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Abstract. The necessary and sufficient conditions for being able to estimate scene structure, motion and camera
calibration from a sequence of images are very rarely satisfied in practice. What exactly can be estimated in sequences
of practical importance, when such conditions are not satisfied? In this paper we give a complete answer to this
question. For every camera motion that fails to meet the conditions, we give explicit formulas for the ambiguities
in the reconstructed scene, motion and calibration. Such a characterization is crucial both for designing robust
estimation algorithms (that do not try to recover parameters that cannot be recovered), and for generating novel
views of the scene by controlling the vantage point. To this end, we characterize explicitly all the vantage points that
give rise to a valid Euclidean reprojection regardless of the ambiguity in the reconstruction. We also characterize
vantage points that generate views that are altogether invariant to the ambiguity. All the results are presented using
simple notation that involves no tensors nor complex projective geometry, and should be accessible with basic
background in linear algebra.

Keywords: camera self-calibration, multilinear constraints, reconstruction ambiguity, reprojection

1. Introduction

Reconstructing spatial properties of a scene from a
number of images taken by an uncalibrated camera is a
classical problem in computer vision. It is particularly
important when the camera used to acquire the im-
ages is not available for calibration, as for instance in
video post-processing, or when the calibration changes
in time, as in vision-based navigation. If we repre-
sent the scene by a number of isolated points in three-
dimensional space and the imaging process by an ideal
perspective projection, the problem can be reduced to
a purely geometric one, which has been subject to the
intense scrutiny of a number of researchers during the
past ten years. Their efforts have led to several impor-
tant and useful results. The problem is thatconditions

for a unique Euclidean reconstruction are almost never
satisfied in sequence of images of practical interest. In
fact, they require as a necessary condition that the cam-
era undergoes rotation about at least two independent
axes, which is rarely the case both in video processing
and in autonomous navigation (Ma et al., 1999).

In this paper we address the question ofwhat exactly
can be done when the necessary and sufficient condi-
tions for unique reconstruction arenot satisfied. In
particular:

(i) For all the motions that do not satisfy the condi-
tions, to what extent can we reconstruct structure,
motion and calibration?

(ii) If the goal of the reconstruction is to produce a new
view of the scene from a different vantage point,
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how can we make sure that the image generated
portrays a “valid” Euclidean scene?

On our way to answering these questions, we pause to
reflect on the nature of multilinear constraints. While
constraints involving two images at a time (fundamen-
tal constraints) are well understood and involve clean
notation and geometric interpretation, muti-linear con-
straints are more difficult to work with and to interpret.
It seems therefore natural to ask the following question

(iii) Do multilinear constraints carry geometric infor-
mation on the camera system that is not contained
in bilinear ones?

1.1. Relation to Previous Work

The study of ambiguities in Euclidean reconstruction
(i) arises naturally in the problem of motion and struc-
ture recovery and self-calibration from multiple cam-
eras. There is a vast body of literature on this topic,
which cannot be reviewed in the limited space allowed.
Here we only comment on some of the work that is most
closely related to this paper, while we refer the reader
to the literature for more details, references and appro-
priate credits (see for instance Carlsson, 1994; Hartley,
1994; Heyden et al., 1997; Luong and Vieville, 1994;
Sturm, 1997; Triggs, (to appear); and Werman and
Shashua, 1995 and references therein).

It has long been known that in the absence of any a
priori information about motion, calibration and scene
structure, reconstruction can be performed at least up
to a projective transformation (Faugeras, 1997). Uti-
lizing additional knowledge about the relationship be-
tween geometric entities in the image (e.g., parallelism)
one can stratify the different levels of reconstructions
from projective all the way to Euclidean (Boufama
et al., 1993; Christy and Horaud, 1996; Faugeras, 1997;
Moon et al., 1993). At such a level of generality, the
conditions on the uniqueness and existence of solu-
tions are restrictive and the algorithms are computa-
tionally costly, often exhibiting local minima (Luong
and Faugeras, 1997).

The nature of the constraints among images of the
same point in different cameras has been studied exten-
sively, and is known to be multilinear (see for instance
Faugeras and Papadopoulo, 1995; Heyden et al., 1997;
Triggs, to appear). The algebraic dependency among
constraints (iii) has been established by means of elim-
ination (Werman and Shashua, 1995) or other algebraic

geometric tools (Heyden and̊Aström, 1997). However,
an explicit characterization of how the information is
encoded in different constraints—which is crucial in
the design of robust estimation algorithms—is hard to
derive by such means.

Recently, Sturm (1997) has proposed a taxonomy of
critical motions, that is motions which do not allow
a unique reconstruction. However, not only the given
taxonomy is by no means intrinsic to Euclidean re-
construction (see Ma et al., 1999), but also no explicit
characterization of the ambiguities in the reconstructed
shape, motion and calibration has been given. A natu-
ral continuation of these efforts involved the analysis
of cases where the motion and/or calibration were re-
stricted either to planar or linear motion (Beardsley and
Zisserman, 1995; Moon et al., 1993) and techniques
were proposed for affine reconstruction or up to one
parameter family.

