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Abstract. The necessary and sufficient conditions for being able to estimate scene structure, motion and camera
calibration from a sequence ofimages are very rarely satisfied in practice. What exactly can be estimated in sequences
of practical importance, when such conditions are not satisfied? In this paper we give a complete answer to this
question. For every camera motion that fails to meet the conditions, we give explicit formulas for the ambiguities
in the reconstructed scene, motion and calibration. Such a characterization is crucial both for designing robust
estimation algorithms (that do not try to recover parameters that cannot be recovered), and for generating novel
views of the scene by controlling the vantage point. To this end, we characterize explicitly all the vantage points that
give rise to a valid Euclidean reprojection regardless of the ambiguity in the reconstruction. We also characterize
vantage points that generate views that are altogether invariant to the ambiguity. All the results are presented using
simple notation that involves no tensors nor complex projective geometry, and should be accessible with basic
background in linear algebra.
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1. Introduction for a unique Euclidean reconstruction are almost never
satisfied in sequence of images of practical interbst

Reconstructing spatial properties of a scene from a fact, they require as a necessary condition that the cam-

number of images taken by an uncalibrated camera is aera undergoes rotation about at least two independent

classical problem in computer vision. It is particularly axes, which is rarely the case both in video processing

important when the camera used to acquire the im- and in autonomous navigation (Ma et al., 1999).

ages is not available for calibration, as for instance in  In this paper we address the questiombht exactly

video post-processing, or when the calibration changes can be done when the necessary and sufficient condi-

in time, as in vision-based navigation. If we repre- tions for unique reconstruction aneot satisfied In

sent the scene by a number of isolated points in three- particular:

dimensional space and the imaging process by an ideal

perspective projection, the problem can be reduced to (i) For all the motions that do not satisfy the condi-

a purely geometric one, which has been subject to the tions, to what extent can we reconstruct structure,

intense scrutiny of a number of researchers during the motion and calibration?

past ten years. Their efforts have led to several impor- (ii) Ifthe goal ofthe reconstructionisto produce anew

tant and useful results. The problem is tbahditions view of the scene from a different vantage point,
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how can we make sure that the image generated geometric tools (Heyden adstrom, 1997). However,

portrays a “valid” Euclidean scene?

an explicit characterization of how the information is
encoded in different constraints—which is crucial in

On our way to answering these questions, we pause tothe design of robust estimation algorithms—is hard to

reflect on the nature of multilinear constraints. While
constraints involving two images at a time (fundamen-
tal constraints) are well understood and involve clean
notation and geometric interpretation, muti-linear con-
straints are more difficult to work with and to interpret.
It seems therefore natural to ask the following question

derive by such means.

Recently, Sturm (1997) has proposed a taxonomy of
critical motions, that is motions which do not allow
a unique reconstruction. However, not only the given
taxonomy is by no means intrinsic to Euclidean re-
construction (see Ma et al., 1999), but also no explicit

characterization of the ambiguities in the reconstructed

(iii) Do multilinear constraints carry geometric infor- ~Shape, motion and calibration has been given. A natu-

mation on the camera system that is not contained ral continuation of these efforts involved the analysis
in bilinear ones? of cases where the motion and/or calibration were re-

stricted either to planar or linear motion (Beardsley and
Zisserman, 1995; Moon et al., 1993) and techniques
were proposed for affine reconstruction or up to one
parameter family.

Several techniques have been proposed to synthesize
novel views of a reconstructed scene (ii): in Avidan
and Shashua (1997), trilinear constraints have been ex-
ploited to help generate reprojected images for a cal-
which cannot be reviewed in the limited space allowed. ibrated camera. In the case of a partially uncalibrated
Here we only commenton some of the work thatis most camera, such a method has to face the issues of whether

closely related to this paper, while we refer the reader the reprojected image portrays a valid Euclidean scene.
to the literature for more details, references and appro-

