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Abstract. In this paper we investigate the question of the global con-
trollability posed for control hybrid systems with autounomous and con-
trolled swithchings. The main tool for our analysis is the notion of the
controlled hybrifold. New sufficient conditions for the global controllabil-
ity are obtained in terms of the so-called hybrid fountains.

1 Introduction

In this paper we consider systems which have a hybrid nature, in the sense that
the dynamics of the system combines continuous and discrete components. We
model control hybrid systems as a tuple consisting of a state space, a set of
admissible continuous and discrete controls, a family of controlled vector fields
assigned to each discrete state, a collection of autonomous and controlled switch-
ing surfaces, and a collection of the correspondint reset maps.

The main question investigated in the paper is the controllability of control
hybrid systems. This issue has been addressed in [IBIT2I13]. In particular, in
[12], the notion of controllability for hybrid systems is formalized by continuity
of system functions. In [1], the authors derive a necessary and sufficient algebraic
condition for a certain subclass of piecewise affine hybrid systems. In [13], a
sufficient condition for controllability of hybrid systems is formulated in terms
of the so-called arrival sets.

Because of the complexity of the problem of the global controllability, its
unlikely to find uniform sufficient conditions for general hybrid systems. Thus,
we restrict our study to a special subclass of control hybrid systems, namely,
the systems that can be represented as hybrifolds. The notion of the hybrifold
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was originally introduced in [I4] and extended to control hybrid systems with
autonomous switchings in [9] (see also [6], where the hybrifold notion is used in
problems of optimal control for hybrid systems). In this paper we generalize the
results formulated in [9] to systems that admit both autonomous and controlled
switchings. New sufficient conditions for the global controllability are obtained in
terms of the so called hybrid fountains. The advantage of the approach proposed
in this paper is in the fact, that the fountain property can be verified at each
particular state and, hence, there is no need to invoke a dynamic programming-
like procedure to determine arrival sets of the system.

The paper is organized as follows. In Section 2] we formally define the class
of control hybrid systems H under our consideration and specify the standard
assumptions on the continuous and discrete parts of the dynamics of H. In Sec-
tion [, we generalize the notion of the hybrifold to control hybrid systems with
controlled and autonomous switchings and define a controlled flow on the hybri-
fold. Section [ relates the global controllability of H to the global controllability
of the associated controlled hybrifold. In Section [B, we introduce the notion of
a hybrid fountain and provide new sufficient conditions for the global controlla-
bility of control hybrid systems.

2 Regular Control Hybrid Systems: Standing
Assumptions

We consider control hybrid systems which in this paper are taken to be of the
following form.

Definition 1. An n-dimensional control hybrid systems H is a 6-tuple
H:{Q7D387R727f}7 (1)

where

Q={1,---,k} ,1 <k < oo, is a set of discrete states (which are called control
locations);

D={D;; ieQ,D; CR"} is a collection of domains of H;

S =8,US, is a collection of autonomous and controlled switching surfaces;

R =R, UR, is a collection of autonomous and control resets.

X = XY.UXy is the set of admissible continuous and discrete controls;

F=A{fi;1eQ,fi: D; x R"™ — R"} is a collection of control vector fields as-
signed to each location;

O

Each of these components shall be further specified in the next part of the
section.

The collections of autonomous swithching surfaces (called guards) and au-
tonomous resets

So ={S7; (i,j) € E,} Ro={RY; (i,j) € E,},
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where E, C Q x @Q, are such that each guard S¥ is a subset of D; and each
autonomous reset R/ is a continuous injective map acting from S;/ to D;.
Similarly, for controlled switching surfaces and resets we have:

S.={SY; (i,j) e E.} Re={R9; (i,j) € E.},

where E. C Q x Q, each controlled switching surface S¥ is a subset of D;, and
each controlled reset RY is a continuous injective map acting from S¥ to D;.
The set of discrete controls Xy is taken to be {0;;; (i,7) € E.}, where each
0 is a discrete control that can be applied at (and only at) states z e S¥.
Take an arbitrary initial state (¢, () which does not lie on any of the switch-
ing surfaces. Then, for any control v € X, the systems evolves according to the
ODE

= filwu),  @(0) =m0

until it hits (at some point Z) either (i) a guard S% or (ii) a controlled switching
surface SiF.