Several techniques have been proposed to synthesize
novel views of a reconstructed scene (ii): in Avidan
and Shashua (1997), trilinear constraints have been ex-
ploited to help generate reprojected images for a cal-
ibrated camera. In the case of a partially uncalibrated
camera, such a method has to face the issues of whether
the reprojected image portrays a valid Euclidean scene.

1.2. Outline of this Paper and its Contributions

As we anticipated in the previous section, the answer
to question (iii) has been established before on an al-
gebraic footing—the algebraic ideals generated by tri-
linear and quadrilinear constraints (as polynomials of
image coordinates) are necessarily contained in that
generated by bilinear ones (Heyden andÅström, 1997).
However, in order to give a complete account of ambi-
guities in 3D Euclidean reconstruction (especially for
self-calibration and motion recovery), it is crucial to
know how the information on the Euclidean configu-
ration of a camera system is encoded in the multilinear
constraints. In Section 2 we give a novel, complete
and rigorous proof that unveils how the information en-
coded in trilinear and quadrilinear constraints depends
on that in bilinear ones. There we also discuss the role
of multilinear constraints with regards to singular con-
figurations of points.

The well-known—but conservative—answer to
question (i) is that structure can at least be recovered
up to a global projective transformation of the three-
dimensional space. However, there is more to be
said, as we do in Section 3 for the case of con-
stant calibration.1 There, we give explicit formulas of
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exact ambiguities in the reconstruction of scene struc-
ture, camera motion and calibration with respect to all
subgroups of the Euclidean motion. In principle, one
should study ambiguities corresponding to all critical
configurations as given in Ma et al. (1999). However,
it is only the ambiguities that exhibit agroup struc-
ture that are of practical importance in the design of
estimation algorithms. In such a case, not only can the
analysis be considerably simplified but also clean for-
mulas for all generic ambiguities can be derived. Such
formulas are important for 3D reconstruction as well
as for synthesizing novel 2D views.

Question (ii) is then answered in Section 4, where we
characterize the complete set of vantage points that gen-
erate “valid” images of the scene regardless of generic
ambiguities in 3D reconstruction.

These results have great practical significance, be-
cause they quantify precisely to what extent scene
structure, camera motion and calibration can be es-
timated in sequences for which many of the techniques
available todate do not apply. Furthermore, the analy-
sis clarifies the process of 2D view synthesis from novel
viewpoints. In addition to that, we give a novel account
of known results on the role of multilinear constraints
and their relationship to bilinear ones.

Granted the potential impact on applications, this pa-
per is mainly concerned with theory. We address nei-
ther algorithmic issues, nor do we perform experiments
of any sort: the validation of our statements is in the
proofs. We have tried to keep our notation as terse as
possible. Our tools are borrowed from linear algebra
and some differential geometry, although all the results
should be accessible without background in the latter.
We use the language of (Lie) groups because that al-
lows us to give an explicit characterization of all the
ambiguities in a concise and intuitive fashion. Tradi-
tional tools involved in the analysis of self-calibration
involved complex loci in projective spaces (e.g., the
“absolute conic”), which can be hard to grasp for some-
one not proficient in algebraic geometry.

2. Dependency of Multilinear
Constraints Revisited

We model the world as a collection of points in a three-
dimensional Euclidean space, which we represent in
homogeneous coordinates asq = (q1,q2,q3, 1)T ∈
R4. The perspective projection of the generic point
onto the two-dimensional image plane is represented

by homogeneous coordinatesx ∈ R3 that satisfy

λ(t)x(t) = A(t)g(t)q, t ∈ R (1)

whereλ(t) ∈ R is a scalar parameter related to the
distance of the pointq from the center of projection
and the non-singular matrixA(t)—called “calibration
matrix”—describes the intrinsic parameters of the cam-
era. Without loss of generality we will re-scale the
above equation so that the determinant ofA is 1. The
set of 3× 3 matrices with determinant one is called
Special Linear group denoted bySL(3). The rigid mo-
tion of the camerag(t) is represented by a translation
vectorp(t) ∈ R3 and a rotation matrixR(t), that is an
orthogonal matrix with determinant equal to one. Such
matrices form a group called Special Orthogonal group
and indicated bySO(3); g(t) = (R(t), p(t)) belongs
to SE(3), the special Euclidean group of rigid motion
in R3. The action ofg(t) on the pointq is given by
g(t)q = R(t)q+ p(t). In Eq. (1) we will assume that
x(t) is measured, while everything else is unknown.

When we consider measurements atn different
times, we organize the above equations by defining

Mi
.= (A(ti )R(ti ), A(ti )p(ti )) ∈ R3×4 (2)

which we will assume to be full-rank, that is
rank(Mi ) = 3 for i = 1, . . . ,n. So we have

x(t1) 0 · · · 0

0 x(t2) · · · 0
...

...
. . .

...

0 0 · · · x(tn)



λ(t1)

λ(t2)
...

λ(tn)

 =


M1

M2

...

