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Abstract

Hybrid automata have been proposed as a language for
modelling and analysing the interaction of digital and
analogue dynarmics in embedded computer systems. In
this paper, hybrid automata are studied from a dy-
namical systems perspective. Extending earlier work
on conditions for existence and uniqueness of execu-
tions of hybrid automata, we characterise a class of hy-
brid automata whose executions depend continuously
on the initial state. The continuity conditions are sub-
sequently used to derive an extension of LaSalle’s prin-
ciple for studying the stability of invariant sets of states
of hybrid automata.

Keywords: Hybrid systems; Dynamical systems;
Continuity; LaSalle’s Invariance Principle.

1 Introduction

Despite intense research activity in recent years, many
fundamental questions regarding the dynamical prop-
erties of hybrid systems still remain unresolved. In this
paper, we try to address such problems for a fairly large
class of hybrid systems, known as hybrid automata.
Earlier work by the authors [1] centred around con-
ditions for existence and uniqueness of executions for
hybrid automata. Global existence was also studied,
in the context of Zeno executions, i.e. executions that
take an infinite number of discrete transitions in a finite
armount of time [2].

In this paper, this line of work is pursued further by
establishing conditions that guarantee that the execu-
tions of a hybrid automaton depend continuously on the
initial state. Even though the class of hybrid systems
that possess this property is known to be restricted [3],
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we feel that these conditions can be of general interest.
For one thing, models that are sensitive to the choice
of initial conditions are more difficult to simulate, or
analyse numerically. Furthermore, we show how, using
continuity properties, one can derive an extension of
LaSalle’s principle for studying the stability of invariant
sets to hybrid autoemata. Qur earlier work in this direc-
tion [4] produced a statement of the invariance principle
which involved a number of seemingly cumbersome and
unintuitive conditions. In this paper we establish an
explicit link between the invariance requirements and
continuity of the system executions with respect to the
initial state. This allows us to reformulate the earlier
results in a more general and natural framework.

The paper is organised in five sections. The defini-
tions of hybrid automata and executions are given in
Section 2. In Section 3, continuity of executions with
respect to initial conditions is defined and a class of
systems that possesses this property is characterised,
Using this characterisation of continuity, LaSalle’s in-
variance principle is extended to hybrid automata, in
Section 4. A summary and a discussion of ongoing work
are given in Section 5. To avoid interrupting the flow
of the paper, straight-forward proofs have been omit-
ted. Sketches of the remaining proofs are given in the
appendix.

2 Definitions and Notation

Before we state the results of this paper, we recall some
of the definitions and notation of [1]. For a finite collec-
tion V of variables, let V denote the set of valuations
(possible value assignments) of these variables. We use
a lower case letter to denote hoth a variable and its
valuation; the interpretation should be clear from the
context. We refer to variables whose set of valuations is
finite or countable as discrete, and to variables whose
set of valuations is a subset of a Euclidean space as
continuous. For a set of continuous variables X with
X = R" for some n > 0, we assume that X is given the
Euclidean metric topology, and use || - || to denote the
Euclidean norm. For a set of discrete variables Q, we as-
sume that Q is given the discrete topology (every subset
is an open set), generated by the metric dp(q,¢') = 0 if
g =14¢ and dp(q,q') = 1if g ¢’. We denote the valu-
ations of the union QU X by Q x X, with the product
topology generated by the metric

d((Q:¢)’ (qul,l)) = dD(q, q’) + H:C — I'“.
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Figure 1: Water tank system and the corresponding hy-
brid automaton.

We assume that a subset U of a topological space is
given the induced subset topology, and we use U to
denote its closure, U° its interior, U = U \ U? its
boundary, U its complement, JU| its cardinality, and
P(U} its power set (i.e., the set of all subsets of U). In
logic formulas, we use A te denote “and”.

A hybrid automaton is a dynamical system that de-
scribes the evolution in time of the valuations of a set
of discrete and continuous variables.

Definition 2.1 A hybrid automaton H is a collec-
tion H = (@, X, f, Init, D, F, G, R), where
¢ () is a finite set of discrete variables;
e X is a finite set of continuous varigbles;
e [:QxX —TX is a vector field;
Init € Q x X is a set of initial states;
D:Q — P(X) is a domain;
E c QxQ is a set of edges;
G : E — P(X) is a guard condition;
R:E x X — P(X) is a reset map.