priate credits (see for instance Carlsson, 1994; Hartley, 1.2. Outline of this Paper and its Contributions
1994; Heyden et al., 1997; Luong and Vieville, 1994;
Sturm, 1997; Triggs, (to appear); and Werman and As we anticipated in the previous section, the answer
Shashua, 1995 and references therein). to question (iii) has been established before on an al-
It has long been known that in the absence of any a gebraic footing—the algebraic ideals generated by tri-
priori information about motion, calibration and scene linear and quadrilinear constraints (as polynomials of
structure, reconstruction can be performed at least upimage coordinates) are necessarily contained in that
to a projective transformation (Faugeras, 1997). Uti- generated by bilinear ones (Heyden Astrom, 1997).
lizing additional knowledge about the relationship be- However, in order to give a complete account of ambi-
tween geometric entities inthe image (e.g., parallelism) guities in 3D Euclidean reconstruction (especially for
one can stratify the different levels of reconstructions self-calibration and motion recovery), it is crucial to
from projective all the way to Euclidean (Boufama know how the information on the Euclidean configu-
etal., 1993; Christy and Horaud, 1996; Faugeras, 1997; ration of a camera system is encoded in the multilinear
Moon et al., 1993). At such a level of generality, the constraints. In Section 2 we give a novel, complete
conditions on the uniqueness and existence of solu- and rigorous proof that unveils how the information en-
tions are restrictive and the algorithms are computa- coded in trilinear and quadrilinear constraints depends
tionally costly, often exhibiting local minima (Luong on that in bilinear ones. There we also discuss the role
and Faugeras, 1997). of multilinear constraints with regards to singular con-
The nature of the constraints among images of the figurations of points.
same pointin different cameras has been studied exten- The well-known—but conservative—answer to
sively, and is known to be multilinear (see for instance question (i) is that structure can at least be recovered
Faugeras and Papadopoulo, 1995; Heyden et al., 1997up to a global projective transformation of the three-
Triggs, to appear). The algebraic dependency amongdimensional space. However, there is more to be
constraints (iii) has been established by means of elim- said, as we do in Section 3 for the case of con-
ination (Werman and Shashua, 1995) or other algebraic stant calibratiort. There, we give explicit formulas of

1.1. Relation to Previous Work

The study of ambiguities in Euclidean reconstruction
(i) arises naturally in the problem of motion and struc-
ture recovery and self-calibration from multiple cam-
eras. There is a vast body of literature on this topic,
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exact ambiguities in the reconstruction of scene struc- by homogeneous coordinates R? that satisfy
ture, camera motion and calibration with respect to all
subgroups of the Euclidean motion. In principle, one ADX(M) = At)gt)g, teR (1)
should study ambiguities corresponding to all critical
configurations as given in Ma et al. (1999). However, wherex(t) € R is a scalar parameter related to the
it is only the ambiguities that exhibit group struc- distance of the poingj from the center of projection
ture that are of practical importance in the design of and the non-singular matri&(t)—called “calibration
estimation algorithms. In such a case, not only can the matrix”—describes the intrinsic parameters of the cam-
analysis be considerably simplified but also clean for- era. Without loss of generality we will re-scale the
mulas for all generic ambiguities can be derived. Such above equation so that the determinanfds 1. The
formulas are important for 3D reconstruction as well set of 3x 3 matrices with determinant one is called
as for synthesizing novel 2D views. Special Linear group denoted By(3). The rigid mo-
Question (i) is then answered in Section 4, where we tjon of the camera(t) is represented by a translation
characterize the complete set of vantage points thatgen-vector p(t) € R® and a rotation matrixR(t), that is an
erate “valid” images of the scene regardless of generic orthogonal matrix with determinant equal to one. Such
ambiguities in 3D reconstruction. matrices form a group called Special Orthogonal group
These results have great practical significance, be- and indicated bysQ(3); g(t) = (R(t), p(t)) belongs
cause they quantify precisely to what extent scene to SE(3), the special Euclidean group of rigid motion
structure, camera motion and calibration can be es-in R3. The action ofg(t) on the pointqg is given by
timated in sequences for which many of the techniques g(t)q = R(t)q + p(t). In Eq. (1) we will assume that
available todate do not apply. Furthermore, the analy- x(t) is measured, while everything else is unknown.
sis clarifies the process of 2D view synthesisfromnovel  \When we consider measurements ratdifferent
viewpoints. In addition to that, we give a novel account times, we organize the above equations by defining
of known results on the role of multilinear constraints
and their relationship to bilinear ones. Mi = (A R®G), At)pt)) € R¥4  (2)
Granted the potential impact on applications, this pa-
per is mainly concerned with theory. We address nei- which we will assume to be full-rank, that is

ther algorithmic issues, nor do we perform experiments rank(M;) = 3 fori = 1, ..., n. So we have

of any sort: the validation of our statements is in the

proofs. We have tried to keep our notation as terseas /x(t;)) 0 .-~ 0 Aty) M1
possible. Our tools are borrowed from linear algebra 0 x(t) --- 0 At) M,
and some differential geometry, although all the results ) . . ] = |a
should be accessible without background in the latter. : : : :

We use the language of (Lie) groups because that al- \ g 0 - Xt/ \ Aty M,

lows us to give an explicit characterization of all the

ambiguities in a concise and intuitive fashion. Tradi- \,nich we re-write in a more compact notatiornés —
tional tools involved in the analysis of self-calibration Mg. We callM e R34 the motion matrixandX the
involved complex loci in projective spaces (e.g., the image matrix

“absolute conic”), which can be hard to grasp for some-

one not proficient in algebraic geometry.

