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Abstract. The aim of this paper is to explore a linear geometric algorithm for recovering the three dimensional
motion of a moving camera from image velocities. Generic similarities and differences between the discrete approach
and the differential approach are clearly revealed through a parallel development of an analogous motion estimation
theory previously explored in Vieville, T. and Faugeras, O.D. 1995. InProceedings of Fifth International Conference
on Computer Vision, pp. 750–756; Zhuang, X. and Haralick, R.M. 1984. InProceedings of the First International
Conference on Artificial Intelligence Applications, pp. 366–375. We present a precise characterization of the space
of differential essential matrices, which gives rise to a novel eigenvalue-decomposition-based 3D velocity estimation
algorithm from the optical flow measurements. This algorithm gives a unique solution to the motion estimation
problem and serves as a differential counterpart of the well-known SVD-based 3D displacement estimation algorithm
for the discrete case. Since the proposed algorithm only involves linear algebra techniques, it may be used to provide
a fast initial guess for more sophisticated nonlinear algorithms (Ma et al., 1998c. Electronic Research Laboratory
Memorandum, UC Berkeley, UCB/ERL(M98/37)). Extensive simulation results are presented for evaluating the
performance of our algorithm in terms of bias and sensitivity of the estimates with respect to different noise levels
in image velocity measurements.
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1. Introduction

The problem of estimating structure and motion from
image sequences has been studied extensively by the
computer vision community in the past decade. The
various approaches differ in the kinds of assumptions
they make about the projection model, the model of the
environment, or the type of algorithms they use for es-
timating the motion and/or structure. Most techniques
try to decouple the two problems by estimating the
motion first, followed by the structure estimation. Thus
the two are usually viewed as separate problems. In
spite of the fact that the robustness of existing algo-
rithms has been studied quite extensively, it has been
suggested that the fact that the structure and motion
estimation are decoupled typically hinders their

performance (McLauchlan and Murray, 1995). Some
algorithms address the problem of motion and struc-
ture (shape) recovery simultaneously either in batch
(Tomasi and Kanade, 1992) or recursive fashion
(McLauchlan and Murray, 1995).

Approaches to motion estimation alone, can be par-
titioned into the discrete and differential methods de-
pending on whether they use as input a set of point
correspondences or image velocities. Among the ef-
forts to solve the motion estimation problem, one of
the more appealing approaches is theessential matrix
approach, proposed by Longuet-Higgins, Huang and
Faugeras et al. in 1980’s (Longuet-Higgins, 1981). It
shows that the relative 3D displacement of a camera
can be recovered from anintrinsicgeometric constraint
between two images of the same scene, the so-called
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Longuet-Higgins constraint(also called theepipolar or
essential constraint). Estimating 3D motion can there-
fore be decoupled from estimation of the structure of
the 3D scene. This endows the resulting motion estima-
tion algorithms with some advantageous features: they
do not need to assume anya priori knowledge about the
scene; and are computationally simpler (compared to
most non-intrinsic motion estimation algorithms), us-
ing mostly linear algebra techniques. Tsai and Huang
(1984) proved that, given an essential matrix associ-
ated with the Longuet-Higgins constraint, there are
only two possible 3D displacements. The study of the
essential matrix then led to a three-step SVD-based al-
gorithm for recovering the 3D displacement from noisy
image correspondences, proposed in 1986 by Toscani
and Faugeras (1986) and later summarized in Maybank
(1993).

However, the essential matrix approach based on the
epipolar constraint recovers onlydiscrete3D displace-
ment. The velocity information can only be obtained
approximately from the logarithm map (the inverse of
the exponential map), as Soatto et al. did in (Soatto and
Perona, 1996). In principle, displacement estimation
algorithms obtained by using epipolar constraint work
well when the displacement (especially the translation,
i.e., the so called base-line) between the two images
is relatively large. However, in real-time applications,
even if the velocity of the moving camera is not small,
the relative displacement between two consecutive im-
ages might become small owing to a high frame rate. In
turn, the algorithms become singular due to the small
translation and the estimation results become less reli-
able. Further, in applications such as robotic control,
an on-board camera, as a feedback sensor, is required
not only to provide relative orientation of the robot but
also its relative speed (for control purposes).

A differential (or continuous) version of the 3D mo-
tion estimation problem is to recover the 3D velocity
of the camera from optical flow. This problem has also
been explored by many researchers: an algorithm was
proposed in 1984 by Zhuang et al. (1984) with a simpli-
fied version given in 1986 (Zhuang et al., 1988); and
a first order algorithm was given by Waxman et al.
(1987) in 1987. Most algorithms start from the ba-
sic bilinear constraint relating optical flow to the lin-
ear and angular velocities and solve for rotation and
translation separately using either numerical optimiza-
tion techniques (Bruss and Horn, 1983) or linear sub-
space methods (Heeger and Jepson, 1992; Jepson and
Heeger, 1993). Kanatani (1993a) proposed a linear

algorithm reformulating Zhuang’s approach in terms
of essential parameters and twisted flow. However, in
these algorithms, the similarities between the discrete
case and the differential case are not fully revealed and
exploited.