Mn

q

which we re-write in a more compact notation asXEλ =
Mq. We callM ∈ R3n×4 the motion matrixandX the
image matrix.

2.1. Constraints on Multiple Images

Let Emi ∈ R3n, i = 1, . . . ,4 denote the four columns
of the matrixM and EX i ∈ R3n, i = 1, . . . ,n be then
columns of the matrixX. Then the coordinatesx(ti )
represent the same point seen from different views only
if they satisfy the following wedge product equation:

Em1 ∧ Em2 ∧ Em3 ∧ Em4 ∧ EX1 ∧ · · · ∧ EXn = 0. (3)
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This constraint, which is multilinear in the measure-
mentsx(ti ) simply expresses the fact that the columns
of M and X are linearly dependent. Constraints in-
volving four images are callquadrilinear, constraints
involving three images are calledtrilinear, and those
involving two images are calledbilinear or fundamen-
tal. In general, the coefficients of all the multilinear
constraints are minors of the motion matrixM . As it
has been shown (see, for instance, Triggs (to appear)),
constraints involving more than four frames are neces-
sarily dependent on quadrilinear, trilinear and bilinear
ones. In this section we go one step further to discuss
how trilinear and quadrilinear constraints are depen-
dent on bilinear ones.

When studying the dependency among constraints,
one must distinguish betweenalgebraicandgeometric
dependency. Roughly speaking, algebraic dependency
concerns the conditions that a point in an image must
satisfy in order to be the correspondent of a point in an-
other image. Vice versa, geometric dependency is con-
cerned with the information that corresponding points
give on the operator that maps one to the other. The
two notions are related but not equivalent, and the latter
bears important consequences when one is to use the
constraints in optimization algorithms to recover struc-
ture and calibration. While the geometric dependency
of multilinear constraints has been established before
under the assumption of constant calibration (Heyden
et al., 1997), we give a novel, simple and rigorous proof
that is valid under the more general assumption of time-
varying calibration.

2.2. Algebraic vs. Geometric Dependency

To clarify the relation between algebraic and geometric
dependency,2 note that in general we can express a mul-
tilinear constraint in the form:

∑
j α j (M)β j (X) = 0

whereα j are some polynomials of entries ofM and
β j polynomials of entries of the image coordinates,
with M andX defined as before.α j ’s are called the
coefficientsof multilinear constraints. Studying theal-
gebraic dependencybetween constraints then corre-
sponds to fixing the coefficientsα j and asking whether
there are some additional constraints among the im-
age coordinatesX generated by three and four views.3

This problem has been studied many researchers and
an elegant answer can be found in Heyden andÅström
(1997) by explicitly characterizing theprimary decom-
positionof the ideal (in the polynomial ring of image
coordinatesxi ’s) generated by the bilinear constraints

in terms of that generated by trilinear ones or quadri-
linear ones.

Geometric dependency, on the other hand, inves-
tigates whether, given the image coordinatesX, the
coefficientsα j corresponding to motion parameters in
additional views can give additional information about
M . These two different types of dependencies were
previously pointed out (see for instance the work of
Heyden et al. (1997). For both types of dependencies,
the answer is negative, i.e., trilinear and quadrilinear
constraints in general are dependent of bilinear ones.
We here give a simple but rigorous study of the geo-
metric dependency. The results will also validate the
ambiguity analysis given in following sections.

Consider the casen= 3 and, for the moment, disre-
gard the internal structure of the motion matrixM ∈
R9×4. Its columns can be interpreted as a basis of
a four-dimensional subspace of the nine-dimensional
space. The set ofk-dimensional subspaces of an
m-dimensional space is called a Grassmannian man-
ifold and denoted byG(m, k). Therefore,M is an ele-
ment ofG(9, 4). By just re-arranging the three blocks
Mi , i = 1, . . . ,3 into three pairs,(M1,M2), (M1,M3)

and(M2,M3), we define a mapφ betweenG(9, 4) and
three copies ofG(6, 4)

φ : G(9, 4)→ G(6, 4)× G(6, 4)× G(6, 4)M1

M2

M3

 7→ ((
M1

M2

)
,

(
M2

M3

)
,

(
M1

M3

))
.

The question of whether trilinear constraints are inde-
pendent of bilinear ones is tightly related to whether
these two representations of the motion matrixM are
equivalent. Since the coefficients in the multilinear con-
straints are homogeneous in the entries of each block
Mi , the motion matrixM is only determined up to the
equivalence relation:

M ∼ M ′ if ∃ λi ∈ R∗,Mi = λi M
′
i , i = 1, . . . ,n

(4)

whereR∗ = R\{0}. Thus for multilinear constraints
the motion matrix is only well-defined as an element
of the quotient spaceG(3n, 4)/∼ which is of dimen-
sion (11n − 15),4 as was already noted by Triggs (to
appear).

We are now ready to prove that coefficientsα j ’s in
trilinear and quadrilinear constraints depend on those
in bilinear ones.
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Theorem 1 (Geometric dependency). Given three
(or four) views, the coefficients of all bilinear con-
straints or equivalently the corresponding fundamental
matrices uniquely determine the motion matrix M as
an element in G(9, 4)/∼ (or G(12, 4)/∼) given that
Ker(Mi )’s are linearly independent.