In the former case (i), the system necessarily switches to the discrete location
j and the continuous component of the states resets to R% (). Next, the system
evolves according to the dynamics f; in the domain D;.

In the latter case (ii), we distinguish two possibilities.

(ii.a) The discrete control oy is applied at Z; then the system switches to the
location k and the continuous component of the state resets to RF(z).
Next, the system evolves according to fj in Dy.

(ii.b) The discrete control oy is not applied; the system continues evolving ac-
cording to f; in D;.

The following definition of a hybrid time trajectory is based on [T0JIT].

Definition 2 (Forward Hybrid Time Trajectory).
A (forward) hybrid time trajectory is a sequence of semi-closed intervals

T={[r,Ti+1); 1 <i < N < 00,7 < Ti1}-

We shall use the symbol N(7) to denote the size of the time trajectory (i.e. the
number of semi-intervals in the sequence 7), the symbol (7) to denote the set
{1,2,---,N(7)}, and the symbol 7, to denote the execution time, which, for a
finite N(7), is defined to be Too A Tn(r)41 — T1. O

Based on the above description of the evolution of H, for any control pair (u, o),
where u is a continuous control in Y. and o is a sequence of discrete controls
{vi,v2, -, vg; v; € Xy}, we can define the notion of the control execution
X = {7,q,¢} of H starting at the initial state p e D, where

(i) 7 is a hybrid time trajectory that contains the sequence of the switching
times;

(ii) ¢: (r) — @ is a map that contains the sequence of discrete locations visited
by the hybrid trajectory;
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(i) ¢ = {¢;;7 € (1)} is the collection of continuously differentiable maps of
t that satisfies the corresponding ODEs and the switching conditions as
described above.

As in [T4], we shall restrict ourselves to the study of hybrid systems that are
subject to the following assumptions.

A1l The control hybrid system H,, is deterministic and non-blocking, for any
control pair w = (u, o).

A2 For each i € Q, D; is assumed to be a non-empty, closed, contractible n-
dimensional sub-manifold of R", with a piecewise smooth boundary.

A3 For each e € E, and € ¢ E., the guard S and the controlled switching
surface S¢ are closed (n — 1)-dimensional submanifolds with a piecewise
smooth boundary. These sets have finite number of connected components.

A4 All resets maps are continuous and injective.

A5 None of the autonomous transition sets (i.e. {S¢, RS(SS); e € E,}; de-
noted ATrans) have intersections with the controlled transition sets (i.e.
{S¢, RE(S%); € e E.}; denoted CTrans). Further, for any two (autonomous
or controlled) transition sets By, Ba (denoted Trans), we have

BiNBy# 0= B; =S = By = 52,

for some i, j1, j2 € Q.

Remark 1. We note that the restriction S¢ NS¢ = ) comes from the fact that
H is assumed to be deterministic. The rest of the restrictions of A5 can be
somewhat relaxed. We impose A5 to avoid cumbersome technical details, while
illustrating the point that certain hybrid systems can be represented as manifolds
(termed hybrifolds), and thus, results on the global controllability formulated for
manifolds can be transformed to hybrid systems. O

Next we list the assumptions on the continuous part of the dynamics of H.

Bl ForeachieQ, X; e C"(D; x U;R"), r € {1,2,- -+, 00,w}, where C* denotes
the class of analytic functions.
B2 The set of admissible control functions

EC = ECS(]R, ]Rn“),s € {1,27 o ',OO},

is the set of all R™*-valued bounded piecewise C*(IR; R"*) functions of time
with limits from the right. Hence any u e Y., defined on some [T}, T3),
Ty < 00, is C*® on [T1,T») with the exception of a finite number of points.

For the results formulated in this paper we shall need r =1, s = 1.

Definition 3. A control hybrid system satisfying assumptions A1-A5 and B1-
B2 is called a regular control hybrid system with controlled and autonomous
switchings. O
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Finally, it shall be assumed that the system H is non-Zeno in the sense that in
finite time only a finite number of discrete transitions may be generated.