2.1. Constraints on Multiple Images
2. Dependency of Multilinear
Constraints Revisited Letm; € R¥,i = 1, ..., 4 denote the four columns
of the matrixM andX; € R®,i = 1,...,n be then
We model the world as a collection of points in athree- columns of the matrixX. Then the coordinates(t;)
dimensional Euclidean space, which we represent in represent the same point seen from different views only
homogeneous coordinates @s= (qz, 2, g3, 1)" € if they satisfy the following wedge product equation:
R*. The perspective projection of the generic point . .
onto the two-dimensional image plane is represented M AM AMzAM4aAXIA---AXy=0. (3)
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This constraint, which is multilinear in the measure-
mentsx(tj) simply expresses the fact that the columns
of M and X are linearly dependent. Constraints in-
volving four images are catfjuadrilinear, constraints
involving three images are callddlinear, and those
involving two images are calledilinear or fundamen-
tal. In general, the coefficients of all the multilinear
constraints are minors of the motion matik. As it

in terms of that generated by trilinear ones or quadri-
linear ones.

Geometric dependencyn the other hand, inves-
tigates whether, given the image coordina¥esthe
coefficientsy; corresponding to motion parameters in
additional views can give additional information about
M. These two different types of dependencies were
previously pointed out (see for instance the work of

has been shown (see, for instance, Triggs (to appear)),Heyden et al. (1997). For both types of dependencies,
constraints involving more than four frames are neces- the answer is negative, i.e., trilinear and quadrilinear
sarily dependent on quadrilinear, trilinear and bilinear constraints in general are dependent of bilinear ones.
ones. In this section we go one step further to discuss We here give a simple but rigorous study of the geo-
how trilinear and quadrilinear constraints are depen- metric dependency. The results will also validate the

dent on bilinear ones.
When studying the dependency among constraints,
one must distinguish betweatyebraicandgeometric

ambiguity analysis given in following sections.
Consider the case= 3 and, for the moment, disre-
gard the internal structure of the motion mathk e

dependency. Roughly speaking, algebraic dependencyR%<“. Its columns can be interpreted as a basis of
concerns the conditions that a point in an image must a four-dimensional subspace of the nine-dimensional
satisfy in order to be the correspondent of a pointin an- space. The set ok-dimensional subspaces of an

otherimage. Vice versa, geometric dependency is con- m-dimensional space is called a Grassmannian man-

cerned with the information that corresponding points
give on the operator that maps one to the other. The
two notions are related but not equivalent, and the latter

ifold and denoted bys(m, k). Therefore M is an ele-
ment of G(9, 4). By just re-arranging the three blocks
Mi, i =1,...,3intothree pairs;M;, My), (M1, M3)

bears important consequences when one is to use theand(M,, M3), we define a map betweernG(9, 4) and

constraints in optimization algorithms to recover struc-

ture and calibration. While the geometric dependency
of multilinear constraints has been established before
under the assumption of constant calibration (Heyden
etal., 1997), we give a novel, simple and rigorous proof
thatis valid under the more general assumption of time-
varying calibration.

2.2. Algebraic vs. Geometric Dependency

To clarify the relation between algebraic and geometric
dependencynote thatin general we can express a mul-
tilinear constraint in the formZi aj(M)BjX) =0
wherew; are some polynomials of entries & and

B;j polynomials of entries of the image coordinates,
with M and X defined as beforew;’s are called the
coefficientof multilinear constraints. Studying tlad-
gebraic dependenchetween constraints then corre-
sponds to fixing the coefficientdg and asking whether
there are some additional constraints among the im-
age coordinateX generated by three and four views.

three copies 06(6, 4)

¢:G(9,4) — G(6,4) x G(6,4) x G(6,4)

v ) (2)-(2)-G2)

The question of whether trilinear constraints are inde-
pendent of bilinear ones is tightly related to whether
these two representations of the motion maibare
equivalent. Since the coefficients in the multilinear con-
straints are homogeneous in the entries of each block
M;, the motion matrixM is only determined up to the
equivalence relation:

M ~ M’

ifﬂAiER*,MiZXiMi/, i 1,...,n

4)
whereR* = R\{0}. Thus for multilinear constraints

the motion matrix is only well-defined as an element
of the quotient spac&(3n, 4)/~ which is of dimen-

This problem has been studied many researchers andsion (11n — 15),* as was already noted by Triggs (to

an elegant answer can be found in HeydenAstom
(1997) by explicitly characterizing thrimary decom-
positionof the ideal (in the polynomial ring of image
coordinates’'s) generated by the bilinear constraints

appear).

We are now ready to prove that coefficientss in
trilinear and quadrilinear constraints depend on those
in bilinear ones.



Theorem 1 (Geometric dependency Given three
(or four) views the coefficients of all bilinear con-
straints or equivalently the corresponding fundamental
matrices uniquely determine the motion matrix M as
an element in @, 4)/~ (or G(12, 4)/~) given that
Ker(M;)'s are linearly independent.

