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O-Minimal Hybrid Systems*
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Abstract. An important approach to decidability questions for verification algo-
rithms of hybrid systems has been the construction of a bisimulation. Bisimula-
tions are finite state quotients whose reachability properties are equivalent to
those of the original infinite state hybrid system. In this paper we introduce the
notion of o-minimal hybrid systems, which are initialized hybrid systems whose
relevant sets and flows are definable in an o-minimal theory. We prove that
o-minimal hybrid systems always admit finite bisimulations. We then present
specific examples of hybrid systems with complex continuous dynamics for which
finite bisimulations exist.
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Decidability.

1. Introduction

Hybrid systems consist of finite state machines interacting with differential equa-
tions. Various modeling formalisms, analysis, design, and control methodologies,
as well as applications, can be found in [AHS], [AKNSI1], [AKNS2], [GNRR],
[HS], and [M1]. The theory of formal verification is one of the main approaches
for analyzing properties of hybrid systems. The system to be analyzed is first
modeled as a hybrid automaton, and the desired property is expressed using a
formula from some temporal logic. Then model checking or deductive algorithms
are used in order to guarantee that the system model indeed satisfies the desired
property.

Verification algorithms are essentially reachability algorithms which check
whether trajectories of the hybrid system can reach certain undesirable regions of
the state space. Since hybrid systems have infinite state spaces, decidability of ver-
ification algorithms is very important. An important approach to decidability
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results for hybrid systems is the construction of special finite state quotients of the
original infinite state system called bisimulations. Bisimulations are reachability-
preserving quotient systems in the sense that checking a property on the quotient
system is equivalent to checking the property on the original system. Even though
the focus of this paper is on reachability properties, bisimulations preserve many
other complex properties expressible in branching time logics. In this approach,
showing that an infinite state hybrid system has a finite state bisimulation is the
first step in proving that verification procedures are decidable. In [AD] a finite
bisimulation was explicitly constructed for timed automata, and as a result reach-
ability questions for such systems are decidable. Timed automata were the basis
for showing that reachability for other classes of hybrid systems is decidable even
though they do not admit a finite bisimulation themselves (multirate, initialized
rectangular automata). These results as well as some undecidable questions are
described in [ACH'], [AD], [H1], [HKPV], and the references therein. Comput-
ing finite bisimulations is clearly related to the problem of obtaining discrete
abstractions of continuous systems which has been considered among others in
[ASL], [CKN], and [RO] as well as in [CW?2].

The common approach to obtaining bisimulations has been to utilize an algo-
rithm which refines an initial partition of the state space until it becomes com-
patible with the system dynamics and the property to be preserved. Using this
approach, there are three main issues that must be resolved:

1. When does the algorithm terminate after a finite number of iterations?

2. When does the resulting partition consist of a finite number of equivalence
classes?

3. Are all the steps of the algorithm constructive?

Resolving all three issues results in a decidable problem. Attacking the first two
issues has been solved either by explicitly providing an equivalence relation which
is checked to be a bisimulation (timed automata), or by transforming the problem
to one for which a bisimulation is known to exist (multirate, rectangular auto-
mata). The third issue is typically tackled using quantifier elimination techniques
from mathematical logic.

In this paper we tackle the first two issues for a large class of new hybrid sys-
tems. The third issue has been recently addressed in [LPY]. In order to answer the
first two questions, we need to identify classes of sets and flows of vector fields
with finite, global intersection properties. This is provided by the concept of o-
minimal (or order-minimal) theories in mathematical logic [PS], [vdD], [vdDM1],
[vdDM2], [W]. Using this concept, we introduce the notion of o-minimal hybrid
systems which are initialized hybrid systems whose relevant sets (guards, resets,
etc.) and flows are definable in an o-minimal theory. We then prove that o-minimal
hybrid systems always admit finite bisimulations. Examples show that relaxing
the notion of o-minimality quickly leads into pathological situations. We list var-
ious o-minimal theories and the corresponding hybrid systems that are definable
in them. This list captures hybrid systems with more complex continuous dy-
namics than those of timed automata but with more restrictive discrete dynamics.

In addition to generating more classes of hybrid systems with finite bisimula-
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tions, the importance of this paper can be summarized by the following:

1. The results presented provide a unified framework for decidability analysis
of hybrid systems.

2. Generation of more o-minimal theories immediately leads to new classes of
o-minimal hybrid systems.

3. Constructive results within o-minimal theories immediately lead to decid-
ability results.

By providing a purely model theoretic framework, we also extend the planar
results of [LPS1] and [LPS2].

The outline of the paper is as follows: In Section 2 we review the notion of bisi-
mulations of transitions systems. In Section 3 we define a general class of hybrid
systems and describe the bisimulation algorithm as it applies to hybrid systems.
Section 4 presents the notion of o-minimality from model theory which is used in
Section 5 in order to define o-minimal hybrid systems and prove the main theo-
rem. In Section 6 we list various classes of o-minimal hybrid systems, and finally
Section 7 contains some conclusions.

2. Bisimulations of Transition Systems

We adopt here the terminology of [H1] slightly modified for our purposes. A
transition system 7 = (Q, X, —, Qp, OF) consists of a (not necessarily finite) set Q
of states, an alphabet ¥ of events, a transition relation — = O x £ x Q, a set
Qo < Q of initial states, and a set Qr < Q of final states. A transition (¢;,0,¢>) €
— is denoted as ¢, — ¢. The transition system is finite if the cardinality of Q is
finite and it is infinite otherwise. A region is a subset P = Q. Given g € X we
define the predecessor Pre,(P) of a region P as

Pre,(P)={qe Q|Ipe Pand ¢ > p}. (2.1

Given an equivalence relation ~ = Q x Q on the state space one can define a
quotient transition system as follows. Let O/~ denote the quotient space. For a
region P we denote by P/~ the collection of all equivalence classes which inter-
sect P. The transition relation — . on the quotient space is defined as follows: for
01,0, € Q/~, O 2 O, iff there exist ¢, € O and ¢, € Q, such that ¢; > ¢».
The quotient transition system is then 7/~ = (Q/~,X, — ., Qo/~, Or/~).