We refer to (g,z) € Q x X as the state of H. Because
we are more interested in the discrete-continuous inter-
action than in the purely discrete or purely continuous
dynamics, we impose the following standing assump-
tion, The last part of the assumption can in fact be
tmposed without loss of generality [1].

Assumption 2.1 The number of discrete states is fi-
nite (|Q] < ), and X = R", for some n > 0. For
all g € Q, the vector field f(q,-) is globelly Lipschitz
continuous in its second argument. Moreover, for all
e€ E, Gle) # 0, and for all x € G(e), R(e,z) # .

It is sometimes convenient to visualise hybrid automata
as directed graphs (Q, E) with vertices Q and edges E.
The graphical notation is jllustrated in the following
example.

Example Consider the two-tank system (Figure 1).
For i € {1,2}, let x; denote the volume of water in
Tank ¢ and v; > 0 denote the constant flow of water
out of Tank i. Let w denote the constant flow of water
into the system, dedicated exclusively to either Tank 1
or Tank 2 at each time instant. The objective is to
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keep the water volumes above r; and ra, respectively,
assuming that the water volumes are above r; and g
initially. This is to be achieved by a controller that
switches the inflow to Tank 1 whenever z; € r; and to
Tank 2 whenever z3 <r;.

The system can be described by a hybrid automa-
ton with states @ = {¢q} with Q = {q1,9:} and
X = {x,z3} with X = RZ, initially taking values
inlnit = Qx {& € RZ: ;3 > 7 Aza > rp}. The
continuous dynamics are governed by the vector field
flar,z) = (w —v1,~v2) and flga, z) = (—v1, w — va).
Along continuous evolution the state is restricted to
the domain D(g) = {z € R? xzp3 > 7o} and
D(g) = {zx € B2 : z; > m}. The set of edges is
E = {{q1,92), (g2, q1)}, with guards G(g1,q2) = {z €
R?: 2y <o}, Glga, ) = {x € R? 1 z; < 11} and reset
relations R(q1, g2, %) = R(gz, q1,z) = {}. ™

Definition 2.2 A hybrid time trajectory is a finile
or infinite sequence of intervals T = {L,}IL,, such that
o7 <7l =1y foralli and I; = [1;,7]] for all
i< N;
e if N < oo then either Iy = [rn,7h] or In
(TN, T )

Note that the right endpoint of one interval coincides
with the left endpoint of the following interval. The
interpretation is that these are the times at which dis-
crete transitions take place. Note also that 7, = 7]
is allowed, therefore multiple discrete transitions may
take place at the same time. Since all hybrid automata
discussed here are time invariant we assume that 7o =0
without loss of generality.

Hybrid time trajectories can extend to infinity if T is
an infinite sequence, or if it is a finite sequence end-
ing with an interval of the form [ty,00). Each hybrid
time trajectory 7 is linearly ordered by the relation <,
defined by t1 < tg for ¢ € [r;,7]] and 12 € [r, 7]} if
1 < tyori<j Wesaythat r = {L}Y, is a prefiz of
7 = {J;}M, and write 7 < 7/ if either they are iden-
tical, or 7 is finite, N < M, L = S foralli =0, ...,
N —1, and Iny € Jn. The prefix relation is a partial
order on the set of all hybrid time trajectories.

For a hybrid time trajectory 7 = {I;},, let () de-
note the set {0,1,...,N} If ¥ is finite and {0,1,...}
if N = cc. We use g and x to denote, respectively, the
evolution of the discrete and continuous state over 7. g
is amap from (M to Qandz = {z': i € (r}} isa
collection of differentiable maps.

Definition 2.3 An execution of a hybrid automaton
H is g eollection x = (7,q, ), where T is a hybrid time
trajectory, q 1 {7} » Q, andz ={z*: i€ (r)} is e
collection of differentiable maps z* : I; —» X, with



¢ (g(0),2°(0)) € Init; A

o for all t € [m,7]), @'(t) flg(8),='(t)) and
z*(t) € D(q(2)}; and

o for alli € (r) \ {N}, e = (g(i),q(i + 1)) € E,
z*(1]) € Gle), and £+ (1i31) € Rle, x'(7])).

