‖ ≥ ε for pre-determined ε > 0.

FR(FS) is a derivative of the objective function F (R,S) with respect to its
parameters.
The basic ingredients of the algorithm is the computation of the gradient

and Hessian whose explicit formulas can be found in [13]. These formulas can
be alternatively obtained by directly using the explicit expression of geodesics
on this manifold. On SO(3), the formula for the geodesic at R in the direction
∆1 ∈ TR(SO(3)) = R∗(so(3)) is R(t) = exp(R,∆1t) = R exp ω̂t = R(I+ω̂ sin t+
ω̂2(1 − cos t)), where t ∈ IR, ω̂ = RT∆1 ∈ so(3). The last equation is called the
Rodrigues’ formula (see [16]). S2 (as a Stiefel manifold) also has very simple
expression of geodesics. At the point S along the direction ∆2 ∈ TS(S2) the
geodesic is given by S(t) = exp(S,∆2t) = S cosσt + U sinσt, where σ = ‖∆2‖
and U = ∆2/σ, then STU = 0 since ST∆2 = 0. Using these formulae for
geodesics , we can calculate the first and second derivatives of F (R,S) in the
direction ∆ = (∆1, ∆2) ∈ TR(SO(3)) × TS(S2). The explicit formula for the
Hessian obtained in this manner plays an important role for sensitivity analysis
of the motion estimation [1] as we will point out in the second part of the
paper. Furthermore, using this formula, we have shown [13] that the conditions
when the Hessian is guaranteed non-degenerate are the same as the conditions
for the linear 8-point algorithm having a unique solution; whence the Newton’s
algorithm has quadratic rate of convergence.

2.1 Minimizing Normalized Epipolar Constraints

Although the epipolar constraint (1) gives the only necessary (depth indepen-
dent) condition that image pairs have to satisfy, motion estimates obtained from
minimizing the objective function (2) are not necessarily statistically or geomet-
rically optimal for the commonly used noise model of image correspondences. In
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general, in order to get less biased estimates, we need to normalize (or weight)
the epipolar constraints properly, which has been initially observed in [22]. In
this section, we will give a brief account of these normalized versions of epipolar
constraints. In the perspective projection case3, coordinates of image points p
and q are of the form p = (p1, p2, 1)T ∈ IR3 and q = (q1, q2, 1)T ∈ IR3. Sup-
pose that the actual measured image coordinates of N pairs of image points
are: pi = p̃i + xi, qi = q̃i + yi for i = 1, . . . , N , where p̃i and q̃i are ideal
(noise free) image coordinates, xi = (x1i , x

2
i , 0)

T ∈ IR3, yi = (y1i , y
2
i , 0)

T ∈ IR3

and x1i , x
2
i , y

1
i , y

2
i are independent Gaussian random variables of identical dis-

tribution N(0, σ2). Substituting pi and qi into the epipolar constraint (1), we
obtain:

pT
i RŜqi = xT

i RŜq̃i + p̃T
i RŜyi + xT

i RŜyi.

Since the image coordinates pi and qi usually are magnitude larger than xi and yi,
one can omit the last term in the equation above. Then pT

i RŜqi are independent
random variables approximately of Gaussian distribution N(0, σ2(‖ê3RŜqi‖2 +
‖pT

i RŜê3‖2)), where e3 = (0, 0, 1)T ∈ IR3. If we assume the a prior distribution
of the motion (R,S) is uniform, the maximum a posterior (MAP) estimates of
(R,S) is then the global minimum of the objective function:

Fs(R,S) =
N∑

i=1

(pT
i RŜqi)2

‖ê3RŜqi‖2 + ‖pT
i RŜê3‖2

(3)

for pi, qi ∈ IR3, (R,S) ∈ SO(3) × S2. We here use Fs to denote the statisti-
cally normalized objective function associated with the epipolar constraint. This
objective function is also referred in the literature under the name gradient crite-
ria or epipolar improvement. Therefore, we have (R,S)MAP ≈ argminFs(R,S).
Note that in the noise free case, Fs achieves zero, just like the unnormalized ob-
jective function F of equation (2). Asymptotically, MAP estimates approach the
unbiased minimum mean square estimates (MMSE). So, in general, the MAP
estimates give less biased estimates than the unnormalized objective function
F . Note that Fs is still a function defined on the manifold SO(3)× S2. Another
commonly used criteria to recover motion is to minimize the geometric distances
between image points and corresponding epipolar lines. This objective function
is given as:

Fg(R,S) =
N∑

i=1

(pT
i RŜqi)2

‖ê3RŜqi‖2
+
(pT

i RŜqi)2

‖pT
i RŜê

T
3 ‖2 (4)

for pi, qi ∈ IR3, (R,S) ∈ SO(3)×S2.We here use Fg to denote this geometrically
normalized objective function. Notice that, similar to F and Fs, Fg is also a
function defined on the essential manifold and can be minimized using the given
Newton’s algorithm. As we know from the differential case [12], the normaliza-
tion has no effect when the translational motion is in the image plane, i.e., the
3 The spherical projection case is similar and is omitted for simplicity.
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unnormalized and normalized objective functions are in fact equivalent. For the
discrete case, we have similar claim [8]. Therefore in such case the normalization
will have very little effect on motion estimation as will be verified by simulation.

3 Optimal Triangulation

Note that, in the presence of noise, for the motion (R,S) recovered from mini-
mizing the unnormalized or normalized objective functions F , Fs or Fg, the value
of the objective functions is not necessarily zero. Consequently, if one directly
uses pi and qi to recover the 3D location of the point to which the two images pi

and qi correspond, the two rays corresponding to pi and qi may not be coplanar,
hence may not intersect at one 3D point. Also, when we derived the normalized
epipolar constraint Fs, we ignored the second order terms. Therefore, rigorously
speaking, it does not give the exact MAP estimates. Under the assumption of
Gaussian noise model, in order to obtain the optimal (MAP) estimates of cam-
era motion and a consistent 3D structure reconstruction, in principle we need to
solve the following optimal triangulation problem: Seek camera motion (R,S)
and points p̃i, q̃i ∈ IR3 on the image plane such that they minimize the distance
from pi and qi:

Ft(R,S, p̃i, q̃i) =
N∑

i=1

‖p̃i − pi‖2 + ‖q̃i − qi‖2 (5)

subject to the conditions: p̃T
i RŜq̃i = 0, p̃T

i e3 = 1, q̃T
i e3 = 1 for i = 1, . . . , N .

We here use Ft to denote the objective function for triangulation. This objective
function is also referred in literature as the reprojection error. Unlike [4], we
do not assume a known essential matrix RŜ. Instead we seek p̃i, q̃i and (R,S)
which minimize the objective function Ft given by (5). The objective function Ft

then implicitly depends on the variables (R,S) through the constraints. Clearly,
the optimal solution to this problem is exactly equivalent to the optimal MAP
estimates of both motion and structure. Using Lagrangian multipliers, we can
convert the minimization problem to an unconstrained one:

min
R,S,p̃i,q̃i

N∑
i=1

‖p̃i − pi‖2 + ‖q̃i − qi‖2 + λip̃
T
i RŜq̃i + βi(p̃T

i e3 − 1) + γi(q̃T
i e3 − 1).

The necessary conditions for minima of this objective function are:

2(p̃i − pi) + λiRŜq̃i + βie3 = 0 (6)

2(q̃i − qi) + λiŜ
TRT p̃i + γie3 = (7)

From necessary conditions we get p̃i, q̃i. Substituting these and λi obtained from
(6) back to into Ft we get:

Ft(R,S, p̃i, q̃i) =
N∑

i=1

(pT
i RŜq̃i + p̃T

i RŜqi)2

‖ê3RŜq̃i‖2 + ‖p̃T
i RŜê

T
3 ‖2 (8)
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and alternatively using (7) for λi instead, we get:

Ft(R,S, p̃i, q̃i) =
N∑

i=1

(pT
i RŜq̃i)2

‖ê3RŜq̃i‖2
+
(p̃T

i RŜqi)2

‖p̃T
i RŜê

T
3 ‖2 . (9)

Geometrically, both expressions of Ft are the distances from the image points
pi and qi to the epipolar lines specified by p̃i, q̃i and (R,S). Equations (8) and
(9) give explicit formulae of the residue of ‖p̃i − pi‖2 + ‖q̃i − qi‖2 as pi, qi being
triangulated by p̃i, q̃i. Note that the terms in Ft are normalized crossed epipolar
constraints between pi and q̃i or between p̃i and qi. These expressions of Ft can
be further used to solve for (R,S) which minimizes Ft. This leads to the following
iterative scheme for obtaining optimal estimates of both motion and structure,
without explicitly introducing scale factors (or depths) of the 3D points.
Optimal Triangulation Algorithm Outline: The procedure for minimizing
Ft can be outlined as follows:

1. Initialize p̃∗
i (R,S), q̃

∗
i (R,S) as pi, qi.