Lemma 1. Let H be a regular control hybrid system. For any control pair (u, o)
and any p € D, there exists a unique control execution of H starting at p. O

3 Controlled Hybrifold

In [14], a set My (called the hybrifold) is constructed from a hybrid system with
autonomous switchings H. In this section we generalize this procedure to hybrid
systems with autonomous and controlled switchings, prove that the resulting set
My is a manifold and, finally, define the controlled hybrid flow on Mpg.

The basic idea in the construction of the hybrifold is to glue together each
switching surface to the image of the corresponding reset map by identifying any
state p € S¢, where e € Fg, s = a, ¢, with the corresponding image R¢(p). So an

el
equivalence relation ~ on D A U D; is generated by
i=1

p~ R(p),
for all e € E5 and p € S¢. This relation gives rise to the quotient space
Mg = D/ ~

where each equivalence class is collapsed to a point.
Let 7 be the natural projection map

7T:D—>MH

which assigns to each p its equivalence class. We put the quotient topology
on My, i.e. the smallest topology in which V' C Mpy is open if and only if
7~1(V) C D is open (in the relative topology of D).

Definition 4. The set My with the quotient topology defined on it is called
the controlled hybrifold associated with H. O

The following result is based on [14].
Theorem 1. My is a topological n-manifold with boundary. O

Henceforth we shall deal not with the original domains D; but rather with the
hybrifold M. We shall assume, without loss of generality, that My is embedded
in R™, for some n < m < 0.

Definition 5 (Hybrid Control Flow). Take an arbitrary continuous control
u € X, defined on some [T, T»), To < 00, a sequence of discrete controls o, and
a state x € My. Let p e 771 (z).
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As follows from Lemma there exists a unique control execution xy =
{7,q,¢} of H starting at p which corresponds to the control pair (u, o).

We shall use the symbol W (t,z,u,0), t € [T1,T3), to denote the controlled
hybrid flow on Myg. WH (t, 2, u,0) is defined as follows:

!T/H(t,x,u, o) An(¢i(t)), for any i € (1) and t € [1;, Tit1)-

In particular, we have U (71, x,u, o) = 7(¢1(1)) = 7(p) = =. a

Remark 2. We note that, as follows from the Assumption A5, the definition of
the control flow on My does not depend on the choice of the representative p in
the equivalence class x. O

Lemma 2. For any control u, the controlled hybrid flow ¥ (-, x,u, o) is con-
tinuous on My with respect to the argument t¢.

Proof: This follows from the fact that all points of discontinuity of the control
hybrid execution are removed by identifying them with their images under the
corresponding reset maps. m|

4 The Global Controllability of Hybrid Systems

Let H be an arbitrary regular control hybrid system and M}y its controlled
hybrifold. In this section we relate the global controllability of the total domain
D of H with the global controllability of M.

Definition 6 (Accessible sets of the control hybrid system H).
Let p e D. We shall say that a state p’ € D is accessible from p (with respect to
V C D) if there exists a continuous control u ¢ Y., defined on some [T7,T5),
Ty < oo, and a sequence of discrete controls o = {vy,---,v;} such that the
corresponding control execution x = (7, ¢, ¢) of H starting at p satisfies

(i) on(T) =7, for some T € [Tn(r); Tn(r)+1); and

(ii for any j e () and t € [7j; Tj4+1), ¢;(t) e V.

The set of all states in D accessible from p (with respect to V') shall be denoted
by AY(p). In the case V = D, we shall write Ap(p). ]

Thus we assumed that an accessible state p’ can be reached from p in finite time
using a finite number of switching (or jumps) between control locations.

Remark 3. We observe that, as follows from the definition of the control execu-
tion of H, R¢(p) e Ap(p), for any state p e S¢, e e E5, s = a,c. a

Similarly, we can define the accessible states using the dynamics of the controlled
hybrifold M.
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Definition 7 (Accessible sets of the controlled hybrifold My).

Let x ¢ My C R™. We shall say that a state 2’ € My is accessible from x (with
respect to V. C My ) if there exists a continuous control u € X, defined on some
[T1,T3), To < oo, and a sequence of discrete controls o = {vy, -+, v} such that

(i) o' =0H(T,x,u,0), for some T € [Ty, T3); and
(ii) forany T4 <t < T, ¥H(t,z,u,0) eV,

The set of all states in My accessible from a (with respect to V') shall be denoted
by AV (z). In the case V = My, we shall write A(z). i

The set of all states co-accessible to p (to x), with respect to V' C D (with respect
to V. C My), in H (in My) is defined dually and shall be denoted as C AY (p)
(as CAY (z)).