We say that a hybrid automaton H accepts an execu-
tion y if x fulfils the conditions of Definition 2.3, For an
execution x = (7,¢, ), we use (g, 70} = (g(70),2%(70))
to denote the initial state. The execution time T (x) is
defined as

N
T00 =2 (el - ) = limri = .

We say that an execution, x = (7, q,z}, of H is a prefix
of another execution, ¥ = (f, §,2), of H (write x < %),
if 7 < 7 and for all i € (v) and all ¢ € I, (g(3),z*(t)) =
((2), 2 (t)). We say x is a strict prefix of ¥ (write x <
%), if x < ¥ and ¥ # ¥. An execution is called mazimal
if it is not a strict prefix of any other execution. An
execution is called finite if 7 is a finite sequence ending
with a compact interval, it is called infinite if 7 is either
an infinite sequence, or if T(x) = oo, and it is called
Zeno if it is infinite but 7 (x) < co. We use Ex{qo, zo)
to denote the set of all executions of H with initial
condition (g0, z¢) € Init, £} (g0, 20) to denote the set
of all maximal executions, £5;{go,xe) to denote the set
of all finite executions, and £ (qo,z0) to denote the
set of all infinite executions. We use £y to denote the
union of £x(go, zo) over all (go, zo) € Init.

Definition 2.4 A hybrid automaton H is celled non-
blocking if £57(qo, xo) is non-empty for all (qo.zo) €
Init. It is called deterministic if £ (qo, z0) contains
at most one element for all (qy,zo) € Init.

Conditions for determining whether general hybrid au-
tomata are deterministic and /or non-blocking are given
in [1]. Algorithmic conditions for special classes of hy-
brid automata can be found in [5, 6] (for complemen-
tarity systems) and [7] (for piecewise linear systems).

The results developed in the next section involve the set
of states reachable by a hybrid automaton and the set
of states from which continuous evolution is impossible.
The set of states reachable by H, Reachy, is defined as

Reachy = {(§,2) € Qx X : Ix=(r,q,x) € £},
(a(N), 2"V (73)) = (4, %)}

Clearly, Init C Reachy, since we may choose N = 0
and 7 = 7p. The set of states from which continuous
evolution is impossible is defined as

Outy = {(g,z) e Q@ x X : Ve >0, At € [0,¢),
' ¥(t g, %) ¢ D(g)}.
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For certain classes of hybrid automata the computation
of Outy and Reachy is straightforward [1|. Reachabil-
ity computations are, however, difficult in general.

To ensure that the state remains in the domain we Im-
pose an additional standing assumption. Let

Domy = | J{q} x D(g) cQx X.
qeQ

We call an automaton H domain preserving if
Reachy C Domp.

Assumption 2.2 For all the hybrid automate, H,
considered in this paper, Domy is closed. The au-
tomata are domain preserving, with Init = Domg.

The assumption that H is domain preserving is the
most important part. Even though it may seem re-
strictive, it often turns out to be implicit in models of
physical systems, where the domains are typically used
to encode physical constraints that all executions of the
system must satisfy. Determining whether a hybrid au-
tomaton satisfies Assumption 2.2 is usually straightfor-
ward. Using an induction argument on the length of
the executions one can show the following.

Lemma 2.1 Consider a hybrid automaton H such
that the set Domy is closed. H is domain preserving if
Init ¢ Dompy and R((g,¢'),z) C D{¢’) for all g € Q,
all (g,¢') € E and all x € D{g) N G(q,¢).

Using the conditions of Lemma 2.1, one can show that
the water tank system is domain preserving.

3 Continuity with Initial Conditions

In general, the behaviour of hybrid automata may
change dramatically even for small changes in initial
conditions. This fact is unavoidable, if one wants to al-
low hybrid automata that are powerful enough to model
realistic systems. However, discontinuous dependence
on initial conditions may cause problems, both theo-
retical and practical, when one tries to simulate hybrid
automata [3]. Motivated by this observation, a number
of authors have investigated continuity with respect to
initial conditions. In [3] it was shown that a reason-
ably large class of hybrid automata is continuous for
almost all initial conditions. In [8], a Skorohod topology
was proposed as a framework for formulating continuity
properties. Even though this topology (initially devel-
oped for the space of piecewise continuous functions) is
natural for studying continuity in hybrid systems, the
definition and properties of the Skorohod metric make
it difficult to work with in practice. Here we give the
following alternative {and we feel easier to work with)
definition of continuity.