2. Motion: Update (R,S) by minimizing F ∗
t (R,S)=Ft(R,S, p̃∗

i (R,S), q̃
∗
i (R,S))

given by (8) or (9) as a function defined on the manifold SO(3)× S2.
3. Structure (Triangulation): Solve for p̃∗

i (R,S) and q̃∗
i (R,S) which min-

imize the objective function Ft (5) with respect to (R,S) computed in the
previous step.

4. Back to step 2 until updates are small enough.

At step 3, for a fixed (R,S), p̃∗
i (R,S) and q̃∗

i (R,S) can be computed by
minimizing the distance ‖p̃i −pi‖2+‖q̃i − qi‖2 for each pair of image points. Let
ti ∈ IR3 be the normal vector (of unit length) to the (epipolar) plane spanned
by (q̃i, S). Given such a ti, p̃i and q̃i are determined by:

p̃i(ti) =
ê3t

′
it

′T
i ê

T
3 pi + t̂′

T

i t̂
′
ie3

eT
3 t̂

′T
i t̂

′
ie3

, q̃i(ti) =
ê3tit

T
i ê

T
3 qi + t̂Ti t̂ie3

eT
3 t̂

T
i t̂ie3

(10)

where t′i = Rti. Then the distance can be explicitly expressed as:

‖q̃i − qi‖2 + ‖p̃i − pi‖2 = ‖qi‖2 + tTi Aiti
tTi Biti

+ ‖pi‖2 + t′Ti Cit
′
i

t′Ti Dit′i
,

where

Ai = I − (ê3qiq
T
i ê

T
3 + q̂iê3 + ê3q̂i), Bi = êT

3 ê3
Ci = I − (ê3pip

T
i ê

T
3 + p̂iê3 + ê3p̂i), Di = êT

3 ê3
. (11)

Then the problem of finding p̃∗
i (R,S) and q̃∗

i (R,S) becomes one of finding t∗i
which minimizes the function of a sum of two singular Rayleigh quotients:

min
tT
i

S=0,tT
i

ti=1
V (ti) =

tTi Aiti
tTi Biti

+
tTi R

TCiRti
tTi R

TDiRti
. (12)
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This is an optimization problem on a unit circle S1 in the plane orthogonal to
the vector S. If n1, n2 ∈ IR3 are vectors such that S, n1, n2 form an orthonormal
basis of IR3, then ti = cos(θ)n1 + sin(θ)n2 with θ ∈ IR. We only need to find θ∗

which minimizes the function V (ti(θ)). From the geometric interpretation of the
optimal solution, we also know that the global minimum θ∗ should lie between
two values: θ1 and θ2 such that ti(θ1) and ti(θ2) correspond to normal vectors
of the two planes spanned by (qi, S) and (RT pi, S) respectively (if pi, qi are al-
ready triangulated, these two planes coincide). Therefore, in our approach the
local minima is no longer an issue for triangulation, as oppose to the method pro-
posed in [4]. The problem now becomes a simple bounded minimization problem
for a scalar function and can be efficiently solved using standard optimization
routines (such as “fmin” in Matlab or the Newton’s algorithm). If one properly
parameterizes ti(θ), t∗i can also be obtained by solving a 6-degree polynomial
equation, as shown in [4] (and an approximate version results in solving a 4-
degree polynomial equation [21]). However, the method given in [4] involves
coordinate transformation for each image pair and the given parameterization is
by no means canonical. For example, if one chooses instead the commonly used
parameterization of a circle S1: sin(2θ) = 2λ

1+λ2 , cos(2θ) = 1−λ2

1+λ2 , λ ∈ IR,
then it is straightforward to show from the Rayleigh quotient sum (12) that the
necessary condition for minima of V (ti) is equivalent to a 6-degree polynomial
equation in λ.4 The triangulated pairs (p̃i, q̃i) and the camera motion (R,S)
obtained from the minimization automatically give a consistent (optimal) 3D
structure reconstruction by two-frame stereo.
In the expressions of Ft given by (18) or (19), if we simply approximate

p̃i, q̃i by pi, qi respectively, we may obtain the normalized versions of epipolar
constraints for recovering camera motion. Although subtle difference between
Fs, Fg and Ft has previously been pointed out in [23], our approach discovers
that all these three objective functions can be unified in the same optimization
procedure – they are just slightly different approximations of the same objective
function F ∗

t . Practically speaking, using either normalized objective function Fs

or Fg, one can already get camera motion estimates which are very close to the
optimal ones. This will be demonstrated by extensive simulations in the next
section.