Proof: It is known that between any pair of images
(i, j ) the motion matrix:( Mi

M j
) ∈ G(6, 4) is determined

by the corresponding fundamental matrixFi j up to two
scalarsλi , λ j : (

λi Mi

λ j M j
) ∈ G(6, 4), λ j ∈ R∗. Hence for

the three view case all we need to prove is that the map:

φ̃ : (G(9, 4)/∼)→ (G(6, 4)/∼)3

is injective. To this end, assumẽφ(M)= φ̃(M ′); then
we have that, after re-scaling,(M ′1

M ′2
) = ( λ1M1

M2
)G1, (M ′2

M ′3
)

= ( λ2M2

M3
)G2, (M ′1

M ′3
) = ( M1

λ3M3
)G3 for someλi ∈ R∗ and

Gi ∈ GL(4),5 i = 1, 2, 3. This yieldsM1(λ1G1 −
G3) = 0,M2(λ2G2− G1) = 0,M3(λ3G3− G2) = 0.
Therefore there existUi ∈ R4×4, i = 1, 2, 3 with each
column ofUi is in Ker(Mi ) such that:

G3− λ1G1 = U1, G1− λ2G2 = U2,

G2− λ3G3 = U3.

Combining these three equations, we obtain:

(1− λ1λ2λ3)G1 = λ2λ3U1+ λ2U3+U2.

The matrix on the right hand side of the equation
has a non-trivial null space since its column vectors are
in the spacespan{Ker(M1),Ker(M2),Ker(M3)}which
has dimension three. However,G1 is non-singular, and
therefore it must beλ1λ2λ3= 1. This givesλ1G1 −
G3 = −λ1(λ2G2 − G1) − λ1λ2(λ3G3 − G2). That
is, the columns ofλ1G1 − G3 are linear combina-
tions of columns ofλ2G2 − G1 andλ3G3 − G2. But
Ker(Mi ), i = 1, 2, 3 are linearly independent. Thus
we haveλ1G1 = G3, λ2G2 = G1, λ3G3 = G2. This
implies

M ′1
M ′2
M ′3

 =
 λ1M1

M2

λ1λ3M3

G1.

which means thatM ′ and M are the same, up to the
equivalence relation defined in Eq. (4). Therefore, they

represent the same element inG(9, 4)/∼, which means
that the map̃φ is injective.

In the case of four views, in order to show that co-
efficients in quadrilinear constraints also depend on
bilinear ones, one only needs to check that the obvi-
ous map fromG(12, 4)/∼ to (G(9, 4)/∼)4 is injective.
This directly follows from the above proof of the three
frame case. 2

Comment 1. As a consequence of the theorem, co-
efficientsα j ’s in trilinear and quadrilinear constraints
are functions of those in bilinear ones. While the above
proof shows that the map̃φ can be inverted, it does
not provide an explicit characterization of the inverse.
Such an inverse can in principle be highly non-linear
and conditioning issues need to be taken into account
in the design of estimation algorithms. We emphasize
that the geometric dependency doesnot imply that two
views are sufficient for reconstruction! It claims that
givenn views, their geometry is characterized by con-
sidering only combinations of pairs of them through
bilinear constraints, while trilinear constraints are of
helponlyin the case of singular configurations of points
and camera(see Comment 2). For four views, the con-
dition that Ker(Mi ), i = 1, . . . ,4 are linearly inde-
pendent is not necessary. A less conservative condition
is that there exist two groups of three frames which
satisfy the condition for the three view case.

Theorem 1 requires that the one-dimensional ker-
nels of the matricesMi , i = 1, . . . ,n (n = 3 or 4)
are linearly independent. Note that the kernels ofMi

for i = 1, 2, 3, 4 are given by(−pT
i Ri , 1)T , where

the vectorRT
i pi ∈R3 is exactly the position of thei th

camera center. Hence the condition of the theorem is
satisfied if and only if the centers of projection of the
cameras generate a hyper-plane of dimensionn−1. In
particular, whenn = 3, the three camera centers form
a triangle, and whenn = 4, the four camera centers
form a tetrahedron.

Comment 2(Critical surfaces and motions). Al-
though we have shown that the coefficients of mul-
tilinear constraints depend on those of bilinear ones,

we have assumed that the latter(or the corresponding
fundamental matrices) are uniquely determined by the
epipolar geometry. However, this is not true when all
the points lie on critical surfaces. In this case, as ar-
gued by Maybank(1993), we may obtain up to three
ambiguous solutions from the bilinear constraints. This
is one of the cases when trilinear and quadrilinear
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constraints provide useful information. On this topic,
see also Maybank and Shashua(1988). Also,when the
camera is undergoing a rectilinear motion(i.e., all op-
tical centers are aligned), trilinear constraints provide
independent information in addition to bilinear ones.
This fact has been pointed out before; see for instance
Heyden(1998).