Remark 4. We observe that for any p € D and any neighborhood V of p in D,
we have

w(Ap(p) € ATV (x(p)), (2)
where 7 : D — My is the natural projection map. This is because any orbit in
D is projected by 7 onto an orbit in My.

On the other hand, let p,p’ € D and let 7(p’) € AV (7(p)). Then there exist some
v,y € D such that (i) p ~ y, p’ ~ ¢ and (ii) v’ € A}, 1(V)(y). In other words, the
existence of a trajectory from 7(p) to w(p’) in My does not necessarily imply the
existence of a control execution connecting p to p'; it only implies the existence
of a control execution from some y € D to some 3y’ € D, where y ~ p and 3/ ~ p/.

This is particularly easy to see in the situation, where at some controlled
switching surface S¥ at least two discrete controlled o;;,, 0;j, can be applied.
Take x € S¥ and consider y; = R¥1(x) and yo = R¥2(x). Then z,y1,ys lie in
the same equivalence class (they are glued together in My ) and, hence, 7(y1)
and m(y2) are mutually accessible in Mpy. At the same time y; and yo are not
necessarily mutually accessible in D.

Hence in general, we do not have the reverse to () inclusion and we can only
guarantee that for any xz ¢ My and V C My,

AV@crd U Ay Vo). (3)

per— ()

O

Definition 8. We say that a set D1 C D is controllable with respect to Do C D
for the control hybrid system H if A% (p) = Dy, for all p e D;.

In the particular case when Dy = D, Dy = D, and Ap(p) = D, for all p e D, we
shall say that the total domain D is globally controllable for H.

Similarly, we shall say that a set C1 C My is controllable with respect to Cy C
My if A% (x) = Cy, for all z € Cy. My is globally controllable if A(x) = Mg,
for all z € My. O
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Theorem 2. Let H be a regular control hybrid system. Then the total domain
D is globally controllable if and only if the associated hybrifold My is globally
controllable.

Proof:
= Let D be globally controllable. Then, using Remark H (2), we obtain for any
xe Mg,

My = m(D) = w(Ap(p)) € A™P)(w(p)) = A(x) C My,

where p is an arbitrary point in the set 7=!(z) C D. Hence A(x) = My, for any
x € My, and My is globally controllable.

< Conversely, let My be globally controllable. Take any p,p’ ¢ D. Each of
them could lie in any of the sets

CTrans, ATrans,D A D — Trans,

i.e. there are 9 possible cases.

Consider, for instance, the case when p e RS(S¢) and p’ € RS (S¢'), for some
e=(i,j),¢ = (i,j') € E,. Take the inverse image 3’ = {R¢}~1(p’). As follows
from the description of the hybrid executions given in Section [, there exist
states z € D; N D and 2’ € D; N D such that z is accessible from y and 2’ is
co-accessible to y’. Next note, that since z,2’ ¢ D — Trans and 7 is 1 to 1 on
D, from the existence of an orbit connecting 7 (z) to m(z’) in My follows the
existence of a control execution that drives z to 2’. Finally, combining all the
accessibility relations for p, z, 2/, y', p’ we conclude that p’ € Ap(p).

The rest of the cases can be considered in an analogous manner. Thus
Ap(p) = D, for any p € D, and D is globally controllable. |
The above result allows us to use the hybrifold and the continuous controlled
hybrid flow defined on it in order to study the global controllability of the orig-
inal control hybrid system. The advantage of this approach is in the fact that
the controllability results formulated for differential control systems acting on
subsets or sub-manifolds of R" can be transformed to control hybrid systems.
This shall be demonstrated in the next section.

5 Hybrid Fountains

In this section we introduce the notion of a hybrid fountain which we shall use as
the main hypothesis in our controllability result. Henceforth the symbol Bs(z),
where z € My, 0 < § € R, shall denote the m-dimensional ball with the center
x and the radius 6. The sets A%5(P)(p) and C AP5(P)(p) shall be denoted as A% (p)
and C'A%(p), respectively.