4 Critical Values and Ambiguous Solutions

We devote the remainder of this paper to study of the robustness and sensitivity
of motion and structure estimation problem in the presence of large levels of
noise. We emphasize here the role of the linear techniques for initialization and
utilize the characterization of the space of essential matrices and the intrinsic
optimization techniques on the essential manifold. The focus of our robustness

4 Since there is no closed form solution to 6-degree polynomial equations, directly
minimizing the Rayleigh quotient sum (12) avoids unnecessary transformations hence
can be much more efficient.
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study deals with the appearance of new local minima. Like any nonlinear sys-
tem, when increasing the noise level, new critical points of the objective function
can be introduced through bifurcation. Although in general an objective func-
tion could have numerous critical points, numbers of different types of critical
points have to satisfy the so called Morse inequalities, which are associated to
topological invariants of the underlying manifold (see [15]). Key to this study
is the computation of the Euler characteristic χ(M) of the underlying manifold
SO(3)× IRIP2 which is in this case 0; χ(SO(3)× IRIP2) = 0. Euler characteristic
is equal to

∑n
λ=0(−1)λDλ, where Dλ is the dimension of the λth homology group

Hλ(M, IK) of M over any field IK, the so called λth Betti number. In our case
Dλ = 1, 2, 3, 3, 2, 1 for λ = 0, 1, 2, 3, 4, 5 types of critical points respectively. For
details of this computation see [13]. Among all the critical points, those belong-
ing to type 0 are called (local) minima, type n are (local) maxima, and types 1
to n − 1 are saddles. From the above computation any Morse function defined
on SO(3) × IRIP2 must have all three kinds of critical values. The nonlinear
search algorithms proposed in the above are trying to find the global minimum
of given objective functions. We study the effect of initialization by linear tech-
niques and apperance of new critical points on different slices of the nonlinear
objective function which we can be easily visualized. The choice of the section is
determined by the estimate of rotation where the nonlinear algorithm converged
by initialization of the linear algorithm.
Rewriting the epipolar constraint as pT

i Eqi = 0, i = 1, . . . , N , minimizing the
objective function F is (approximately) equivalent to the following least square
problem min ‖Ae‖2, where A is a N × 9 matrix function of entries of pi and qi,
and e ∈ IR9 is a vector of the nine entries of E. Then e is the (usually one dimen-
sional) null space of the 9× 9 symmetric matrix ATA. In the presence of noise,
e is simply chosen to be the eigenvector corresponding to the least eigenvalue of
ATA. At a low noise level, this eigenvector in general gives a good initial esti-
mate of the essential matrix. However, at a certain high noise level, the smallest
two eigenvalues may switch roles, as do the two corresponding eigenvectors –
topologically, a bifurcation as shown in Figure 2 occurs. This phenomena is very
common in the motion estimation problem: at a high noise level, the translation
estimate may suddenly change direction by roughly 90o, especially in the case
when translation is parallel to the image plane. We will refer to such estimates
as the second eigenmotion. A similar situation for the differential case and small
field of view has previously been reported in [2].
Figure 1 and 2 demonstrate such a sudden appearance of the second eigen-