Definition 3.1 A hybrid automaton H s called con-
tinuous if for all finite executions x = (7,¢,z) €
£ (g0, T0) with 7 = {L}N, and all € > 0, there exists
8 > 0 such that all mezimal executions in EH (o, To)
with d({do, o), (40, 70)) < & have o finite prefir % =
(7,4,%) € Ef(do, To) with 7 = {[;}¥, that satisfies

LT —T(x)| <¢; and

2. d((@(N), 2N (7)), (g, 2 (i) < e.

Roughly speaking, H is continuous if two executions
starting close to one another remain close to one an-
other. Notice that if H is continuous, one can choose
& such that finite executions starting within & of one
another go through the same sequence of discrete tran-
sitions.

The following theorem provides conditions under which
a hybrid automaton is guaranteed to he continuous,

Theorem 3.1 A hybrid automaton H is continuous if
1. H is deterministic;

2 for all e = {q,q') € E, G(e) N D(q) is an open
subset of 3D(q);

. for alle € E, R(e,-) is a continuous function;

. there exists a function o : Q x X — R, differ-
entiable in its second argument, such that for all
9€Q, D(g) ={z € X|o(q,z) 20},

. for all (g, z) with o(q.2) =0, Lya(g,z) #0.

Roughly speaking, conditions 4 and 5 are used to show
that if from some initial state we can flow to a state
from which a discrete transition is possible, then from
all neighbouring states we can do the same. This ob-
servation is summarised in the following lemma.

Lemma 3.1 Consider a hybrid automaton, H, satis-
fying conditions { and 5 of Theorem 3.1. Let x =
(r,9,%) € En(qo, To) be a finite execution of H defined
over an interval T = 0,7} with 7}, > 0 and z°(7}) €
8D(qo). Then there exists a neighbourhood W < D(qp)
of xo and o differentiable function T : W — R*, such
thet for ally € W,

L LII(T(y), 4o, y) € aD(QO)f

2. ${t,q0,y) € Di(go)® for all t € (0,T(y)); and

3. the function U : W — 8D(qo), defined by ¥(y) =
(T (), g0, y), is continuous.

To complete the proof of Theorem 3.1, conditions 1, 2
and 3 are used to piece together the intervals of contin-
uous evolution. The details are given in the appendix.
It is easy to check that the water tank automaton sat-
isfies the conditions of Theorem 3.1, and therefore is
continuous.
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4 Stability of Invariant Sets

We first recall some standard concepts from dynamical
system theory, and discuss how they extend to hybrid
automata.

Definition 4.1 A set M C Reachy is called in-
variant if for all_(qo,:co) € M, and all (1,¢,2) €
Enlgo, x0), (g(i),z%(t)) € M for allie () and t € I;.

The asymptotic behaviour of an infinite execution is
captured by its w-limit set.

Definition 4.2 A point (§,£) € Q x X 45 en w-limit
point of an infinite execution x = (7,9,z2) € &F,
if there exists a sequence {6,}3°, with 6, € I, and
in € (7) such that as m — o0, 0, — T(x) and
(olin), & (8.)) — (§4%). The w-limit set, S, C
Q x X, of x € & is the set of all w-limit points of

X-

The following proposition establishes some basic prop-
erties of w-limit sets for deterministic, continuous hy-
brid automata.

Lemma 4.1 Let H be a deterministic, continuous hy-
brid automaton. Consider an infinite ezecution y =
{(7.¢,%) and assume that there exists C > 0 such that
forallie (7) and allt € [;,7]], [|[=*(t)]| < C. Then the
w-limit set S, of x 45 @ nonemply, compact, invariant
set. Furthermore, for all € > 0 there exists K € (1)
such that d{(g(t),2"(2)),5,) < € for alln > K and
tel,.

The proof (omitted) is an extension of the correspond-
ing proofs for continucus dynamical systems (see for
example [9]).

LaSalle’s invariance principle for continuous dynamical
systems [10] provides conditions for an invariant set to
be attracting. The following statement extends the re-
sult to continuous hybrid automata.