3. Reconstruction Under Motion Subgroups

The goal of this section is to study all “critical” mo-
tion groups that donot allow unique reconstruction of
structure, motion and calibration. While aclassifica-
tion of such critical motions has been presented before
(see Ma et al., 1999), we here go well beyond by giving
anexplicit characterizationof the ambiguity in the re-
construction for each critical motion. Such an explicit
characterization is crucial in deriving the ambiguity in
the generation of novel views of a scene, which we
study in Section 4.

In this section, we characterize the generic ambigu-
ity in the recovery of (a) structure, (b) motion and (c)
calibration corresponding to each possible critical mo-
tion. A subgroup ofSE(3) is calledcritical if the recon-
struction is not unique when the motion of the camera
is restricted to it. For the purpose of this section, we
assume that the calibration matrixA is constant.

3.1. Some Preliminaries

So far the only restriction we have imposed on the con-
stant calibration matrixA is that it is non-singular and
is normalized as to have det(A)= 1. However,A can
only be determined up to an equivalence class of ro-
tations, that isA ∈ SL(3)/SO(3).6 For more detail,
please see (Ma et al., 1999). The unrecoverable rota-
tion in our choice ofA simply corresponds to a rotation
of the entire camera system. We borrow the following
statement directly from (Ma et al., 1999):

Theorem 2 (Necessary and sufficient condition for
a unique calibration). For a set of camera motions
{(Ri , pi )} where none of the rotation component Ri

is of the form êui kπ with ‖ui ‖ = 1, k ∈ Z, the camera
calibration A as an element in SL(3)/SO(3) is uniquely
determined if and only if at least two of the axes ui

′s
are linearly independent.

Although the necessity of the independence of the ro-
tation axes has been long known in the literature (see

e.g. Luong and Vieville, 1994), the sufficiency is not
proven till recent (Ma et al., 1999). This theorem states
a very important and useful fact: the condition for a
unique calibration has nothing to do with translation
(as opposed to the results given in Sturm 1997)!7 See
Ma et al. (1999) for the detail. Due to this theorem,
many proper continuous subgroups ofSE(3) are criti-
cal for self-calibration. So the first step in our analysis
consists in classifying all continuous Lie subgroups of
SE(3) which are critical. It is a well known fact that a
complete list of subgroups ofSE(3) can be classified by
all Lie subalgebras of the Lie algebrase(3)of SE(3)and
then exponentiate them. It is then straightforward to
show that each of these subgroups must have the same
ambiguity in reconstruction as one in the following list
(as we will explain in the comments):

Translational Motion:(R3,+) and its subgroups
Rotational Motion:(SO(3), ·) and its subgroups
Planar Motion:SE(2)
Screw Motion:(SO(2), ·)× (R,+)
Planar+ Elevation:SE(2)× (R,+)
Rigid Body Motion:SE(3)

Comment 3. The above list is by no means a complete
list of all subgroups ofSE(3). For example, the “planar
orbital motion”, i.e., camera moving on a circle with
the optical axis always facing the center, is none of the
motion in the above list. However, it is can be treated
as a special case of the planar motion since, as far as
reconstruction is concerned, they obviously have the
same generic ambiguities. In order to show that all
subgroups have the same ambiguity in reconstruction
as one of the above motions, we must go through all
the possible Lie subalgebras ofse(3). It can be shown
that, if a Lie subalgebra has at least 4 dimension and has
two independent rotation components, then it must be
se(3) itself. Now the only interesting case left is some
three dimensional Lie subalgebras which,without loss
of generality, are generated by elements:

X =
(

ê1 u

0 0

)
, Y =

(
ê2 v

0 0

)
, (5)

Z =
(

ê3 w

0 0

)

wheree1, e2, e3 are standard basis ofR3 andu, v and
w are three vectors inR3. In order for the Lie algebra
generated byX,Y, Z to be three dimensional, we must



Euclidean Reconstruction and Reprojection 225

have the vectorα = (uT , vT , wT )T ∈ R9 in the null
space of the matrix:

Q =

 ê2 −ê1 I

I ê3 −ê2

−ê3 I ê1

 . (6)

That isQα = 0. If α = 0, then the subgroup generated
by the algebra is just the pure rotation groupSO(3). If
α 6= 0, then the subgroup generated contains three in-
dependent rotation axes and translation (parallax). For
such subgroups, a unique reconstruction is available.
That is, they are not critical for reconstruction or have
the same ambiguity as the full rigid body motionSE(3).
A generic example for such a three dimensional sub-
group ofSE(3) is the isometry group of the sphereS2.

We are now ready to explore to what extent scene
structure, camera motion and calibration can be recon-
structed when motion is constrained onto one of the
above subgroups. In other words, we will study the
genericambiguities of the reconstruction problem. In
what follows, we useq(t) = (q1(t),q2(t),q3(t))T ∈
R3 to denote the 3D coordinates of the pointq =
(q1,q2,q3, 1)T ∈ R4 with respect to the camera frame
at timet : q(t) = (R(t), p(t))q. To simplify notation,
for anyu ∈ R3 we defineû to be a 3 skew-symmetric
matrix such that∀v ∈ R3 the cross productu×v = ûv.