motion. They are the simulation results of the proposed nonlinear algorithm of
minimizing the function Fs for a cloud of 40 randomly generated pairs of image
correspondences (in a field of view 90o, depth varying from 100 to 400 units of fo-
cal length.). Gaussian noise of standard deviation of 6.4 or 6.5 pixels is added on
each image point (image size 512× 512 pixels). To make the results comparable,
we used the same random seeds for both runs. The actual rotation is 10o about
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the Y -axis and the actual translation is along the X-axis.5 The ratio between
translation and rotation is 2.6 In the figures, “+” marks the actual translation,
“∗” marks the translation estimate from linear algorithm (see [14] for detail)
and “◦” marks the estimate from nonlinear optimization. Up to the noise level
of 6.4 pixels, both rotation and translation estimates are very close to the actual
motion. Increasing the noise level further by 0.1 pixel, the translation estimate
suddenly switches to one which is roughly 90o away from the actual translation.
Geometrically, this estimate corresponds to the second smallest eigenvector of
the matrix ATA as we discussed before. Topologically, this estimate corresponds
to the local minimum introduced by a bifurcation as shown by Figure 2. Clearly,
in Figure 1, there is 1 maximum, 1 saddle and 1 minimum on IRIP2; in Figure
2, there is 1 maximum, 2 saddles and 2 minima. Both patterns give the Euler
characteristic of IRIP2 as 1. Rotation is fixed at the estimate from nonlinear
algorithm. The errors are expressed in terms of canonical metric on SO(3) for
rotation and in terms of angle for translation.
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Fig. 2. Value of objective
function Fs for all S at noise
level 6.5 pixels. Estimation
errors: 0.227 in rotation es-
timate and 84.66o in trans-
lation estimate.
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Fig. 3. Bas relief ambigu-
ity. FOV is 20o, points
depths vary from 100 to 150
units of focal length, rota-
tion magnitude is 2o, T/R
ratio is 2. 20 runs with noise
level 1.3 pixels.

From the Figure 2, we can see that the the second eigenmotion ambiguity
is even more likely to occur (at certain high noise level) than the other local
minimum marked by “�” in the figure which is a legitimate estimate of the actual
one. These two estimates always occur in pair and exist for general configuration
even when both the FOV and depth variation are sufficiently large. We propose
a way for resolving the second eigenmotion ambiguity by linear algorithm which
is used for initialization. An indicator of the configuration being close to critical
5 We here use the convention that Y -axis is the vertical direction of the image and

X-axis is the horizontal direction and the Z-axis coincides with the optical axis of
the camera.

6 Rotation and translation magnitudes are compared with respect to the center of the
cloud of 3D points generated.
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is the ratio of the two smallest eigenvalues of ATA σ9 and σ8 . By using both
eigenvectors v9 and v8 for computing the linear motion estimates, the one which
satisfies the positive depth constraint by larger margin (i.e. larger number of
points satisfies the positive depth constraint) leads to the motion estimates closer
to the true one (see [8] for details).
This second eigenmotion effect has a quite different interpretation as the one

which was previously attributed to the bas relief ambiguity. The bas relief effect
is only evident when FOV and depth variation is small, but the second eigen-
motion ambiguity may show up for general configurations. Bas relief estimates
are statistically meaningful since they characterize a sensitive direction in which
translation and rotation are the most likely to be confound. The second eigen-
motion, however, is not statistically meaningful: it is an effect of initialization
which with increasing noise level causes a perturbation to a different slice of the
objective function with a different topology of the residual. This effect occurs
only at a high noise level and this critical noise level gives a measure of the
robustness of linear initialization of the given algorithm. For comparison, Figure
3 demonstrates the effect of the bas relief ambiguity: the long narrow valley of
the objective function corresponds to the direction that is the most sensitive
to noise.7 Translation is along the X-axis and rotation around the Y -axis. The
(translation) estimates of 20 runs, marked as “◦”, give a distribution roughly
resembling the shape of this valley – the actual translation is marked as “+”in
the center of the valley which is covered by circles.

5 Experiments and Sensitivity Analysis

In this section, we clearly demonstrate by experiments the relationship among
the linear algorithm (as in [14]), nonlinear algorithm (minimizing F ), normalized
nonlinear algorithm (minimizing Fs) and optimal triangulation (minimizing Ft).
Due to the nature of the second eigenmotion ambiguity (when not corrected),
it gives statistically meaningless estimates. Such estimates should be treated
as “outliers” if one wants to properly evaluate a given algorithm and compare
simulation results. We will demonstrate that seemingly conflicting statements in
the literature about the performance of existing algorithms can in fact be given
a unified explanation if we systematically compare the simulation results with
respect to a large range of noise levels (as long as the results are statistically
meaningful).
The following simulations were carried out with the points in general config-

uration and camera parameters described in Section 4. All nonlinear algorithms
are initialized by the estimates from the standard 8-point linear algorithm (see
[14]), instead of from the ground truth. The criteria for all nonlinear algorithms
to stop are: (a) The norm of gradient is less than a given error tolerance, which

7 This direction is given by the eigenvector of the Hessian associated with the smallest
eigenvalue.
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usually we pick as 10−8 unless otherwise stated;8 and (b) The smallest eigenvalue
of the Hessian matrix is positive.9