Proof. It is known that between any pair of images
(i, j) the motion matrix:(\1' ) € G(6, 4) is determined
by the corresponding fundamental matifx up to two
scalarsii, Aj: (fjm]) € G(6,4), 1; € R*. Hence for
the three view case all we need to prove is that the map:

¢ : (GO, H/~) — (G(6,4)/~)®

is injective. To this end, assunggM) = ¢(M); then
we have that, after re-scaling,!) = (*{"*)G1, (2
= (i)Ga, (1) = ;) )Ga for somei; € R* and
Gi € GL@4)5i = 1,2 3. This yieldsM;(1,G; —
G3) =0, M2(A2G2 — G1) = 0, M3(A3G3 — G2) = 0.
Therefore there exidt € R**4,i = 1, 2, 3 with each
column ofU; is in Ker(M;) such that:

Gz —11G1 =U;, G1—2Gy=Upy,
G, — A3G3 = Us.

Combining these three equations, we obtain:
(1 — A12243)G1 = AoAgUq + AoUs + Us.

The matrix on the right hand side of the equation
has a non-trivial null space since its column vectors are
inthe spacspar{Ker(M;), Ker(M;), Ker(Mz)} which
has dimension three. Howev@; is non-singular, and
therefore it must be.1i,A3=1. This givesi1G; —

G3; = —)»1()»262 — G]_) — )\.1)\2()\3(33 — Gg) That
is, the columns ofA,G; — G3 are linear combina-
tions of columns of,G, — G; andA3Gz — G,. But
Ker(Mj),i = 1,2, 3 are linearly independent. Thus
we havelel = G3, AGo = Gy, )»3G3 = Go,. This
implies

M} AMy
Myl=| M, |G.
M} A1AzMs

which means thaM’ and M are the same, up to the
equivalence relation defined in Eq. (4). Therefore, they
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represent the same elemen@i®, 4)/~, which means
that the mag is injective.

In the case of four views, in order to show that co-
efficients in quadrilinear constraints also depend on
bilinear ones, one only needs to check that the obvi-
ous map fronG (12, 4)/~to (G(9, 4)/~)*is injective.
This directly follows from the above proof of the three
frame case. U

Comment 1. As a consequence of the theoreto-
efficientsej’s in trilinear and quadrilinear constraints
are functions of those in bilinear ones. While the above
proof shows that the map can be inverted, it does
not provide an explicit characterization of the inverse.
Such an inverse can in principle be highly non-linear
and conditioning issues need to be taken into account
in the design of estimation algorithms. We emphasize
that the geometric dependency doesimply that two
views are sufficient for reconstruction! It claims that
givenn views their geometry is characterized by con-
sidering only combinations of pairs of them through
bilinear constraints, while trilinear constraints are of
helponlyin the case of singular configurations of points
and camergsee Comment)2 For four views, the con-
dition thatKer(M;),i = 1,...,4 are linearly inde-
pendent is not necessary. A less conservative condition
is that there exist two groups of three frames which
satisfy the condition for the three view case.

Theorem 1 requires that the one-dimensional ker-
nels of the matriceM;,i = 1,....,n(n = 3 or 4)
are linearly independent. Note that the kerneldvbf
fori = 1,2, 3,4 are given by(—p'R,1)T, where
the vectorRT p; € R? is exactly the position of thith
camera center. Hence the condition of the theorem is
satisfied if and only if the centers of projection of the
cameras generate a hyper-plane of dimensieri. In
particular, whem = 3, the three camera centers form
a triangle, and when = 4, the four camera centers
form a tetrahedron.

Comment 2(Critical surfaces and motions). Al-
though we have shown that the coefficients of mul-
tilinear constraints depend on those of bilinear ones
we have assumed that the latter the corresponding
fundamental matricesre uniquely determined by the
epipolar geometry. Howevethis is not true when all
the points lie on critical surfaces. In this case, as ar-
gued by Maybank1993, we may obtain up to three
ambiguous solutions from the bilinear constraints. This
is one of the cases when trilinear and quadrilinear
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constraints provide useful information. On this topic,
see also Maybank and Shashu888. Also, when the
camera is undergoing a rectilinear motigw., all op-
tical centers are alignedtrilinear constraints provide
independent information in addition to bilinear ones.
This fact has been pointed out befpsee for instance
Heyden(1998.

3. Reconstruction Under Motion Subgroups

The goal of this section is to study all “critical” mo-
tion groups that dmot allow unique reconstruction of
structure, motion and calibration. Whilectassifica-
tion of such critical motions has been presented before
(see Maetal., 1999), we here go well beyond by giving
anexplicit characterizatiorof the ambiguity in the re-
construction for each critical motion. Such an explicit
characterization is crucial in deriving the ambiguity in
the generation of novel views of a scene, which we
study in Section 4.