Theorem 4.1 Consider a non-blocking, deterministic
and continuous hybrid automaton H. Let ] C Reachy
be a compact invariant set and define 1 = QN Out’y
and {Is = QN Outy. Assume there exists a continuous
function V : @ = R, such that
1. forall(g,x) € 2, V is continuously differentiable
with respect to x and LV (q,2) <0, )
2 for dll (qz}) € 2, e = (q,d) € E,
Vg, Rle,z)) < Vig ).
Define 8y = {{g,x) € 1 : LiV(g,z) = 0} and
S‘Z = {(q,.'z:) €y :Ve= (‘hq,) € E’ V(q',R(e,:c)) =
Vig,z)}. Let M be the largest invariant subset of
Sy U S3. Then, for all (qo,x0) € O the ezecution
x = (7,9,x) € EF(qo,zo} approaches M as t — T(x).



*Approaches” should be interpreted as
lime—(yy d{{alt), ' (t)), M) = 0. Note that since
the class of invariant sets is closed under arbitrary
unions, M, the unique largest invariant set contained
in 851 U S, exists. The proof is similar to the one
for continuous systems and is omitted. We demon-
strate the use of this extension of LaSalle’s invariance
principle on the water tank system.

Example Consider the water tank hybrid automaton
and assume that r; = r, = 0, and max(v,v3) < w <
vy +vy. It is easy to show that this is a non-blocking, de-

terministic, continuous, Zeno hybrid automaton. Con-,

sider the set @ = {q, @} x{z € R? : 51 > 0A 2y >
0 Amax{(w— ve)m +vi2, vox1 +{w—v1 }ap} < K} for
an arbitrary K > 0. Clearly {2 is compact. One can also
show that © is invariant, by induction on the length of
the system executions. A straight-forward computation
reveals that

D ={g}x{zcR?:
x1 € [0, min{K/(w — va), K/va}| Axp = 0}U
{g2} x {z e R?:
z1 = 0Azz € [0, min{K/(w— n), K/vi}}}.

By definition, 2; = Q \ Q.

Let V(g,z) = z1 + z3. Then for all {¢,z) € 0y,
LfV(g,z) = w — (v; + vg) < 0. Therefore, condition 1
of Theorem 4.1 is satisfied and §; = @. Moreover, since
R is the identity, V(¢', R((q,¢’), z) = V (g, ) whenever
a transition is possible. Therefore, condition 2 of The-
orem 4.1 is satisfied and Sy = €1,. Notice that the set
{a1. g2} % {(0,0)} is invariant. Moreover, this is the only
(hence maximal) invariant subset of S, since if either
zy > 0 or zz > 0, after the discrete transition continu-
ous evolution would commence, taking the state out of
15, Therefore, from Theorem 4.1, for all (g, zo) € 2
the execution x = (r,¢,z) € &7 (g0, o) converges to

{g1,92} x {(0,0)} as t - T(x). .

Notice that since K can be taken arbitrarily large in the
example, the set {g1,q2} x {(0,0)} is, in a sense, glob-
ally attracting. The conclusion of the example could
also have been derived using the properties of Zeno
executions established in [2]. The advantage of using
LaSalle’s principle is that it does not require cne to in-
tegrate the differential equations and argue about their
solutions, which is needed, for example, to establish
that the system is Zeno.

5 Conclusions

We view the results in this paper as one more step to-
wards the analysis of hybrid systems from a dynamical
systems perspective. We are currently pursuing this
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line of work further by research into methods for dealing
with composition and abstraction in hybrid systems.
Abstraction allows one to simplify complex decision-
making problems into hierarchical control systems. To
formalise this process, however, it is essential to de-
velop consistent methods for aggregating system prop-
erties from one level of the hierarchy to ancther. We
will study this problem in conjunction with the related
problem of composition of hybrid systems, in order
to get a more “scalable” modelling framework. This
will allow us to extend the hybrid automata framework
{which often has been applied only to relatively small
problems) to large systems, like mobile robotic systems
with a diversity of sensors and actuators,

References

1] J. Lygeros, K. H. Johansson, S. Sastry, and
M. Egerstedt, “On the existence of executions of hy-
brid automata”, in IFEE Cenference on Decision and
Control, Phoenix, AZ, 1999, pp. 2249-2254.