Axis Dependency Profile It has been well known that the sensitivity of
the motion estimation depends on the camera motion. However, in order to
give a clear account of such a dependency, one has to be careful about two
things: 1. The signal-to-noise ratio and 2. Whether the simulation results are
still statistically meaningful while varying the noise level. Figure 4, 5, 6 and
7 give simulation results of 100 trials for each combination of translation and
rotation (“T-R”) axes, for example, “X-Y ” means translation is along the X-
axis and the rotation axis is the Y -axis. Rotation is always 10o about the axis
and the T/R ratio is 2. In the figures, “linear” stands for the standard 8-point
linear algorithm; “nonlin” is the Riemannian Newton’s algorithm minimizing
the epipolar constraints F , “normal” is the Riemannian Newton’s algorithm
minimizing the normalized epipolar constraints Fs.
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Fig. 4. Axis dependency: estimation
errors in rotation and translation at
noise level 1.0 pixel. T/R ratio = 2 and
rotation = 10o.
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Fig. 5. Axis dependency: estimation
errors in rotation and translation at
noise level 3.0 pixels. T/R ratio = 2
and rotation = 10o.

By carefully comparing the simulation results in Figure 4, 5, 6 and 7, we can
draw the following conclusions:

1. Optimization Techniques (linear vs. nonlinear)
(a) Minimizing F in general gives better estimates than the linear algorithm at

low noise levels (Figure 4 and 5). At higher noise levels, this is no longer true
(Figure 6 and 7), due to the more global nature of the linear technique.

(b) Minimizing the normalized Fs in general gives better estimates than the linear
algorithm at moderate noise levels (all figures).

8 Our current implementation of the algorithms in Matlab has a numerical accuracy
at 10−8.

9 Since we have the explicit formulae for Hessian, this condition would keep the algo-
rithms from stopping at saddle points.
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Fig. 6. Axis dependency: estimation
errors in rotation and translation at
noise level 5.0 pixel. T/R ratio = 2 and
rotation = 10o.
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Fig. 7. Axis dependency: estimation
errors in rotation and translation at
noise level 7.0 pixels. T/R ratio = 2
and rotation = 10o.

2. Optimization Criteria (F vs. Fs)
(a) At relatively low noise levels (Figure 4), normalization has little effect when

translation is parallel to the image plane; and estimates are indeed improved
when translation is along the Z-axis.

(b) However, at moderate noise levels (Figure 5, 6 and 7), when translation is along
the Z-axis, little improvement can be gained by minimizing Fs instead of F ;
however, when translation is parallel to the image plane, F is more sensitive
to noise and minimizing the statistically less biased Fs consistently improves
the estimates.

3. Axis Dependency
(a) All three algorithms are the most robust to the increasing of noise when the

translation is along Z. At moderate noise levels (all figures), their performances
are quite close to each other.

(b) Although, at relatively low noise levels (Figure 4, 5 and 6), estimation errors
seem to be larger when the translation is along the Z-axis, estimates are in
fact much less sensitive to noise and more robust to increasing of noise in this
case. The larger estimation error in case of translation along Z-axis is because
the displacements of image points are smaller than those when translation is
parallel to the image plane, thus the signal-to-noise ratio is in fact smaller.

(c) At a noise level of 7 pixels (Figure 7), estimation errors seem to become smaller
when the translation is along Z-axis. This is due to the fact that, at a noise
level of 7 pixels, the second eigenmotion ambiguity already occurs in some of
the trials when the translation is parallel to the image plane.

The second statement about the axis dependency supplements the observa-
tion given in [20]. In fact, the motion estimates are both robust and less sensitive
to increasing of noise when translation is along the Z-axis. For a fixed base line,
high noise level results resemble those for a smaller base line at a moderate noise
level. Figure 7 is therefore a generic picture of the axis dependency profile for
the differential or small base-line case (for more details see [12]).