In this section, we characterize the generic ambigu-
ity in the recovery of (a) structure, (b) motion and (c)
calibration corresponding to each possible critical mo-
tion. A subgroup oSK3) is calledcritical if the recon-
struction is not unique when the motion of the camera
is restricted to it. For the purpose of this section, we
assume that the calibration matexis constant.

3.1. Some Preliminaries

So far the only restriction we have imposed on the con-
stant calibration matriXA is that it is non-singular and

is normalized as to have d#) = 1. However,A can
only be determined up to an equivalence class of ro-
tations, that isA € SL(3)/SQ3).6 For more detail,
please see (Ma et al., 1999). The unrecoverable rota-
tion in our choice ofA simply corresponds to a rotation

of the entire camera system. We borrow the following
statement directly from (Ma et al., 1999):

Theorem 2 (Necessary and sufficient condition for
a unique calibration. For a set of camera motions
{(R, pi)} where none of the rotation component R
is of the form &k with ||u;|| = 1, k € Z, the camera
calibration A as an elementin $8)/SQ(3) is uniquely
determined if and only if at least two of the axg&u
are linearly independent.

Although the necessity of the independence of the ro-
tation axes has been long known in the literature (see

e.g. Luong and Vieville, 1994), the sufficiency is not
proven till recent (Ma et al., 1999). This theorem states
a very important and useful fact: the condition for a
unique calibration has nothing to do with translation
(as opposed to the results given in Sturm 199%ge
Ma et al. (1999) for the detail. Due to this theorem,
many proper continuous subgroupsSH(3) are criti-

cal for self-calibration. So the first step in our analysis
consists in classifying all continuous Lie subgroups of
SH3) which are critical. It is a well known fact that a
complete list of subgroups &&3) can be classified by
all Lie subalgebras ofthe Lie algelsa3) of SE3) and
then exponentiate them. It is then straightforward to
show that each of these subgroups must have the same
ambiguity in reconstruction as one in the following list
(as we will explain in the comments):

Translational Motion:(R3, +) and its subgroups
Rotational Motion:(SQ(3), -) and its subgroups
Planar Motion:SKE?2)

Screw Motion:(SQ2), -) x (R, +)

Planar+ Elevation:SE2) x (R, +)

Rigid Body Motion: SK?3)

Comment 3. The above listis by no means a complete
list of all subgroups 08K3). For examplethe “planar
orbital motion”, i.e., camera moving on a circle with
the optical axis always facing the centesrnone of the
motion in the above list. Howevgit is can be treated

as a special case of the planar motion sjraefar as
reconstruction is concerngthey obviously have the
same generic ambiguities. In order to show that all
subgroups have the same ambiguity in reconstruction
as one of the above motionse must go through all
the possible Lie subalgebrass#3). It can be shown
that if a Lie subalgebra has atleast 4 dimension and has
two independent rotation componentsen it must be
sg3) itself. Now the only interesting case left is some
three dimensional Lie subalgebras whighthout loss

of generality are generated by elements:

x:(él U>’ Y=(é2 v)7 ©)
0 0 0 0

z= (%"
0 O

whereey, e, e; are standard basis & andu, v and

w are three vectors iR3. In order for the Lie algebra

generated by, Y, Z to be three dimensional, we must
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have the vectow = (u', v", w")T € R?in the null Note that this ambiguity corresponds exactly to an
space of the matrix: affine reconstruction (Moon et al., 1993).
& —& | Rotational Motion (SO(3)). The action of SQ(3)
o=1| | & -6, ) transforms the coordinates in different cameras
R R by Aq(t) = AR(t)q(to), R(t) € SO3). According to
—& | €1 Theorem 2, the calibrationA can be recovered

uniquely, and so can the rotational moti®(t) <
SQO3). However, it is well known that the depth in-
formation of the structure cannot be recovered at all.
We summarize these facts into the following:

ThatisQa = 0. If « = 0, then the subgroup generated
by the algebra is just the pure rotation gr&a@(3). If

a # 0, then the subgroup generated contains three in-
dependent rotation axes and translation (parallax). For
such subgroups, a unique reconstruction is available.
That is, they are not critical for reconstruction or have
the same ambiguity as the full rigid body motiS&(3).

A generic example for such a three dimensional sub-
group of SE(3) is the isometry group of the sphesé.

Theorem 4 (Ambiguity unde(SQ(3)). Consider an
uncalibrated camera with calibration matrix Ac
SL(3) undergoing purely rotational motion §8) and
let 1. be an arbitrary(positive scalar. If both the cam-
era motion Re SQ(3) and the scene structure ¢ R3
are unknownthen A R andx - q are the only generic
ambiguous solutions for the camera calibratiamam-
era motion and the scene structure respectively.