Given an equivalence relation ~ on Q, we call a set a ~-block if it is a union
of equivalence classes.

Definition 2.1. The equivalence relation ~ is a bisimulation of T iff Q¢, QF are
~-blocks and for all ¢ € X and all ~-blocks P, the region Pre,(P) is a ~-block.
In this case the systems 7 and T/~ are called bisimilar.

We also say that a partition is a bisimulation when its induced equivalence re-
lation is a bisimulation. A bisimulation is called finite if it has a finite number of
equivalence classes. Bisimulations are very important because bisimilar transition
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systems preserve reachability properties in addition to other more complex prop-
erties expressible in branching time logics [H1]. Therefore, checking properties on
the bisimilar transition system is equivalent to checking properties of the original
transition system. This is very useful in reducing the complexity of various verifi-
cation algorithms where Q is finite but very large. In addition, if 7 is infinite and
T/~ is a finite bisimulation, then verification algorithms for infinite systems are
guaranteed to terminate. This approach was successfully applied to timed auto-
mata [AD]. It should be noted that the notion of bisimulation is analogous to the
notion of dynamic consistency [CW1], [CW2], [PLS]. If ~ is a bisimulation, it
can be easily shown that if p ~ ¢, then

Bl: pe Qriff ge Qr, and p e Qo iff ¢ € Qo,
B2: if p 5 p/, then there exists ¢’ such that ¢ — ¢’ and p’ ~ ¢'.

Based on the above characterization, given a transition system 7, the following
algorithm computes increasingly finer partitions of the state space Q. If the algo-
rithm terminates, then the resulting quotient transition system is a finite bisimula-
tion. The state space Q/~ is called a bisimilarity quotient.

Algorithm 1 (Bisimulation Algorithm for Transition Systems)

Set: O/~ = {00 N Or, Q0\Or, Or\Qo, O\(Qo v Or)}
while: 3P, P’ € Q/~ and o € X such that ¢§ # P n Pre,(P’) # P

set: P| = P n Prey(P'), P, = P\Pre,(P')
refine: 0/~ = (O/~\{P}) L {P1, P}

end while:

Notice that each time the partition Q/ ~ is refined, the transitions are updated to
account for the newly subdivided sets. When checking specific properties, such
as reachability to the set Qp, one might simplify the algorithm by starting with a
coarser partition, for example, {Qr, Q\QOr}. In general one should include in the
initial partition all additional sets relevant to the verification problem of interest
(such as safe or unsafe regions). The larger the initial class of sets the more diffi-
cult it is for the algorithm to terminate.

3. Bisimulations of Hybrid Systems
We focus on transition systems generated by the following class of hybrid systems.

Definition 3.1. A hybrid system is a tuple H = (X, X, Xr, F, E, I, G, R) where:

e X = Xp x X¢ is the state space with Xp = {q1, ..., ¢,} and X¢ a manifold.

Xo € X is the set of initial states.

e Xr < X is the set of final states.

F : X — TX¢ assigns to each discrete location ¢ € X a vector field F(q,-).

e £ < Xp x Xp is the set of edges (which induce discrete transitions as shown
below).
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e [: Xp — 2% assigns to each location a set I(g) < X called the invariant.

e G:E — Xp x 2% assigns to e = (q1,¢2) € E a guard of the form {¢q} x U,
Uc I(q1).

e R:E— Xp x 2%c assigns to e = (¢q1,¢92) € E a reset of the form {g,} x V,
V< I(Q2)

Trajectories of the hybrid system H originate at any (¢, x) € Xy and consist of
either continuous evolutions or discrete jumps. Continuous trajectories keep the
discrete part of the state constant, and the continuous part evolves according to
the vector field F(q,-) as long as (the continuous part of) the trajectory remains
inside the invariant set I(q). If the trajectory exits /(g), then a discrete transition
is forced. If, during the continuous evolution, a state (g, x) € G(e) is reached for
some e € E, then a discrete transition induced by e is enabled. The state of the hy-
brid system may then instantaneously jump from (¢, x) to any (¢, x’) € R(e) and
the continuous part of the trajectory then evolves according to the vector field
F(q',-). Notice that even though the continuous evolution is deterministic, the
discrete evolution may be nondeterministic. The discrete transitions allowed in
our model are more restrictive than those in initialized rectangular automata
[ACHT], [AD], [PV]. In rectangular automata, the continuous dynamics are
decoupled and each component of the continuous part of the state may be either
reset nondeterministically to an interval or remain the same. If, however, the
dynamics of a particular component changes, then the reset map cannot be the
identity map on that component. In this paper we restrict the reset maps in order
to allow complex and fully coupled dynamics. Finally, we assume that our hybrid
system model is nonblocking, that is, from every state either a continuous evolu-
tion or a discrete transition is possible.

Example 3.2. A typical hybrid system is shown in Fig. 1. The state space
is {Q1,02} x R?>. The initial states are of the form {Q1} x {(x,y) e R?|
0 <x< 1,1 < y<?2}. The discrete dynamics consists of two transitions along
the edges e; = (Q1,02) and e, = (Q2, Q1). Within location Q1, the continuous
variables x and y evolve according to a differential equation as long as (x, y) €
1(01) = {(x,y) e R? | x < 5}. Once x > 5, a discrete transition along e; is forced
and x, y are nondeterministically reset to values in fixed sets. The system then

0<X<1

\1<Y<2

X>5 —> 0<X<1Y=1
el

| Y<10 —> X=0 Y=1
‘ e2

Fig. 1. A typical hybrid automation.
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evolves according to the vector field associated with Q2. The evolution from that
point on is similar. We would like to find out whether the system will reach the set
of final states {0} x {(x,y) e R? | x < —5}.