3.2. Generic Ambiguities in Structure,
Motion and Calibration

Translational Motion (R3 and its Subgroups). The
coordinate transformation between different views is
given byAq(t) = Aq(t0)+Ap(t), p(t) ∈ R3.Accord-
ing to Theorem 2, the calibrationA ∈ SL(3) cannot be
recovered from pure translational motion, and therefore
the corresponding structureq and translational motion
p can be recovered only up to the unknown transfor-
mationA. We therefore have the following

Theorem 3(Ambiguity underR3). Consider an un-
calibrated camera described by the calibration matrix
A ∈ SL(3), undergoing purely translational motionR3

(or any of its nontrivial subgroups) and let B be an ar-
bitrary matrix in SL(3). If the camera motion p∈ R3

and the scene structure q∈ R4 are unknown, then B,
B−1Ap and B−1Aq are the only generic ambiguous
solutions for the camera calibration, camera motion
and the scene structure respectively.

Note that this ambiguity corresponds exactly to an
affine reconstruction (Moon et al., 1993).

Rotational Motion (SO(3)). The action ofSO(3)
transforms the coordinates in different cameras
by Aq(t)= AR(t)q(t0), R(t)∈SO(3). According to
Theorem 2, the calibrationA can be recovered
uniquely, and so can the rotational motionR(t) ∈
SO(3). However, it is well known that the depth in-
formation of the structure cannot be recovered at all.
We summarize these facts into the following:

Theorem 4(Ambiguity under(SO(3)). Consider an
uncalibrated camera with calibration matrix A∈
SL(3) undergoing purely rotational motion SO(3) and
letλ be an arbitrary(positive) scalar. If both the cam-
era motion R∈ SO(3) and the scene structure q∈ R3

are unknown, then A, R andλ · q are the only generic
ambiguous solutions for the camera calibration, cam-
era motion and the scene structure respectively.

Planar Motion (SE(2)). While the previous two
cases were of somewhat academic interest and the the-
orems portray well-known facts, planar motion arises
very often in applications. We will therefore study this
case in some more detail.

Let e1= (1, 0, 0)T , e2= (0, 1, 0)T , e3= (0, 0, 1)T ∈
R3 be the standard basis ofR3. Without loss of gen-
erality, we may assume the camera motion is on the
plane normal toe3 and is represented by the subgroup
SE(2).

Let A be the unknown calibration matrix of the cam-
era. As described in Section 3.1 we considerA as
an element of the quotient spaceSL(3)/SO(3). Ac-
cording to Ma et al. (1999), any possible calibration
matrix A0 ∈ SL(3)/SO(3) is such that the matrix
S= A−T

0 A−1
0 is in thesymmetric real kernel(SRKer) of

the Lyapunov map for allC = A−T RT AT , R ∈ SO(2):

L : C3×3→ C3×3; X 7→ X − C XCT . (7)

By the choice ofe1, e2, e3, the real eigenvector of
R is e3. Imposing S ∈ SL(3), we obtain S =
A−T D(s)A−1, whereD(s) ∈ R3×3 is a matrix function
of s:

D(s) =

s 0 0

0 s 0

0 0 1/s2

 , s ∈ R\{0}. (8)

Geometrically, this reveals that only metric information
within the plane can be recovered while the relative
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scale between the plane and its normal direction cannot
be determined. If we choose an erroneous matrixA0

from the set of possible solutions for calibration, then
A0B = A for some matrixB ∈ SL(3). SinceA−T

0 A−1
0

is necessarily inSRKer(L), we further have that, for
somes ∈ R,

A−T
0 A−1

0 = A−T D(s)A−1 ⇒ BT B = D(s). (9)

A solution of (9) is of the formB = HD(s) with H ∈
SO(3) ands ∈ R. Let us define a one-parameter Lie
groupGSE(2) as:

GSE(2) = {D(s) | s ∈ R\{0}}. (10)

Then the solution space of (9) is given bySO(3)GSE(2).
The groupGSE(2) can be viewed as a natural representa-
tion of ambiguous solutions in the spaceSL(3)/SO(3).

Once we have a calibration matrix, sayA0, we
can extract motion from the fundamental matrixF =
A−T RT AT p̂′ as follows: we know thatA= A0B
for someB=HD(s)∈SO(3)GSE(2). Then we define
E= AT

0 F A0 and note that, forR= exp(ê3θ), we have
that D(s) commutes withR i.e., D(s)RD(s)−1= R.
Then E is an essential matrix sinceE =
H−T D−T (s)RT p̂D−1(s)H−1=HRT H T ̂HD(s)p.The
motion recovered fromE is therefore (HRHT ,

HD(s)p)∈SE(3), where(R, p) ∈ SE(2) is the true
motion. Note that(HRHT ,HD(s)p) is actually apla-
nar motion(in a plane rotated byH from the origi-
nal one). The coordinate transformation in the uncali-
brated camera frame is given byAq(t) = ARq(t0) +
Ap(t). If, instead, the matrixA0 is chosen to justify
the camera calibration, the coordinate transformation
becomes:

A0Bq(t) = A0B Rq(t0)+ A0Bp(t) ⇒
HD(s)q(t) = HRHT (HD(s)q(t0))+ HD(s)p(t).