In this paper, we develop, in parallel to the discrete
essential matrix approach, adifferential essential ma-
trix approachfor recovering 3D velocity from optical
flow. Based on the differential version of the epipolar
constraint, so calleddifferential essential matricesare
defined. We then give a complete characterization of
the space of these matrices and prove that there exists
exactly one 3D velocity corresponding to a given dif-
ferential essential matrix. As a differential counterpart
of the three-step SVD-based 3D displacement estima-
tion algorithm, a four-step eigenvector-decomposition-
based 3D velocity estimation algorithm is proposed.

One must note that, in this paper, only linear al-
gorithms are studied and compared. It is well-known
that linear algorithms are not optimal and give severely
biased estimates when the noise level is high. In or-
der to obtain optimal and unbiased estimates, nonlin-
ear search schemes have to be used to solve for max-
imum likelihood estimates. In the sequel of this paper
(Ma et al., 1998c), we have proposed an intrinsic ge-
ometric optimization algorithm based on Riemannian
optimization techniques on manifolds. However, since
nonlinear algorithms are only locally convergent, the
linear algorithms studied in this paper can be used to
initialize the search process of nonlinear algorithms.
Further more, due to their geometric simplicity, clearly
understanding the linear algorithms certainly helps in
developing and understanding more sophisticated mo-
tion estimation schemes. For example, it can be shown
that under the same conditions that the linear algo-
rithms have a unique solution the nonlinear algorithms
have quadratic rate of convergence (Ma et al., 1998c).

One of the big advantages of the differential ap-
proach is easy to exploit thenonholonomic constraints
of a mobile base where the camera is mounted. In this
paper, we show by example that nonholonomic con-
straints may reduce the number of dimensions of the
motion estimation problem, hence reduce the number
of minimum image measurements needed for a unique
solution. The proposed motion estimation algorithm
can thus be dramatically simplified. The differential
approach developed in this paper can also be gener-
alized to the case of an uncalibrated camera (Vieville
and Faugeras, 1995; Brooks et al., 1995). Finally, in
Section 3, simulation results are presented evaluating
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the performance of our algorithm in terms of bias and
sensitivity of the estimates with respect to the noise in
optical flow measurements.

2. Differential Essential Matrix Approach

We first introduce some notation which will be fre-
quently used in this paper. Given a vectorp = (p1,

p2, p3)
T ∈ R3, we definep̂ ∈ so(3) (the space of skew

symmetric matrices inR3×3) by:

p̂ =

 0 −p3 p2

p3 0 −p1

−p2 p1 0

. (1)

It then follows from the definition of cross-product of
vectors that, for any two vectorsp,q ∈ R3: p× q =
p̂q.

Camera motion is modeled as rigid body motion in
R3. The displacement of the camera belongs to the spe-
cial Euclidean groupSE(3):

SE(3) = {(p, R) : p ∈ R3, R ∈ SO(3)} (2)

whereSO(3) ∈ R3×3 is the space of rotation matrices
(orthogonal matrices with determinant+1). An ele-
mentg = (p, R) in this group is used to represent the
3D translation and orientation (the displacement) of a
coordinate frameFc attached to the camera relative to
an inertial frame which is chosen here as the initial po-
sition of the camera frameF0 (see Fig. 1). By an abuse
of notation, the elementg= (p, R) serves as both a
specification of the configuration of the camera and
as a transformation taking the coordinates of a point
from Fc to F0. More precisely, letq0,qc∈R3 be the
coordinates of a pointq relative to framesF0 andFc,

Figure 1. Coordinate frames for specifying rigid body motion of a
camera.

respectively. Then the coordinate transformation be-
tweenq0 andqc is given by:

q0 = Rqc+ p. (3)

Assume that the camera frame is chosen such that the
optical center of the camera, denoted byo, is the same
as the origin of the frame. Then the image of a pointq
in the scene is the point where the ray〈o,q〉 intersects
the imaging surface. A sphere or a plane is usually
used to model the imaging surface. The model of image
formation is then referred asspherical projectionand
perspective projection, respectively.