Every hybrid system H = (X, Xy, X, F, E,I, G, R) generates a transition sys-
tem T = (Q7274)7 QO} QF) by SEtting Q = Xa QO = XO: QF = XF; X=Eu {T}:
and — = ({

e £) U = where:

Discrete Transitions: (¢,x) — (¢, x') for e E iff (¢,x) € G(e) and (¢/,x') €
R(e).

Continuous Transitions: (g1, x/) 5 (g2, x2) iff ¢ = ¢> and there exists § > 0 and
a curve x : [0,0] — M with x(0) = x, x(0) = x, and for all 7 € [0,0] it satis-
fies x' = F(q1,x(¢)) and x(¢) € I(q1).

The continuous 7 transitions are time-abstract transitions, in the sense that the
time it takes to reach one state from another is ignored. Having defined the con-
tinuous and discrete transitions — and — allows us to define formally Pre,(P)
and Pre,(P) for e € E and any region P = X using (2.1). Furthermore, the struc-
ture of the discrete transitions allowed in our hybrid system model result in

%) if PnR(e)=,

Gle) if PnR(e)#J, 3D

i~ |

for all e € E and regions P. Therefore, if the sets R(e) and G(e) are blocks of any
partition of the state space, then no partition refinement is necessary in the bisi-
mulation algorithm due to any discrete transitions. This fact, in a sense, decouples
the continuous and discrete components of the hybrid system. In turn, this implies
that the initial partition in the bisimulation algorithm should contain the invari-
ants, guards, and reset sets, in addition to the initial and final sets. This allows us
to carry out the algorithm independently for each location.

More precisely, define for any region P = X and g € X the set P, = {x € X¢:
(¢, x) € P}. For each location g € X consider the finite collection of sets

Ay ={1(q), (Xo),, (Xr),} v {G(e),, R(e), : e € EY}, (3-2)

which describes the initial and final states, guards, invariants, and resets asso-
ciated with location ¢. Let %, be the coarsest partition of X compatible with
the collection .27, (by compatible we mean that each set in .7, is a union of sets in
). The (finite) partition %, can be easily computed by successively finding the
intersections between each of the sets in ./, and their complements. We define
(q,%,) to be the set {{q} x P|P e ,}. These collections (g, %) will be the start-
ing partitions of the bisimulation algorithm. In addition, since by definition
Pre.(P) applies to regions P = X, but not to its continuous projection P,, we de-
fine for ¥ = X¢ the operator Pre,(Y) = (Pre:({¢} x Y)),. The general bisimula-
tion algorithm for transition systems then takes the following form for the class
of hybrid systems that are considered in this paper.
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Algorithm 2 (Bisimulation Algorithm for Hybrid Systems)

Set: X/~ = J,(¢.%)
for: g € Xp
while: 3P, P’ € ¥, such that ¢J # P n Pre,(P') # P
Set: Py = P n Prey(P'); P, = P\Pre,(P’)
refine: ¥, = (4, \{P}) U {Py, P>}
end while:
end for:

It is clear from the structure of the bisimulation algorithm that the iteration is
carried out independently for each discrete location. In order for the above algo-
rithm to terminate, the partition refinement process must terminate for each dis-
crete location g € Xp. It therefore suffices to look at one continuous slice of the
hybrid system at a time and see whether we can construct a finite bisimulation
that is consistent with all relevant sets of each location ¢ as well as with the tra-
jectories of the vector field F(q, -).

The following example shows that, even in apparently simple situations, Algo-
rithm 2 does not terminate.

Example 3.3. Consider the hybrid system with only one discrete location ¢ and

let F be the linear vector field (

1
) 1>x on R?. Assume the partition of R?

consists of the following three sets (see Fig. 2): Py = {(x,0): 0 < x <4}, P, =
{(x,0) : =4 < x < 0}, P; = R*\(P; U P,). The trajectories of F are spirals mov-
ing away from the origin. The first iteration of the algorithm partitions P, into
Py =P, nPrey(P1) ={(x,0) : x; <x <0} and P,\Pre,(P;). Here x; < 0 is the
x-coordinate of the first intersection point of the spiral through (4,0) with P;.
The second iteration subdivides P into Ps = P N Pre,(Ps) = {(x,0) : 0 < x < x»}

\ NZM
AR /
AR Z, ,
4

\

Q\ 2 /; ;;
ok NN~
\ NIl ]
\\ N S22
NN Ee Al
NN LI AN
NSSEEIREL

Fig. 2. Algorithm 2 does not terminate.
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and P\ Pre,(P4) where x, > 0 is the x-coordinate of the next point of intersection
of the spiral with P;. This process continues indefinitely since the spiral intersects
P; in infinitely many points, and therefore the algorithm does not terminate.

From the above example it is clear that the critical problem one must investi-
gate is how the trajectories of F(g, -) interact with the sets . for a single location
¢. This requires that the trajectories of the vector field F(q,-) have “nice” inter-
section properties with such sets. Since the goal is to obtain finite partitions, it will
become important that we restrict the study to classes of sets with global “finite-
ness” properties, for example, sets with finitely many connected components. In
the next section we identify such classes of sets and vector fields using the concept
of o-minimality from model theory.

4. Model Theory

This section provides a brief introduction to mathematical logic and model
theory. A clear expository survey of model theoretic results that are relevant to
this paper is [M2]. For a more detailed treatment of model theory the reader is
referred to [H2] and [vD].