[2] 3. Zhang, K. H. Johansson, J. Lygeros, and
S. Sastry, “Zeno hybrid systems”, International Jour-
nal of Robust and Nonlinear Control, vol. 11, pp. 435
451, 2001.

[3] L. Tavernini, “Differential automata and their
discrete simulators”,  Nonlinear Analysis, Theory,
Methods & Applications, vol. 11, no. 6, pp. 665-683,
1987.

[4] J. Zhang, K. H. Johansson, J. Lygeros, and
S. Sastry, “Dynamical systems revisited: Hybrid sys-
tems with Zeno executions”, in Hybrid Systems: Com-
putation and Control, vol. 1790 of LNCS, pp. 451-464,
Springer-Verlag, 2000.

5] A. J. van der Schaft and J. M. Schumacher,
“Complementarity modeling of hybrid systems”, IEEE
Transactions on Automatic Control, vol. 43, no. 4, pp.
483-490, April 1998.

[6] M. Heemels, Linear Complementarity Systems,
PhD thesis, University of Einhoven, 1999.

(7] J.Imura and A. J. van der Schaft, “Character-
ization of well-posedness of piecewise linear systems”,
IEEE Transactions on Automatic Control, vol. 45, no.
9, pp. 1600-1619, September 2000.

[8] M. Broucke, “Regularity of solutions and homo-
topy equivalence for hybrid systems”, in IEEF Confer-
ence on Decision and Control, Tampa, FL, 1998.

[9] S. Sastry, Nonlinear Systems: Analysis, Stability,
and Control, Springer-Verlag, NY, 1999.

[10] 1. P. LaSalle, “Stability theory for ordinary dif-
ferential equations”, J. Diff. Eq., vol. 4, pp. 57-65,
1968,



A Proof Sketches

Proof of Lemma 3.1: Since 7§ > 0, the state
(q0,2°(7})) is reached from (go,zo) along continuous
evolution. We drop the superscript on z to simplify
the notation. To show 1, notice that, by the defini-
tion of an execution, x(¢) € D(go) for all t € [n, 7]}
Since z(7§) € 8D(qo), o(go, (7)) = 0. The composed
function o(go, ¥(-, g0, )) is differentiable in its first ar-
gument {t) in a neighbourhood of {7}, z¢) in Rt x R,
Moreover, o(go, ¥(-, g0, -)) is continuous in its second ar-
gument () in a neighbourhood of (7§, z¢) in RT x R“
Since,

= Lso{go,z(rg)) # 0,

(tz)=(r§,z0)

by the non-smooth Implicit Function Theorem, there
exists a neighbourhcod 2 C R* of 7, and a neigh-
bourhood W C R™ of 2y, such that for each y €¢ W
the equation o(qo, ¥(f, g0, %)) = O has a unique solution
t € {t. Furthermore, this solution is given by t = T(y),
where 1" is a continuous mapping from W to @ and

lﬁ(T(y): 40, y) € aD(qo)

Part 2 follows by the uniqueness of the implicit func-
tion construction. (To complete this step, a similar
argument in reverse time is needed).

550(610, #(t, qo, x))

Finally, to show 3, recall that, since ¥(:, go, -) is continu-
ous in both arguments, for all € > 0 there exists 6, > 0,
such that for all ¢ with |jt — T'(zo)|]| < 6; and ally e W
with {ly — zo|] < &1, |¥(2, g0, z0) ~ (T (20), g0, zo)|| < ¢
and (T (v}, 90, y) ~ (T (y), 0. 0)|| < e. By the con-
tinuity of T there exists some d» > 0 such that for all
y € W with ||y—-zo| < 82, we have || T(y)}—T(zo)|| < &1
Setting § = min(d;,d2) completes the proof. »

Proof of Theorem 3.1: Consider a finite execu-
tion x = (r,¢,2) € Enlgo, o) with 7 = {L}Y,
and an ¢ > 0. We construct a sequence of sets
{Wo, v WH¥ VN} where W¥ C D{g(i})) is a
neighbourhood of z*(w;) and V¢ C D(g(i)) is a neigh-
bourhood of z(7]), such that the continuous evelution
in q{i) provides a continuous map from W? to V* and
the reset R(e;,-) provides continuous map from V? to
Wi+l The construction is recursive. Starting with ¢ =
N, define VV = {z € D{g(N}) : |z — =NV (73,)] < €}.