Definition 9. A state x ¢ My is called a hybrid fountain if

Ipu>0VY6 0<d<p, A(z) — {z} and CA%(z) — {x}
are non-empty, open sets.
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If the function p A sup{y; such that the condition () holds} is continuous at
x, we shall say that z is a continuous hybrid fountain. If p is unbounded at = we
consider it to be continuous at z. O

The reader is referred to [2BJ7] for applications of the fountain condition to the
study of ordinary differential systems acting on subsets of R". See also []], where
a set of algebraic conditions for verification of the fountain property is presented,
and [4] where applications to hierarchical hybrid control theory are outlined.

Henceforth we shall use the term controlled closed orbit in the sense of con-
trolled loop.

Theorem 3. Let each x ¢ My be a continuous hybrid fountain and let for
each x ¢ My there exist a control u ¢ X, such that z lies on a nontrivial
(controlled under u) closed orbit in Mpy. Then each connected component of
[Mg]° is controllable with respect to Mp.

Proof: Let C denote one of (the finite number of) the connected components
of [My]°. For any two states z,z’ in C we define a relation ~, in such a way
that x ~, 2’ if and only if there exists a (controlled) nontrivial closed orbit in
My passing through both x and 2/, i.e. there exists a control pair u, o defined
on some [T7,T5), Ts < 0o, such that

(i) 3T, Th <T <Te, ¥(Ty,z,u,0)=¥(T,z,u,0); and
(i) 3¢, Th <t<T, ¥(t,p,u,0)=p.

Clearly, the relation ~, is reflexive (since each state in My lies on a nontrivial
orbit), symmetric and transitive. Hence there exists a partition of C' on the
equivalence classes of ~,. Let [z], for an arbitrary x € C, denote the equivalence
class containing x. We claim that [z] is an open subset in C.

Indeed, take any z € [z]. Let u and 0 < ¢ < co be such that z = ¥ (¢, z, u, o).
Define a = ¥(t — A,z,u,0) and b = ¥(t + A,z,u,0), A > 0. Then, since a
and b are hybrid fountains, the sets A°(a) — {a} and C A°(b) — {b} are open, for
sufficiently small § > 0. Choose A so small that z € A%(a) and z ¢ CA%(b) (this
is possible since a, b are continuous hybrid fountains). Then there exists an open
neighborhood N(z) of z which lie in the intersection (A%(a) — {a}) N (CA%(b) —
{b}). Each state 2z’ ¢ N(z) is accessible from a and co-accessible to b. Moreover,
since a, b € [z], we conclude that 2z’ lies on a non-trivial orbit passing through z.
This is true for all 2z’ € N(z), hence N(z) C [z] and [z] is open, as claimed.

For any z, 2’ € C' we have [z] N [2'] # 0 = [z] = [2], so any two equivalence
classes are either disjoint or coincide. Thus the set C can be represented as the
disjoint union C'= AU B, where A A [z], for some z € C, and B A U [2'].

z/eC

A and B are open and disjoint. Since C' is connected, we conclude that B is
empty, i.e. any 2’ € C is such that z ~, 2’. In other words, any two states in
C' lie on a nontrivial controlled orbit in Mg and hence, C is controllable with
respect to My. O
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Remark 5. We note at this point that weaker recurrence conditions can be used
instead of the existence of closed orbits. Also, for the proof of the above result,
the continuous hybrid fountain condition (@) can be relaxed to

p(x) A sup{p > 0; A¥(z) — {z}, CA*(x) — {x} are non-empty, open sets}
is continuous, for all x € Mpg. O

Theorem 4. Assume that the hybrifold My is connected and the conditions of
Theorem [3] are satisfied. Then My is globally controllable.

Proof: As has been shown in [14], My is n-dimensional manifold (possibly with
boundary). This implies, by definition, that for any boundary state in OMpy
there exists a neighborhood which is homeomorphic to R'}. Hence [My]° and
My have the same number of connected components; in particular, [Mpy]° is
connected if and only if My is connected.