4.1. Languages and Formulas

A language is a set of symbols separated into three groups: relations, functions,
and constants. The sets % = {<,+, —,{0,1}}, Lr = {<,+,—,-,C}, and L, =
{<,+,—,,exp, C} are examples of languages where < (less than) is the rela-
tion, + (plus), — (minus), - (product), and exp (exponentiation) are the functions,
and 0 (zero), 1 (one), and the elements of set C are the constants.

Let " = {x, y,z,x0, X1, ...} be a countable set of variables. The set of terms of
a language is inductively defined as follows. A term 6 is a variable, a constant, or
F(6y,...,0,), where F is an m-ary function and 0;, i = 1,...,m, are terms. For
instance, x — 2y + 3 is a term of %) since any integer can be obtained by adding
or subtracting the constant 1. Any polynomial with coefficients in C is a term
in gR-

The atomic formulas of a language are of the form 6, = 0,, or R(0,,...,0,),
where 0;, i = 1,...,n, are terms and R is an n-ary relation. For example, xy > 0
and x? + ¢ = d (with ¢,d € C) are atomic formulas of #x. The set of ( first-order)
Jformulas is recursively defined as follows. Every atomic formula is a formula. If ¢,
and ¢, are formulas, then ¢; A ¢,, ¢, VX : ¢, or 3x : ¢, are formulas where x is
a variable, A (conjunction) and — (negation) are the boolean connectives, and V
(for all) and 3 (there exists) are the quantifiers.

If C = Z, then examples of Zg-formulas are Vx Vy:xy >0, Ix: x> -2 =0,
and 3w : xw? + yw + z = 0. The occurrence of a variable in a formula is fiee if it
is not inside the scope of a quantifier; otherwise, it is bound. For example, x, y,
and z are free and w is bound in the last example. We often write ¢(xy,...,x;,) to
indicate that xi, ..., x, are the free variables of the formula ¢. A sentence of ZLr is
a formula with no free variables. The first two examples are sentences.
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4.2. Models

A model of a language consists of a nonempty set S and an interpretation of the
relations, functions, and constants. For example, using S = R, C = R, and the

usual interpretation of the symbols <, +, —, -, provides a model of #r which we
denote by (R, <,+,—,:). A set Y = S" is definable in a language if there exists a
formula ¢(x,...,x,) such that ¥ = {(ai,...,a,) € S"|p(ai,...,a,)}. For exam-

ple, over IR, the formula x> — 2 = 0 defines the set {v/2, —v/2}. A function f is
definable if its graph is a definable set. The collection of definable sets is closed
under Boolean operations and taking forward or inverse images under definable
functions.

4.3. Theories

A theory is a subset of sentences. Any model of a language defines a theory: the
set of all sentences which hold in the model. By abuse of notation the theory
(R, <,+,—,-) refers to the collection of formulas of ¥z which are true in the
model (and similarly for other languages). While many of the concepts here apply
to more general models, in all that follows we consider only models over R (and
assume that all real numbers are constants).

Definition 4.1. The theory of % is o-minimal (order minimal) if every definable
subset of R is a finite union of points and intervals (possibly unbounded).

The class of o-minimal theories is quite rich. In [T] it was shown that the
theory of the real numbers as a real closed field, (IR, <,+, —,-), admits elimina-
tion of quantifiers. This, together with an analysis of the structure of sets definable
by quantifier free formulas shows that the theory is o-minimal. Tarski was also
interested in the extension of the theory of the real numbers by the exponential
function, Rex, = (R, <, +, —, -, exp) (i.e., there is an additional symbol in the lan-
guage for the exponential function). While such theory does not admit elimination
of quantifiers, it was shown in [W] that such theory is o-minimal. Another im-
portant extension is obtained as follows. Assume fis a real-analytic function in a
neighborhood of the cube [—1,1]" = R". Let f : R” — R be the function defined
by

f(x) _ {f(x) if xel[-1,1]",

1o otherwise.

We call such functions restricted analytic functions. These functions are useful to
describe the behavior of some periodic trajectories. For example, the functions sin
and cos restricted to a period are sufficient to define closed orbits of some linear
systems (see Section 6.3). The theory Reyp an = (IR, <,+, —,-,exp, {f}) is an ex-
tension of IR., where there is a symbol for each restricted analytic function.
In [vdDM1] it was shown that Reyp an is also o-minimal. More recently it was
shown in [S2] that so-called Pfaffian extensions of o-minimal theories are also
o-minimal.
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Table 1. O-minimal theories.

Name Theory Sample definable sets Sample definable trajectories
Ryin (R,<,+,-) Polyhedral sets Linear trajectories

Ry (R, <,+,—,") A Semialgebraic sets Polynomial trajectories
R, (R, <,+,—,{f}) Subanalytic sets Polynomial trajectories
Reyp (R, <, +,—,-,exp) X Semialgebraic sets Exponential trajectories
Rexp, an (R, <,+,—,-,exp,{f}) Subanalytic sets Exponential trajectories

Table 1 summarizes o-minimal theories (even very recent ones) along with some
examples of sets and vector field trajectories that are definable in these theories.
We examine the connection between these o-minimal extensions and different
classes of a hybrid system in Section 6.

Many geometric properties of the above theories can be found in [vdDM?2] and
the book [vdD]. We present below those properties of o-minimal theories that are
used in the proof of the main theorem.

We assume a theory which is an extension of (IR, <, 4+, —) is given. Definability

refers to this theory.

Definition 4.2. We define a cell in R” inductively as follows:

1. The cells in R are just the points {c} with ¢ € IR and the open intervals

(a,b), —0 <a<b < +o0.

2. Let C = R"beacell and let f,g : C — IR be definable continuous functions
such that f <g on C. Then (f,g) ={(x,r)eCxR:f(x) <r<g(x)} <
R™! is a cell in R""!'. Also, for each definable function f: C — IR, the
graph of f and the sets (—o0,f) ={(x,71) e CxR:r< f(x)}, (f,+o0) =
{(x,r) e C xR : f(x) <r}, and C x R are cells in R""!,

A geometric view of cells is as fibers over their projections, as shown in Fig. 3.