We are now ready to explore to what extent scene
structure, camera motion and calibration can be recon-
structed when motion is constrained onto one of the
above subgroups. In other words, we will study the
genericambiguities of the reconstruction problem. In
what follows, we usej(t) = (gu(t), ga(t), gz(t) ' €
R3 to denote the 3D coordinates of the pomt=
(O1, 02, g3, 1) e R* with respect to the camera frame
at timet : q(t) = (R(t), p(t))q. To simplify notation,
for anyu € R® we definel to be a 3 ske-symmetric
matrix such thatv e R3the cross produatx v = Qv.

Planar Motion (SE(2)). While the previous two
cases were of somewhat academic interest and the the-
orems portray well-known facts, planar motion arises
very often in applications. We will therefore study this
case in some more detail.
Lete;=(1,0,007,=(0,1,0T,e5=(0,0,1)T €
RR3 be the standard basis Bf. Without loss of gen-
erality, we may assume the camera motion is on the
plane normal t@; and is represented by the subgroup
3.2. Generic Ambiguities in Structure, SH?2).
Motion and Calibration Let A be the unknown calibration matrix of the cam-
era. As described in Section 3.1 we consideas
Translational Motion (R® and its Subgroups). The an element of the quotient spa&&(3)/SQ3). Ac-
coordinate transformation between different views is cording to Ma et al. (1999), any possible calibration
given byAq(t) = Aq(to) + Ap(t), p(t) € R3. Accord- matrix Ag € SL(3)/SQ3) is such that the matrix
ing to Theorem 2, the calibratiof € SL(3) cannot be S= A;" A tisinthesymmetric real kernéBRKe) of
recovered from pure translational motion, and therefore the Lyapunovmapforall = A-TRT AT, R € SQ2):
the corresponding structugeand translational motion
b can be recovered only up to the unknown transfor- L : C¥% — C¥%; X X-CXC'. (7)

mation A. We therefore have the following By the choice ofey, &, &, the real eigenvector of

R is e;. Imposing S € SL(3), we obtainS =

Theorem 3 (Ambiguity undeiR®). Consider an un- i 1 g X )
A~"'D(s)A™+, whereD(s) € R**?isa matrix function

calibrated camera described by the calibration matrix

A e SL(3), undergoing purely translational motidg® ors:
(or any of its nontrivial subgroupsand let B be an ar- s 0 O
bitrary matrix in SI(3). If the camera motion & R3 D =|0 s 0|, ser\(. (@)

and the scene structure  R* are unknownthen B 5
B~1Ap and B'Aq are the only generic ambiguous 00 Vs

solutions for the camera calibratiortamera motion  Geometrically, this reveals that only metric information
and the scene structure respectively. within the plane can be recovered while the relative
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scale between the plane and its normal direction cannotthe camera motionR, p) € SE(2) and the scene

be determined. If we choose an erroneous maigx
from the set of possible solutions for calibration, then
AyB = Afor some matrixB € SL(3). SinceA; " A;*

is necessarily irbRKerL), we further have that, for
somes € R,

ATA=ATD()A = B'B=D(s). (9)
A solution of (9) is of the formB = HD(s) with H €
SQ(3) ands € R. Let us define a one-parameter Lie
groupGsg as:
Gsep) = {D(s) | s € R\{0}}. (10)

Then the solution space of (9) is given8@(3)Gsgy) .
The groupGsg2) can be viewed as a natural representa-
tion of ambiguous solutions in the spa®E3) /SQ(3).

Once we have a calibration matrix, sa, we
can extract motion from the fundamental matfix=
A TRTATp as follows: we know thatA= AyB
for some B =HD(s) € SO(3)Gsgy. Then we define
E= Ag F Ap and note that, foR = exp(és0), we have
that D(s) commutes withR i.e., D(s)RD(s)"*=R.
Then E is an essential matrix sinceE
H-TD-T(s)RTpD1(s)H 1 =HR"HTHD(s)p. The
motion recovered fromE is therefore (HRH',
HD(s) p) € SE3), where(R, p) € SKH?2) is the true
motion. Note thatHRH", HD(s) p) is actually apla-
nar motion(in a plane rotated byH from the origi-
nal one). The coordinate transformation in the uncali-
brated camera frame is given #q(t) = ARqty) +
Ap(t). If, instead, the matrixAq is chosen to justify
the camera calibration, the coordinate transformation
becomes:

AoBQ(t) = AoBRQ(to) + AoBp(t) =
HD(s)q(t) = HRH' (HD(8)q(to)) + HD(S) p(t).

Therefore, any poing viewed with an uncalibrated
cameraA undergoing a motioiR, p) € SK?2) is not
distinguishable from the poitdD(s)q viewed with an
uncalibrated camera, = AD~1(s)HT undergoing a
motion(HRHT, HD(s) p) € SE2). We have therefore
proven the following

Theorem 5 (Ambiguity under SB)). Consider a
camera with unknown calibration matrix & SL(3)
undergoing planar motion S®) and let Bs) =
HD(s) with H € SQ(3) and D(s) € Gsgy. If both

structure q € R® are unknown then AB(s) €
SL(3), (HRHT, B(s)p) € SE?2) and B(s)q < R3 are

the only generic ambiguous solutions for the camera
calibration, camera motion and scene structure
respectively.