Take any boundary state x € Mpy. Then, since x is a hybrid fountain, the
sets A%(x)—{z} and CA%(x)—{x} are non-empty and open, for sufficiently small
§ > 0. Hence there exist a € (A°(z)—{x})N[Mg]° and b e (CA%(z)—{x})N[Mg]°.

For any state p’ € [Mpy]° we can find a control u € X. which would drive a
p’ and a control v’ € X, which would drive p’ to b. This is because a, b,p’ lie in
[Myg]° and, as follows from Theorem B [Mp]° is controllable. We conclude that
arbitrary p e 9My and p’ € [My]°, and thus arbitrary p,p’ € My, are mutually
accessible. Hence My is globally controllable. O
Consider the directed graph I of H which has vertices @ and edges FE. We can
treat it as a finite state machine, by defining the transition function @ : Q — @
in such a way that for any 4,j € Q, (i) = j if and only if (i,5) ¢ F or i = j.

Theorem 5. Assume that the conditions of Theorem [3 are satisfied. Then My
is globally controllable if and only if the graph I' = {Q, E'} is controllable as a
finite state machine.

Proof:

=—> Assume that My is globally controllable. Then for any i,5 € Q, i # j,
take some states p € D; and p’ € D;. There exists a trajectory ¢ from p to p/
in My . Let the sequence i = ry,79,---,7p = j, £ > 1, be such that ¢ switches
consecutively from the domain D, to the domain D, , wheres=1,2,-.. (-1,
using the corresponding guards and the images of the reset maps. Hence each
consecutive pair (75, 7s4+1) belongs to E and hence, there exists a trajectory from
the state ¢ to the state j in the graph I'. Since this holds for an arbitrary pair
(4,74) € Q, we conclude that I" is controllable as a finite state machine.

<= Conversely, assume that I" is controllable as a finite state machine. Then
for any two states p,p’ € D take ¢ and j such that p ¢ D; and p’ € D;. If
i # j, find a trajectory i = rq,79,---,7¢ = j, £ > 1, in the graph I'. Since each
consecutive pair (rs,7s11) belongs to E, there exists a guard G, , ) in the
domain D, which is identified with the image of the reset map Ry, . ) in the
domain D Hence the domains D, and D and thus D; and Dy, lie in

Ts41° Ts419
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one connected component of My . This can be shown for all i, j € Q). Hence My
is connected and, as follows from Theorem [ My is globally controllable. O

An application of the obtained results can be illustrated on a two water tank
system example, which, for the lack of space, shall be described briefly. The water
can be added to the system at some rate w > 0 (where we treat the parameter
w as control) in two different modes:

1: the water is added (exclusively) via tank 1;
2: the water is added (exclusively) via tank 2.

In addition to that, the water is removed from tank i, ¢ = 1, 2, at some constant
rate v; > 0. The two tank system can be modeled as a control hybrid system in
the following way. We shall distinguish two control locations - each corresponds
to one of the modes, i.e. @ = {1,2}. The continuous dynamics at the locations
are as:

o=1: {200 @) oD A x ook

qg=2: {;Zwv_lw (z,y) € Dy A{[l1,00) X [l2,00)},

where x, y denote the levels of water in the tanks 1 and 2, respectively.

The class of control functions is taken to be the set of all functions taking values
in R and satisfying Bs.

The guards are defined as

Guo =1x{(z,y) e D1; y=12}, G =2x{(x,y) € Do; v =1}

The resets are defined in such a way that when hitting a guard in one domain the
system switches to the other control location, without changing the continuous
part of the state, i.e.

R(1,2)(1;1‘7l2) = (2;1‘7l2), R(?,l)(Q;llay) = (17l15y)

Furthermore, assume that for some level y = [, [ > I, in the first tank, a
discrete switching to the second tank is allowed.
To construct the corresponding controlled hybrifold we identify (via the identity
reset maps) the z = Iy, y = ly, y = [ axes of Dy with the x =11, y =1, y =1
axes of Do, respectively.

Using the obtained results, it can be verified that each state of the hybrifold
is a hybrid fountain lying on a closed orbit. Hence, the two water tank system
can be shown to be globally controllable.

Remark 6. In conclusion we note that algebraic conditions for verification of the
fountain property at each state x € My shall be presented in a future version of
the paper.
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