N .

Fig. 3.

Inductive definition of cells.
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Fig. 4. TIllustration of the Cell Decomposition Theorem.

Theorem 4.3. Assume we are given an o-minimal theory which is an extension of
(R, <, 4+, —). Then:

1. (Cell Decomposition) Given any finite family {Ay,..., A} of definable sub-
sets of R" there exists a finite partition of R" into cells so that each A; is a
union of such cells [KPS], [vdD].

2. Any definable set has a finite number of connected components, each of which
is a definable set. Moreover, if A = R" x R is definable, then there exists a
positive integer N such that for each x € R" the number of connected compo-
nents of Ay ={teR: (x,t)e A} is less than N. (A consequence of cell
decomposition.)

3. If A is definable and connected, then it is arcwise connected, that is, every
two points in A can be connected by a continuous definable curve [vdD].

4. (Monotonicity Theorem) Let f : R — IR be a definable function. Then there
are points ay < --- < ax in R such that on each subinterval (a;,aj11) with
ag = — 00, dayy1 = +00, the function f'is either constant, or strictly monotone
and continuous [vdD].

The above Cell Decomposition Theorem is illustrated in Fig. 4, where a square
and an ellipsoid are decomposed into 5 two-dimensional cells, 12 one-dimensional
cells, and 10 zero-dimensional cells. The Cell Decomposition Theorem is used to
provide the initial partition of Algorithm 2. It is also the first step in the proof of
the main theorem.

Another application of o-minimality in a system theoretic context can be found
in [S1], where o-minimality is used for input/output distinguishability of neural
networks.

5. O-Minimal Hybrid Systems

In this section we prove the main theorem and give specific examples of new
classes of hybrid systems which admit a finite bisimulation. We first review the
notion of complete vector fields and their flows.
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Definition 5.1. Let F:R" — IR” be a smooth vector field on R”. For each
x € R”, let y.(¢) denote the integral curve of F which passes through x at 1 = 0,
that is, y,.(¢) = F(y.(¢)) and y,(0) = x. We say that F is complete if, for every x,
7¢(?) is defined for all 7. For such an F, the flow of F is the function ® : IR" x
R — IR" given by ®(x, 1) = y.(7).

In all subsequent analysis all vector fields are assumed smooth. We can now
define the class of hybrid systems studied in this paper.

Definition 5.2. A hybrid system H = (X, Xy, Xr,F,E,I,G,R) is said to be o-
minimal if
e Xc =R" (and thus X = Xp x R"),
e for each g € X the vector field F(q,-) is complete, and
* for each g € X the family of sets </, = {I(q), (Xo),, (XF),} v {G(e),. R(e), :
e€ E} and the flow of F(g,-) are definable in an o-minimal extension of
(R, <, +,—).

The main theorem below uses the finiteness properties described in the previous
section to construct finite bisimulations for o-minimal hybrid systems.

Theorem 5.3. Every o-minimal hybrid system admits a finite bisimulation. In par-
ticular, the bisimulation algorithm, Algorithm 2, terminates for o-minimal hybrid
systems.

Proof. Before the detailed proof, we begin by providing a general outline. We
assume a fixed o-minimal extension # of (IR, <,+,—}, in which all relevant
objects are definable, is given. From now on, definable means definable in . We
start by applying the Cell Decomposition Theorem on each family .«7,. As men-
tioned in Section 3, due to (3.1), the special form of Pre,(P) shows that no parti-
tion refinement is necessary in the bisimulation algorithm due to any discrete
transitions e € E. This fact allows us to carry out the algorithm independently for
each location and construct the bisimulation quotient on each set {¢} x X¢ sepa-
rately. Therefore, we assume a finite partition £ of R” into definable sets and a
vector field F whose flow is definable are given. Moreover, we drop the depen-
dence on ¢ and simply write Pre for Pre,. )

We then perform an initial finite refinement £ of 2 which has the property that
the intersection of any trajectory with each set has one connected component. Be-
cause of this property we can use a slight variation of the iterative step of the
bisimulation algorithm to construct a finite partition £ which is a further refine-
ment, and satisfies the bisimulation condition, namely, that, for any B € 4, the
set Pre(B) is a finite union of sets in #. This guarantees that the bisimulation al-
gorithm terminates and will conclude the proof.

To start the detailed proof, first notice that if /' : R — IR” is continuous, peri-
odic, and not constant, then fis not definable. Indeed, for such f there is y € R”
such that the set R = {x € R : f(x) = y} consists of an infinite number of isolated
points. On the other hand, if f is definable, then so is R, but this contradicts
o-minimality.
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Let ®(x,7) = y.(f) denote the flow of F. Since this is definable by hypothesis,
we conclude from the above comment that, for each x € R", y.(-) is either con-
stant or injective (injectivity follows by uniqueness of solutions of differential
equations). We need the following lemma.

Lemma 5.4. Let F be as above, and let y be an integral curve of F. Define
I' =Im(y) = {y(¢) : t € R}. Let S be a definable set and let C be a connected com-
ponent of T nS. If ty,t; € R are such that y(ty),y(t1) € C, then y(t) € C for all
fh<1<1.

Proof. Since C is definable and connected, it is also arcwise connected. Let f :
[0,1] — C be continuous and such that $(0) = y(%) and p(1) = y(z;). If y is con-
stant there is nothing to prove. We can then assume y is injective and F(y(z)) # 0
for all 7. Therefore, the restriction of y to any compact interval [a, b] is a homeo-
morphism between [a,b] and y([a,b]). If B([0,1]) < y(|a, b]), then y~!' o B is con-
tinuous and so y~' o f([0,1]) is an interval containing #y, . Therefore, for all
t€[to, t1], () € ([0, 1]) = C as desired.