Comment 4. Note that the role of the matrid <
SQ3) is just to rotate the overall configuration. There-
fore, the only generic ambiguity of the reconstruction
is characterized by the one parameter Lie grégp,z).

Subgroups SO(2), SO(2x R and SE(2)x R. We
conclude our discussion on subgroupsSH3) by
studyingSQ2), SO2) x R andSK?2) x R together.
This is because their generic ambiguities are similar to
the case ofSK?2), which we have just studied. No-
tice that in the discussion of the ambiguBgg_), we
did not use the fact that the translatipnhas to sat-
isfy p3 = 0. Thereforethe generic reconstruction
ambiguities of S@) x R and SE2) x R are exactly
the same as that of $B. The only different case is
SQ2). ltis readily seen that the ambiguity 8fX2) is
the “product” of that ofSE2) and that ofSQ(3) due to
the factSQ(2) = SK2) N SQ3). As a consequence of
Theorem 4 and Theorem 5 we have:

Corollary 1 (Ambiguity under S)). Consider an
uncalibrated camera with calibration matrix ASL(3)
undergoing a motion in S@) and let Bs) = HD(s)
with H € SQO®3), D(s) € Gsgp andr € (R, ).

If both the camera motion RSQ(3) and the scene
structure ge R2are unknownthen AB(s) € SL(3),
HRH™ e SO3) andx-B(s)q € R®are the only generic
ambiguous solutions for the camera calibration, cam-
era motion and scene structure respectively.

From the above discussion of subgroups of
SK3) we have seen that generic ambiguities exist
for many proper subgroup &HK3). Furthermore, such
ambiguities—which have been derived above based
only on bilinear constraints, are not resolved by multi-
linear constraints according to Theorem 1.

4. Reprojection Under Partial Reconstruction

In the previous section we have seen that, in general, it
is possible to reconstruct the calibration matéixand

the scene’s structumg only up to a subgroup-which

we callK, the ambiguity subgroup. For instance, in the
case of planar motion, an elementknhas the form



D(s) given by Eq. (8). Therefore, after reconstruction
we have
A(K) = AK™L.

a(K) =Ka, (11)

Now, suppose one wants to generate a novel view

of the sceneX from a new vantage point, which
is specified by a motior§ € SE3) and must sat-
isfy A%(K) = A(K)§d(K). In general, the reprojection
X(K) depends both on the ambiguity subgrd€mand
on the vantage poirg and there is no guarantee that it
is an image of the original Euclidean scene.

Itis only natural, then, to askhat is the set of van-
tage points that generate a valid reprojectjdhat is
an image of the original scemgtaken as if the camera
A was placed at some vantage pogtK). We dis-
cuss this issue in Section 4.1. A stronger condition to
require is that the reprojection be independéntgri-
ant) of the ambiguityK, so that we havg(K) = §
regardless oK ; we discuss this issue in Section 4.2,

4.1. Valid Euclidean Reprojection

In order to characterize the vantage points—specified

by motionsg—that produce a valid reprojection we
must findg such thatA(K )§6(K ) = Ag(K )q for some
g(K) € SKH3). Since the reprojected imageis
AX(K) = A(K)§6(K) = Ag(K)q, the characterization
of all such motionsj is given by the following Lie
group:

R(K) ={§ € SE3) | K'gK C SE3)}. (12)
We call R(K) thereprojection groupfor a given am-
biguity groupK. For each of the generic ambiguities
we studied in Section 3, the corresponding reprojection
group is given by the following

Theorem 6. The reprojection groups corresponding
to each of the ambiguity groups K studied in Sec8on
are given by

. R(K)=R3,4) for K=SL3) (ambiguity of
(RS, 4)).

. R(K)=SQ2) for K = Gsgp) x (RT, -) (ambiguity
of SQ2)).

. R(K) = SH2) x R for K = Gggz (ambiguity of
SK?2),SQ2) x R, SH2) x R).

. R(K) = SK?3) for K = | (ambiguity of SE3)).
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Even though the reprojected image is, in general, not
unique, the family of all such images are still parame-
terized by the same ambiguity grop For a motion
outside of the grouR(K), i.e., forag € SK3)\R(K),

the action of the ambiguity grould on a reprojected
image cannot simply be represented as moving the
camera: itwill have to be amore general non-Euclidean
transformation of the shape of the scene. However, the
family of all such non-Euclidean shapes are minimally
parameterized by the quotient sp&I&3)/R(K).