Case 1: Thy >ty and =™ (15} € 8D{g(N)). There ex-
ists a neighbourhood, W C D(g(N))}, of z¥(ry) and
a differentiable function, 7 : W — R*, such that
for all y € W, %(T(y),¢(N),y) € 8D(g(N}) and
P(t,q(N),y) € D{g(N))° for all £ € (0,T(y)). Asin
Lemma 3.1, define ¥V : W — 8D(gq(N)) by ¥V (y) =

Y(T(y), g{N),y). By continuity of ¥¥, there exists
a neighbourhood, W¥ < W, of zN(rN) such that
TN(WN) € VN, Furthermore, all executions ¥ with
N (Fn) € WH fulfil 2V (Fy + TN(EN (#4))) € VN,
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Case 2: 1)y > 7 and z¥ (v} ) € D(g(N))°. Define TV
by T¥(y) = 74 — 7v. Let W C D{(g(N)) be a neigh-
bourhood of z¥(ry) such that for all y € W and
t € (0,1 —tn), ¥(t.g(N),y) € D(g{N))°. Such a
neighbourhood exists, because for all t € (0,7} — ™),
t;i'(t q(N) zN(ry)) € D(g(N))°. Define a function
S W = D(g(NY) by BN (y) = (T (), a(N), )
By continuous dependence of the solutions of the dif-
ferential equation with respect to initial conditions,
there exists a neighbourhood W& < W of zN(ry)
such that both V(W) C V¥ and all executions with
N (7n) € WY satisfy &V (7w + TV (@ (7n))) € VY.

Case 3: 14 = 7. Define T by T¥(y) = 0, WV =
V¥ and ¥V the identity map.

To define V-1, let e; = (g(4), g(i -+ 1)) and notice that
V¥ =Yr4_,) € Glen—1). Since R{ey_1,'} is continu-
ous, there exists a neighbourhood V' C D(g(N — 1)) of
V=414 _,) such that R{ex—1,V N Glen_1)) c WV, -
By condition 2 of the theorem, G(en_1) N D(g(N ~ 1))
is an open subset of 8D(g(IN - 1)), so there exists a
neighbourhood V¥~1 C V of z¥~(r4_,) such that
VN=1'0 8D(g(N - 1)) € Gley—1) N D{g(N — 1))
Since H is deterministic, it follows that all execu-
tions with §(N — 1) = g(N — 1) and &V "1(7,_,) €
V¥-1naD(g(N — 1)) satisfy ¥ {Fy) € WV,

Next, define T¥~1 and ¥N-1 as for Cases 1 and 3
above. Notice that, if 7j,_, = 7n_1, some executjons
close to x may take an instantaneous transition from
q(N — 1} to g(N) (7j_; = 7w—_1) while others may
have to flow for a while (F4,_; > Ty_1) before they
follow x’s transition from ¢(IV — 1) to g(N).

By induction, we can construct & sequence of sets
{Wo, Vo .., W¥ VY and continuous functions T* :
Wi — Rt and ¥ : W' — Vi fori = 0,...,N.
For k = ., N, define the function ®F : W —
W¥ recursively by @°(zo) Fo and *(ig)
Riep_y, UF H{®F1(35)}). For k = 0,..., N, define a
function v* : W0 = R* by v*(z0) = 5. TH®! (30)).
Then, ®5(Z) = 5(F) and ¥*(Z0) = 7 — 7 for the
execution ¥ = (7, §, &) with (do,%0) € go x WP, The
functions $* and v* are continuous by eonstruction. By
the continuity of vV, there exists &; > 0 such that for all
Fo with |0 —x0]| < 1, we have vV (F0) — vV (z0)] < ¢,
or, in other words, f\[_jfio(%; — B - SN ) <
€. By the continuity of ¥V there exists d > 0
such that for all y € WY with ||ly — 2V (rw)|| < 8,
TN () — =V (r4)]| < e. Hence, by the continuity of
&N, there exists 83 > 0 such that for all £ € WO
with [|Zo — ol < 83, @Y (Z6) - =¥ (7n)] < da. Since
TN (BN (29)) = TN (Fh), we have |2V (7Y ) —=N (74)| <
c. n