Assume then that £([0, 1]) is not contained in the image under y of any finite
interval. Hence there exist a sequence {#,} with |f,| — oo and y(¢,) € B([0,1])
for all n. By taking a subsequence if necessary we may assume that y(z,) —
x € B([0,1]) and either ¢, — oo or t, — —oo. Therefore, X = y(7) for some 7 € RR.
We will show that this is a contradiction.

Since each component y;(7) of y(¢) is a real-valued definable function, it is
eventually monotone (by the Monotonicity Theorem). Then, assuming for sim-
plicity #, — oo, we have lim, ., y;(t) = X; and by continuity lim, .. F(y(?)) =
F(x). Since j;(1) = Fj(y()), lim,, 7;(¢) exists, and must therefore equal zero.
This contradicts the fact that F(y(7)) # 0. [ |

We now continue with the proof of the main theorem. Given a set S, we define
H={(x,1) e R"!: ®(x,¢) e S}. If S is definable, then H is definable. Moreover,
by o-minimality there exists Ng € N such that the number of connected compo-
nents of H, = {r: (x,7) € H} is less than N for all x € R". This implies that if S is
definable and T, denotes the trajectory of F passing through x, then the number of
connected components of Iy 1S is bounded above by a constant independent of
x. We choose N € N larger than the corresponding Ng for all sets S € 2.

We begin the construction of the partition # by subdividing each set S in Z as
follows. Let

So={xeS:Vr=>07y.(¢t) e S},
S ={xeS\So:Vr>0(y,(2) ¢ S\So = Vt' >t y.(') ¢ S\So)},

S,': {XES\(S()U US,;]) :
Ve=0 (yc(t) ¢ S\(Sou -+ USi1) = V' =ty (') ¢ S\(So L -+ USi1))}
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The set S; is clearly definable for every i. For i > 1 the set S; consists of those x
for which y, leaves the set S\(Sp U --- U Si—1) and never returns to it.

Claim. S; = fork > N.

To prove the claim it suffices to show that if x € S; with i > 1, then I, n S has at
least i connected components. To prove this we use a couple of lemmas.

Lemma 5.5. Let S and S;, i > 0, be as above. Let I be an interval and let y(-) be
an integral curve of F such that y(I) = S. If y(to) € S; for some tyel, then

Proof. We proceed by induction. The statement is clearly true for S;. Assume
it holds for i<k. Let y(I) =S, toel, and y(ty) € Sk+1- Then p(f) € S\
(Sou - USk). For any tel, if y(t) e Spu --- U S, then there is j < k such
that y(¢) € S;. By the inductive hypothesis, y(/) < S;, but this contradicts y(t) ¢
S;. Therefore we have y(1) = S\(Sou --- U Sk). Let te I and ' > ¢ be such that
(") ¢ S\(Sou -+ USk). Then ¢ ¢ I and so ¢’ > 1. Since (1)) € Sk+1 we con-
clude that for any " > ¢ we get p(¢") ¢ S\(So v --- USk). This shows that
y(t) € Ski1. |

Lemma 5.6. If xeS; for i >2, then there exist t| >s] > 1 >+ > 87>
tic1 > si-1 > 0 such that y(s;) ¢ S and y (t;) € S; for j=1,...,i—1.

Proof. We proceed by induction. Let x € S,. Then x e S\(Sou Si) = S\Si.
Therefore there exist 7> s> 0 such that y.(s) ¢ S\So and y () € S\Sp. We
cannot have y.(s) € Sy because then we would also have y.(¢) € Sy. Therefore
7.(s) ¢ S. We set 51 =s. If y.(7) € Si, then we set #; = r. Otherwise, there exist
t' > s >t such that y.(s") ¢ S\Syp and y,.(¢') € S\Sp. Since x € S», y.(s) ¢ S\
(Sou S1), and ¢’ > s we must have y, (¢') ¢ S\(So v S1). Therefore y,(¢') € Sy and
we set t; = t'. This completes the proof for the case i = 2.

Assume now the conclusion holds for 7 and let x € S;;;. In particular, x € S\S;,
and there are 7> s> 0 such that y.(s) ¢ S\(Sou --- uSi_1) and y.(¢) € S\
(Sou ---uSi_y). If y.(s) e S; for some j<i—1and y.(5)e S forall s <5<t
then Lemma 5.5 would imply that y (¢) € S; which is not true. Therefore there
exists 5, s < § < ¢, such that y.(5) ¢ S. We set s; = 5.

If y.(r) € S;, then we set t; = t. Otherwise, there exist ¢/ > s’ > ¢ such that
() ¢S\ (Sou ---uSi-1) and y.(¢') e S\(Sou --- US;_1). Since xe Sy,
7.(8) € S\(Sou --- U S;), and ¢ > 5 we must have y (t') ¢ S\(Souv --- US)).
Therefore y.(¢') € S; and we set t; = ¢'.

By the inductive hypothesis there exist 7 > §; > -+ > f;_1 > 5;_1 > 0 such that
Vo)1) €S, 7, 1) (5) €S), for j=1,...,i— 1. Setting s; = 5; + t;, t; = 1; + ¢; for
j=1,...,i—1 we get the desired conclusion. |

The last lemma together with Lemma 5.4 proves that if x € S;, then I, n S has
at least i connected components. This, in turn, proves the claim.
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Notice that Lemmas 5.4 and 5.5 together imply that if x € S;, then I'y n S; has
exactly one connected component.

By carrying out the subdivision into the sets S; for all S € 2 we obtain a new
finite partition 2 of R” with the property

(P) For each Se 2, and each trajectory y of F such that (o), y(t;) € S we
have y(t) € S for all  with ty <t < t;. In particular, for each x € S, the set
Iy n S has exactly one connected component.