Non-iterative vs. Iterative In general, the motion estimates obtained from
directly minimizing the normalized epipolar constraints Fs or Fg are already
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Fig. 8. Estimation errors of rotation
(in canonical metric on SO(3)). 50
trials, rotation 10 degree around Y -
axis and translation along X-axis,
T/R ratio is 2. Noises range from 0.5
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Fig. 9. Estimation errors of transla-
tion (in degree). 50 trials, rotation 10
degree around Y -axis and translation
along X-axis, T/R ratio is 2. Noises
range from 0.5 to 5 pixels.
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Fig. 10. Estimation errors of rota-
tion (in canonical metric on SO(3)).
40 points, 50 trials, rotation 10 de-
gree around Y -axis and translation
along Z-axis, T/R ratio is 2. Noises
range from 2.5 to 20 pixels.
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Fig. 11. Estimation errors of transla-
tion (in degree). 40 points, 50 trials,
rotation 10 degree around Y -axis and
translation along Z-axis, T/R ratio is
2. Noises range from 2.5 to 20 pixels.

very close to the solution of the optimal triangulation obtained by minimizing
Ft iteratively between motion and structure. It is already known that, at low
noise levels, the estimates from the non-iterative and iterative schemes usually
differ by less than a couple of percent [23].
By comparing the simulation results in Figures 8, 9, 10 and 11 we can draw

the following conclusions:

1. Although the iterative optimal triangulation algorithm usually gives better esti-
mates (as it should), the non-iterative minimization of the normalized epipolar
constraints Fs or Fg gives motion estimates with only a few percent larger er-
rors for all range of noise levels. The higher the noise level, the more evident the
improvement of the iterative scheme is.

2. Within moderate noise levels, normalized nonlinear algorithms consistently give
significantly better estimates than the standard linear algorithm, especially when
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the translation is parallel to the image plane. At very high noise levels, the perfor-
mance of the standard linear algorithm, out performs nonlinear algorithms. This
is due to the more global nature of the linear algorithm. However, such high noise
levels are barely realistic in real applications.

For low level Gaussian noises, the iterative optimal triangulation algorithm
gives the MAP estimates of the camera motion and scene structure, the esti-
mation error can be shown close to the theoretical error bounds, such as the
Cramer-Rao bound. This has been shown experimentally in [21]. Consequently,
minimizing the normalized epipolar constraints Fs or Fg gives motion estimates
close to the error bound as well.

6 Discussions and Future Work

Although previously proposed algorithms already have good performance in
practice, the geometric concepts behind them have not yet been completely
revealed. The non-degeneracy conditions and convergence speed of those al-
gorithms are usually not explicitly addressed. Due to the recent development
of optimization methods on Riemannian manifolds, we now can have a better
mathematical understanding of these algorithms, and propose new geometric al-
gorithms or filters, which exploit the intrinsic geometric structure of the motion
and structure recovery problem. As shown in this paper, regardless of the choice
of different objectives, the problem of optimization on the essential manifold is
common and essential to the optimal motion and structure recovery problem.
Furthermore, from a pure optimization theoretic viewpoint, most of the objective
functions previously used in the literature can be unified in a single optimiza-
tion procedure. Consequently, “minimizing (normalized) epipolar constraints”,
“triangulation”, “minimizing reprojection errors” are all different (approximate)
versions of the same simple optimal triangulation algorithm.
In this paper, we have studied in detail the problem of recovering a discrete

motion (displacement) from image correspondences. Similar ideas certainly ap-
ply to the differential case where the rotation and translation are replaced by
angular and linear velocities respectively [13]. One can show that they all in fact
minimize certain normalized versions of the differential epipolar constraint. We
hope the Riemannian optimization theoretic viewpoint proposed in this paper
will provide a different perspective to revisit these schemes. Although the study
of the proposed algorithms is carried out in a calibrated camera framework, due
to a clear geometric connection between the calibrated and uncalibrated case
[10], the same approach and optimization schemes can be generalized with little
effort to the uncalibrated case as well. Details will be presented in future work.
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Discussion

Kenichi Kanatani: You compare your method with other techniques, but in
my view what you should really do is compare it with the theoretical accuracy
bound, the lower bound beyond which accuracy can’t be improved. For the
problems you have described so far it is very easy to derive this bound.
Jana Košecká: Theoretical accuracy is usually expressed in terms of the
Cramér-Rao bound, but there’s an alternative way to look at it. If one bases
the optimization on the epipolar constraint, it turns out that no matter what
you do, half of the variance always gets absorbed by the structure. You can
not do better than that — the error along the epipolar line gets absorbed by
the structure, so you can only improve the error perpendicular to the epipolar
line. One can even consider this as an alternative means of putting some lower
bound on the estimates using these kind of techniques. Also, Weng, Huang and
Ahuja [21] already did the comparision with the theoretical bound. Rather than
repeating this analysis, we preferred to give a complementary viewpoint.
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