Comment 5(Choice of a “basis” for reprojection).
Note that in order to specify the viewpoint it is not

just sufficient to choose the motidhfor, in general,

g(K) # @. Therefore, an imaginary “visual-effect
operator” will have to adjust the viewpoigi(K) act-

ing on the parameters i. The ambiguity subgroups
derived in Section 3 are one-parameter groups (for the
most important cases) and thereftie choice is res-
tricted to one parameter In a projective framework
(such as Faugeras (1997), the user has to specify a pro-

jective basis of three-dimensional space, that is 15 pa-

rameters. This is usually done by specifying the three-
dimensional position of 5 points in space.

4.2. Invariant Reprojection
In order for the view taken frong to be unique, we
must have

A% = A(K)GA(K) = AKT'gKg  (13)
independent oK . Equivalently we must havig ~1gK
= g whereK is the ambiguity generated by the motion
on a subgrous of SK3). The set off that satisfy this
condition is a groupN (K), the so callechormalizerof
K in SE3). Therefore, all we have to do is to char-
acterize the normalizers for the ambiguity subgroups
studied in Section 3

Theorem 7. The set of viewpoints that are invariant
to reprojection is given by the normalizer of the am-
biguity subgroup. For each of the motion subgroups
analyzed in SectioB the corresponding normalizer of
the ambiguity group is given by

1. N(K) = | for K = SL(3) (ambiguity of(R2, +)).

2. N(K)=SQ?2) for K=Gsgp x (Rt,-) (ambi-
guity of S@2)).

3. N(K)=SQ?2) for K=Gsgz (ambiguity of

SK?2),SO2) x R, SH2) x R).
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4. N(K) = SK3) for K = | (ambiguity of SE3)). 4. The Grassmannia®(3n, 4) has dimensio3n—4)4 = 12n—16.
The dimension of the quotient spacenis- 1 smaller since the
For motions in every subgroup, the reprojection per- equivalence relation has— 1 independent scales.

formed under any Viewpoint determined by the groups 5. S]I;t(rzil()::;the general linear group of all non-degenerate#real

above is unique. 6. Here take left cosets as elements in the quotient space. A repre-
sentation of this quotient space is given, for instance, by upper-

. triangular matrices; such a representation is commonly used in

5. Conclusions modeling calibration matrices by means of physical parameters
of cameras such as focal length, principal point and pixel skew.
When the necessary and sufficient conditions for a 7. This is because we here only consider geaeric ambiguityn
unique reconstruction of scene structure, camera mo- reconstruction, i.e., such ambiguity exist§ no matter what the
tion and calibration are not satisfied, itis still possibleto ~ €a™Mera sees and no matter what the algorithms do.
retrieve a reconstruction up to a global subgroup action
(on the entire configuration of the camera system). We
characterize such subgroups explicitly for all possible
motion groups of the camera. The reconstructed struc- Avidan, S. and Shashua, A. 1997. Novel view synthesis in tensor
ture can then be re-projected to generate novel ViewS  space. IrProc. of IEEE Conference on Computer Vision and Pat-
of the scene. We characterize the “basis” of the re- tern Recognitionpp. 1034-1040.
projection corresponding to each subgroup, and also Beard§ley, P. and Zisser_man, A. 1995. Affine calib_ration of mobile
the motions that generate a unique reprojection. We veh|gles. IrEurope-ChmaWprkshop on Geometric Modeling and
. . . Invariants for Computer Visian

achieve the goal by using results from two view analy- Boufama, B., Mohr, R., and Veillon, F. 1993. Euclidean constraints
sis (Maetal., 1999). This is possible because the coef-  for uncalibrated reconstruction. KECV, Berlin, Germany, pp.
ficients of multilinear constraints are geometrically de-  466-470.
pendent of those of bilinear constraints. Therefore, the Carlsson, S. 1994. Multiple image invariance using the double alge-
only advantage in considering multilinear constraints _ Pra InApplications of Invariance in Computer Vision

is in th f si | £ d ili Christy, S. and Horaud, R. 1996. Euclidean shape and motion
Is In the presence of singular surfaces and rectilinear from multiple perspective views via affine iteratiolSEE PAM|,

motions. Our future research agenda involves the de-  15(11):1098-1104.

sign of optimal algorithms to recover all (and only!) the  Faugeras, O. 1997. What can be seen in three dimensions with an
parameters that can be estimated from the data based uncalibrated stereo rig? INRIA Research Report, No. 3225.

upon their generic ambiguities. The reconstruction and Faugeras, O. and Papadopoulo, T. 1995. Grassmann-Cayley algebra

L. bl died in thi is f for modeling systems of cameras and the algebraic equations of
reprojection problem studied in this paper is for a con- the manifold of trifocal tensors. IRroc. of the IEEE Workshop of

stant calibration matrix. We will present generalized  Representation of Visual Scenes
results for the time-varying case in future work. Hartley, R. 1994. Lines and points in three views; and integrated
approach. IrProc. of the Image Understanding Workshop
Heyden, A. 1998. Reduced multilinear constraints—Theory and
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