We denote by p = p(#) the number of sets in 2 and write # = {S;:i=1,...,p}.
We introduce two functions, / and C, acting on pairs of sets, defined by

I(A,B) = A ~ Pre(B),
C(A, B) = A\Pre(B).

It is clear that if A and B are definable, then I(A, B) and C(A4, B) are definable.
Notice also that for each 4, B the sets (A, B), C(A, B) form a partition of 4.
For each i, 1 <i < p, consider all the partitions of S; defined by

I(Si7Q(S/1’Q( Iza"'aQ( k-1 /k) )))7 (5'1)
(Sva( /mQ( jas et 7Q( k-1 ]A) )))v (5'2)

where Q is either Jor Cand 1 < j, <pfor/=1,...,k and k < p. This is a finite
collection of finite partitions. We let # denote the coarsest partition of R” com-
patible with all such partitions.

Claim. % is a bisimulation.

The intuitive basis for this proof is the fact that the partitions constructed so far
are done ‘“‘along the flow of F.” That is, two sets in % which are subsets of the
same set in 2 cannot be connected by a trajectory of F.

To prove the claim first notice that the sets in % are (finite) intersections of
sets of the form (5.1) or (5.2). Notice also that by construction # is a refinement
of 2.

To check the bisimulation property let B %, B < S; € 2, be written as

m

B= ()P,

where each P; is of the form (5.1) or (5.2). We want to prove first that

m
Pre(B) = () Pre(P)). (5.3)
=1
The inclusion Pre(B) = (), 1—; Pre(Py) is straightforward. For the other one let

xe ﬂ[ | Pre(Pr). For each / there exists #; > 0 such that y,() € P;. Each set P; is
of the form I(S;, A;) or C(S;, A;) for some A;’s. Hence, y.(1;) € S; for all . We
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now want to show that indeed y,.(#;) € B for all ;. Consider the following property
of a set A4:

(Q) For any trajectory y of F, if y(sy) € A = S € 2, then, for all s with y(s) € S,
y(s) € A.

We show that if a set 4 has Property (Q), then so do I(S’,4) and C(S’, 4) for
any S’ € 2. Let y(so) € I(S’,A) = S’. Then y(s) € S’ and there exists > sy such
that y(¢) € 4. If y(¢) € S’, then we have S = S’ since both belong to #. By Prop-
erty (Q) y(s) € A = Pre(A) for all s such that y(s) € S’. Therefore y(s) € I(S’, 4)
for all such s. On the other hand, if y(z) ¢ S, then AnS' = SnS' = . Let
y(s) € S’. By Property (P) applied to S’ we get that s < r. However, then y(s) €
Pre(A) n S’ as desired. The proof for C(S’, 4) is analogous.

Proceeding by induction it is easy to show that the sets P; have Property (Q)
and this completes the proof of (5.3).

Notice also, that Pre(A u B) = Pre(A) u Pre(B) for all sets 4, B.

To complete the proof that 4 is a bisimulation we only need to show that for
each /, and each set S € 2, the set S Pre(P;) is a union of sets in . The set
S n Pre(P;) = I(S, Py) is of the form (5.1) with k < p + 1. If kK < p + | we already
know that I(S, P;) is a union of sets in %. We only need to consider the case
k=p+1

There are two possibilities for 1(S, P;):

1. There are two or more occurrences of Cin I(S, Pj).
2. There are p + 1 occurrences of 7 in I(S, P;), and, therefore, at least one
S; € 2 is repeated as an argument of /.

In case 1 the following two formulas, and boolean algebra, show how to rewrite
1(S, P;) either with fewer terms or using only I:

C(S3,C(S,,81)) = C(83,8,) W I(S5,1(S3,S1)), (5.4)
C(S83,1(52,81)) = C(S3,8) W I(S3, C(Sa, 1)) (5.5)

Both formulas can be proved with arguments similar to the ones above, relying on
Property (P). We give the proof of formula (5.4), the other one is analogous. That
the left side is included in the right side does not require any special property of
the sets S;. Indeed, x € C(S3, C(S2,S1)) = S3\Pre(S>\ Pre(S1)) means

xeSsA(Vi= 00y (1) ¢Sy v (7.(2) € SyAt’ = t(y, (1)) € S1)))).

Therefore, if, for all £ >0, y,(¢) ¢ Sz, then x € S3\Pre(S2). On the other hand,
if there is 7 > 0 such that y.(¢) € S; and ' > ¢ such that y.(¢') € S|, then x e
Pre(Sy n Pre(S1)) = I1(S3,1(S,,S1)) and the inclusion is proved.

For the other inclusion, first notice that C(S3,S2) = S3\Pre(S:2) < S5\
Pre(Sz\Pre(Sl)) = C(S3, C(Sz, Sl)) Let now x e 1(53,1(S2, Sl)) So x e S3 and
there exist #' > ¢ > 0 such that y (7) € S> and y.(¢') € S;. To show the desired in-
clusion we need to show that, for all /" >0, y.(¢") ¢ S2\Pre(S;). We do so by
contradiction. Suppose there exists " > 0 such that y.(¢") € S>\Pre(S;). Since
y.(t") € S1 and y,.(¢") ¢ Pre(S1) we must have t” > ¢’. Moreover, using y,(7) € S,
(") €S, t <t' <¢", and property (P) applied to S» we get y,.(¢') € S». Since
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the S;’s form a partition and y,.(¢') € S| N S, we also get S; = S,. However, then
S>\Pre(S)) = & which contradicts y,.(¢”) € S\ Pre(S1). This concludes the proof
of the inclusion and of formula (5.4).