Therefore, any pointq viewed with an uncalibrated
cameraA undergoing a motion(R, p) ∈ SE(2) is not
distinguishable from the pointHD(s)q viewed with an
uncalibrated cameraA0 = AD−1(s)H T undergoing a
motion(HRHT ,HD(s)p) ∈ SE(2). We have therefore
proven the following

Theorem 5 (Ambiguity under SE(2)). Consider a
camera with unknown calibration matrix A∈ SL(3)
undergoing planar motion SE(2) and let B(s) =
HD(s) with H ∈ SO(3) and D(s) ∈ GSE(2). If both

the camera motion(R, p) ∈ SE(2) and the scene
structure q ∈ R3 are unknown, then AB−1(s) ∈
SL(3), (HRHT , B(s)p) ∈ SE(2) and B(s)q ∈ R3 are
the only generic ambiguous solutions for the camera
calibration, camera motion and scene structure
respectively.

Comment 4. Note that the role of the matrixH ∈
SO(3) is just to rotate the overall configuration. There-
fore, the only generic ambiguity of the reconstruction
is characterized by the one parameter Lie groupGSE(2).

Subgroups SO(2), SO(2)× R and SE(2)× R. We
conclude our discussion on subgroups ofSE(3) by
studyingSO(2), SO(2) × R andSE(2) × R together.
This is because their generic ambiguities are similar to
the case ofSE(2), which we have just studied. No-
tice that in the discussion of the ambiguityGSE(2), we
did not use the fact that the translationp has to sat-
isfy p3 = 0. Therefore,the generic reconstruction
ambiguities of SO(2) × R and SE(2) × R are exactly
the same as that of SE(2). The only different case is
SO(2). It is readily seen that the ambiguity ofSO(2) is
the “product” of that ofSE(2) and that ofSO(3) due to
the factSO(2) = SE(2)∩SO(3). As a consequence of
Theorem 4 and Theorem 5 we have:

Corollary 1 (Ambiguity under SO(2)). Consider an
uncalibrated camera with calibration matrix A∈SL(3)
undergoing a motion in SO(2) and let B(s) = HD(s)
with H ∈ SO(3), D(s) ∈ GSE(2) and λ ∈ (R+, ·).
If both the camera motion R∈SO(3) and the scene
structure q∈ R3 are unknown, then AB−1(s) ∈ SL(3),
HRHT ∈ SO(3)andλ·B(s)q ∈ R3 are the only generic
ambiguous solutions for the camera calibration, cam-
era motion and scene structure respectively.

From the above discussion of subgroups of
SE(3) we have seen that generic ambiguities exist
for many proper subgroup ofSE(3). Furthermore, such
ambiguities—which have been derived above based
only on bilinear constraints, are not resolved by multi-
linear constraints according to Theorem 1.

4. Reprojection Under Partial Reconstruction

In the previous section we have seen that, in general, it
is possible to reconstruct the calibration matrixA and
the scene’s structureq only up to a subgroup—which
we callK , the ambiguity subgroup. For instance, in the
case of planar motion, an element inK has the form
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D(s) given by Eq. (8). Therefore, after reconstruction
we have

q̃(K ) = Kq, Ã(K ) = AK−1. (11)

Now, suppose one wants to generate a novel view
of the scene,x̃ from a new vantage point, which
is specified by a motioñg ∈ SE(3) and must sat-
isfy λ̃x̃(K )= Ã(K )g̃q̃(K ). In general, the reprojection
x̃(K ) depends both on the ambiguity subgroupK and
on the vantage point̃g and there is no guarantee that it
is an image of the original Euclidean scene.

It is only natural, then, to askwhat is the set of van-
tage points that generate a valid reprojection, that is
an image of the original sceneq taken as if the camera
A was placed at some vantage pointg(K ). We dis-
cuss this issue in Section 4.1. A stronger condition to
require is that the reprojection be independent (invari-
ant) of the ambiguityK , so that we haveg(K ) = g̃
regardless ofK ; we discuss this issue in Section 4.2.

4.1. Valid Euclidean Reprojection

In order to characterize the vantage points—specified
by motionsg̃—that produce a valid reprojection we
must findg̃such that:Ã(K )g̃q̃(K )= Ag(K )q for some
g(K ) ∈ SE(3). Since the reprojected imagẽx is
λ̃x̃(K )= Ã(K )g̃q̃(K )= Ag(K )q, the characterization
of all such motionsg̃ is given by the following Lie
group:

R(K ) = {g̃ ∈ SE(3) | K−1g̃K ⊂ SE(3)}. (12)

We call R(K ) the reprojection groupfor a given am-
biguity groupK . For each of the generic ambiguities
we studied in Section 3, the corresponding reprojection
group is given by the following

Theorem 6. The reprojection groups corresponding
to each of the ambiguity groups K studied in Section3
are given by:

1. R(K )= (R3,+) for K =SL(3) (ambiguity of
(R3,+)).

2. R(K )=SO(2) for K =GSE(2)×(R+, ·) (ambiguity
of SO(2)).

3. R(K ) = SE(2) × R for K = GSE(2) (ambiguity of
SE(2),SO(2)× R,SE(2)× R).

4. R(K ) = SE(3) for K = I (ambiguity of SE(3)).

Even though the reprojected image is, in general, not
unique, the family of all such images are still parame-
terized by the same ambiguity groupK . For a motion
outside of the groupR(K ), i.e., for ag̃ ∈ SE(3)\R(K ),
the action of the ambiguity groupK on a reprojected
image cannot simply be represented as moving the
camera: it will have to be a more general non-Euclidean
transformation of the shape of the scene. However, the
family of all such non-Euclidean shapes are minimally
parameterized by the quotient spaceSE(3)/R(K ).

Comment 5(Choice of a “basis” for reprojection).
Note that in order to specify the viewpoint it is not
just sufficient to choose the motioñg for, in general,
g(K ) 6= g̃. Therefore, an imaginary “visual-effect
operator” will have to adjust the viewpointg(K ) act-
ing on the parameters inK . The ambiguity subgroups
derived in Section 3 are one-parameter groups (for the
most important cases) and thereforethe choice is res-
tricted to one parameter. In a projective framework
(such as Faugeras (1997), the user has to specify a pro-
jective basis of three-dimensional space, that is 15 pa-
rameters. This is usually done by specifying the three-
dimensional position of 5 points in space.

4.2. Invariant Reprojection

In order for the view taken from̃g to be unique, we
must have

λ̃x̃ = Ã(K )g̃q̃(K ) = AK−1g̃Kq (13)

independent ofK . Equivalently we must haveK−1g̃K
= g̃ whereK is the ambiguity generated by the motion
on a subgroupG of SE(3). The set of̃g that satisfy this
condition is a groupN(K ), the so callednormalizerof
K in SE(3). Therefore, all we have to do is to char-
acterize the normalizers for the ambiguity subgroups
studied in Section 3

Theorem 7. The set of viewpoints that are invariant
to reprojection is given by the normalizer of the am-
biguity subgroup. For each of the motion subgroups
analyzed in Section3 the corresponding normalizer of
the ambiguity group is given by:

1. N(K ) = I for K = SL(3) (ambiguity of(R3,+)).
2. N(K )=SO(2) for K =GSE(2)× (R+, ·) (ambi-

guity of SO(2)).
3. N(K )=SO(2) for K =GSE(2) (ambiguity of

SE(2),SO(2)× R,SE(2)× R).
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4. N(K ) = SE(3) for K = I (ambiguity of SE(3)).

For motions in every subgroup, the reprojection per-
formed under any viewpoint determined by the groups
above is unique.

5. Conclusions

When the necessary and sufficient conditions for a
unique reconstruction of scene structure, camera mo-
tion and calibration are not satisfied, it is still possible to
retrieve a reconstruction up to a global subgroup action
(on the entire configuration of the camera system). We
characterize such subgroups explicitly for all possible
motion groups of the camera. The reconstructed struc-
ture can then be re-projected to generate novel views
of the scene. We characterize the “basis” of the re-
projection corresponding to each subgroup, and also
the motions that generate a unique reprojection. We
achieve the goal by using results from two view analy-
sis (Ma et al., 1999). This is possible because the coef-
ficients of multilinear constraints are geometrically de-
pendent of those of bilinear constraints. Therefore, the
only advantage in considering multilinear constraints
is in the presence of singular surfaces and rectilinear
motions. Our future research agenda involves the de-
sign of optimal algorithms to recover all (and only!) the
parameters that can be estimated from the data based
upon their generic ambiguities. The reconstruction and
reprojection problem studied in this paper is for a con-
stant calibration matrix. We will present generalized
results for the time-varying case in future work.
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Notes

1. In fact, even in the case of time-varying calibration, in principle,
the best one can do is an affine reconstruction, not just a projective
one!

2. This subsection is for the benefit of the reader already familiar with
existing work on the algebraic dependency among multilinear
constraints. The reader who is not at ease with algebraic geometry
or unfamiliar with the existing literature can skip this subsection
without loss of continuity

3. In other words, it addresses the dependency among algebraic
ideals associated with the three types of multilinear constraints.

4. The GrassmannianG(3n, 4)has dimension(3n−4)4= 12n−16.
The dimension of the quotient space isn − 1 smaller since the
equivalence relation hasn− 1 independent scales.

5. GL(4) is the general linear group of all non-degenerate 4×4 real
matrices.

6. Here take left cosets as elements in the quotient space. A repre-
sentation of this quotient space is given, for instance, by upper-
triangular matrices; such a representation is commonly used in
modeling calibration matrices by means of physical parameters
of cameras such as focal length, principal point and pixel skew.

7. This is because we here only consider thegeneric ambiguityin
reconstruction, i.e., such ambiguity exists no matter what the
camera sees and no matter what the algorithms do.
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