Finally, we consider case 2. If the two occurrences of the same S; are consecu-
tive, then the expression may be rewritten with fewer terms (1(S;,1(S;,4)) =
I(S;, A) for any set A). If the occurrences of S; alternate with a different .S;, then
we use Property (P) to conclude that I(S, P;) = J (since I(S;, 1(S;, S;)) = & for
i # j). This concludes the proof that 4 is a bisimulation. |

In the next section we list various classes of o-minimal hybrid systems.

6. Classes of O-Minimal Hybrid Systems

In this section we apply Theorem 5.3 to several special classes of o-minimal
hybrid systems. For each o-minimal theory of Table 1, we provide examples of
definable, o-minimal hybrid systems.

6.1. Ry, = (IR, <, +, —)

The definable sets in this theory capture polyhedral sets whereas the definable
flows capture linear flows. It is a well-known fact that this theory is not only
o-minimal but also decidable. Therefore, the definable o-minimal hybrid systems
do not only admit finite bisimulations but there is also an effective procedure
to compute them. This immediately leads to decidability of reachability for
o-minimal hybrid systems defined in IRy,. In particular, it captures timed auto-
mata [AD] in the special case where all reset maps are constant.

6.2. Rye = (R, <, +,—,")

It was shown in [T] that R, is decidable. In fact, the decision procedure
consisted of two parts: first an algorithm for eliminating quantifiers, and second
an algorithm for deciding quantifier free formulas. Because of these results,
the definable sets in Ry, (with parameters) are the semialgebraic sets, which
are defined as Boolean combinations of sets of the form {x: p(x) <0} and
{x: p(x) =0} where p(x) is a polynomial. The definable flows in this theory
are semialgebraic. Therefore, the o-minimal hybrid systems corresponding to this
theory are hybrid systems H where all sets and flows are semialgebraic. Moreover,
if all polynomials involved in the description of the hybrid system have rational
coefficients, we obtain a new class of decidable hybrid systems.

The o-minimality of this theory can also be used to show the existence of finite
bisimulations in special cases when the flow is not definable. This was illustrated
in [LPS1] for the case of planar hybrid systems whose vector fields admit defin-
able Hamiltonians. This captures the decidability result of [CV].

6.3. Ry = (R, <,+, - {/})

In order to describe the definable sets in this theory, we need the notions of semi-
analytic and subanalytic sets. We provide below an informal definition of these
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notions. For precise definitions and properties the reader is referred to [BM]. We
say that a bounded subset S of IR” is semianalytic in R” if for every x € IR” there
exists a neighborhood U of x such that U n S is a boolean combination of sets of
the form {x: f(x) < 0} and {x: f(x) = 0} where fis an analytic function on U.
Roughly speaking, a local description of a semianalytic set is analogous to that of
a semialgebraic set with analytic functions replacing polynomials. A bounded
subset S of IR" is subanalytic in R” if it is the image of a relatively compact semi-
analytic set 7 under an analytic map (defined on T). The bounded subanalytic
sets in IR” are definable in this theory.

Even though polynomial flows are definable in this theory, since the functionsf
are zero outside a compact set, these functions cannot be used to define complete
flows. However, the Pre operator corresponding to some periodic flows may still
be definable. Consider, for example, a hybrid system H whose vector fields are
diagonalizable linear vector fields with purely imaginary eigenvalues and all rele-
vant sets are definable in R,,. Since the restriction of sin on [—, 7] is definable,
the Pre operator corresponding to F is definable. This leads to the following theo-
rem which generalizes the planar result in [LPS1].

Theorem 6.1. Let H be a hybrid system for which all relevant sets are (bounded)
subanalytic and all vector fields are diagonalizable linear vector fields with purely
imaginary eigenvalues. Then H admits a finite bisimulation.

6.4. IRexp = (]Rv <,+,—, -,exp)

The main difference between Ry, and the previous theories, besides enriching the
class of definable sets, is the fact that the symbol exp represents a globally defined
function. This allows new classes of definable flows. In particular, the flows of
linear vector fields with real eigenvalues are definable. The following theorem is
then a special case of Theorem 5.3.

Theorem 6.2. Let H be a hybrid system for which all relevant sets are semi-
algebraic and all vector fields are linear with real eigenvalues. Then H admits a
finite bisimulation.

It is not known if the theory of R, is decidable, although in [MW] it was shown
that it would be a consequence of Schanuel’s conjecture in number theory.

6.5. Rexpan = (R, <, +, —, - exp, {/})

This theory extends both R,, and Rep,. We can therefore combine Theorems 6.1
and 6.2 to obtain the following result.

Theorem 6.3. Let H be a hybrid system for which all relevant sets are (bounded)
subanalytic and all vector fields are of one of the following two forms:

o Linear vector fields with real eigenvalues.
o Diagonalizable linear vector fields with purely imaginary eigenvalues.

Then H admits a finite bisimulation.
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The above theorem extends the planar results in [LPS1] to IR”. Note that relaxa-
tions of Theorem 6.3 would allow spiraling, linear vector fields which are not de-
finable in Reyp, an. As was shown by Example 3.3, such systems, in general, do not
admit finite bisimulations.

6.6. Other Extensions

It is shown in [S2] that extensions of o-minimal theories by Pfaffian functions are
also o-minimal. While this theory provides new globally defined functions, there
are no easily described classes of vector fields whose flows are definable in it. The
search for such classes is a topic for current research.

7. Conclusions

In this paper we presented a unified framework for tackling decidability questions
of hybrid systems. We introduced the notion of o-minimal hybrid systems as
initialized hybrid systems whose relevant sets and flows are definable in an o-
minimal theory. We showed that all o-minimal hybrid systems admit finite bisi-
mulations. Various examples from recently discovered o-minimal theories were
presented. In addition, they extend the class of hybrid systems which admit finite
bisimulations by enriching the class of relevant sets and incorporating more com-
plex dynamics at each discrete location.
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