In this paper, we use bold letters to denote quantities
associated with the image. The image of a pointq ∈ R3

in the scene is then denoted byq ∈ R3. For the spher-
ical projection, we simply choose the imaging sur-
face to be the unit sphere:S2 = {q ∈ R3 | ‖q‖ = 1}
where the norm‖·‖ always means 2-norm unless oth-
erwise stated. Then the spherical projection is defined
by the mapπs fromR3 to S2:

πs :R3→ S2, q 7→ q = q

‖q‖ .

For the perspective projection, we choose the imag-
ing surface to be the plane of unit distance away from
the optical center. The perspective projection onto this
plane is then defined by the mapπp from R3 to the
projective planeRP2:

πp :R3→ RP2,

q = (q1,q2,q3)
T 7→ q =

(
q1

q3
,

q2

q3
, 1

)T

.

The essential approach taken in this paper only exploits
the intrinsic geometric relations which are preserved
by both projection models. Thus, theorems and algo-
rithms to be developed are always true for both cases,
unless otherwise stated. By an abuse of notation, we
will simply denote bothπs andπp by the same letterπ .
The image of the pointq taken by the camera is then
q = π(q).

2.1. Review of the Discrete Essential
Matrix Approach

Before developing the analysis of the differential epipo-
lar constraint which is the main focus of this paper, we
first provide a brief review of the epipolar geometry in
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the discrete case, also known as theessential matrix
approach, originally developed by Huang and Faugeras
(1989). Let the 3D displacement of the frameFc rela-
tive to the frameF0 be given by the rigid body motion
g = (p, R) ∈ SE(3), and letq0, qc be the images of the
same pointq taken by the camera at framesF0 andFc,
respectively, then it is well-known that the two image
pointsq0, qc satisfy the so calledepipolar constraint:

qT
c RT p̂q0 = 0. (4)

In this equation we see that the matrixE = RT p̂ with
RT ∈SO(3) and p̂∈ so(3) contains the unknown mo-
tion parameters. A matrix of this form is called an
essential matrix; and the set of all essential matrices is
called theessential space, denoted byE :

E ≡ {RS| R ∈ SO(3), S∈ so(3)} ⊂ R3×3. (5)

Huang and Faugeras (1989) established that a non-
zero matrix E is an essential matrix if and only if
the singular value decomposition (SVD) ofE : E =
U6VT satisfies:

6 = diag{λ, λ,0} (6)

for someλ ∈ R+. In order to answer the question:
given an essential matrixE ∈ E , how many pairs(p, R)
exist such thatRT p̂= E, we first give the following
lemma from linear algebra:

Lemma 1. Given any non-zero skew symmetric ma-
trix S ∈ so(3), if, for a rotation matrix R∈ SO(3), RS
is also a skew symmetric matrix, then R= I or ep̂π

wherep̂ is the unit skew symmetric matrix associated
with S. Further, ep̂πS= −S.

Proof: Without loss of generality, we assumeS is a
unit skew symmetric matrix, i.e., there exists a vector
p∈R3 of unit length such that̂p= S. SinceRSis also a
skew symmetric matrix,(RS)T = −RS. This equation
gives:

Rp̂R= p̂. (7)

Since R is a rotation matrix, there existsω ∈ R3,

‖ω‖ = 1 andθ ∈ R such thatR = eω̂θ . Then, (7)
is rewritten as:eω̂θ p̂ eω̂θ = p̂. Applying this equation
to ω, we get:eω̂θ p̂ eω̂θω = p̂ω. Sinceeω̂θ ω = ω, we
obtain:eω̂θ p̂ω = p̂ω. Sinceω is the only eigenvector
associated to the eigenvalue 1 of the matrixeω̂θ and p̂ω
is orthogonal toω, p̂ω has to be zero. Thus,ω is equal

to p or−p. R then has the formep̂θ , which commutes
with p̂. Thus from (7), we get:

e2p̂θ p̂ = p̂. (8)

According toRodrigues’ formula(Murray et al., 1994),
we have:

e2p̂θ = I + p̂ sin(2θ)+ p̂2(1− cos(2θ)) (9)

(8) yields:

p̂2 sin(2θ)+ p̂3(1− cos(2θ)) = 0. (10)

Since p̂2 and p̂3 are linearly independent (Lemma 2.3
in Murray et al. (1994), we have sin(2θ)= 1−cos(2θ)
= 0. That is,θ is equal to 2kπ or 2kπ + π , k ∈ Z.
Therefore,R is equal toI or ep̂π . It is direct from the
geometric meaning ofep̂π p̂ that ep̂π p̂ = − p̂, thus
ep̂π S= −S. 2

Following this lemma, suppose(p1, R1)∈SE(3)
and(p2, R2)∈SE(3) are both solutions for the equa-
tion RT p̂= E. Then we haveRT

1 p̂1= RT
2 p̂2. It yields

R2RT
1 p̂1 = p̂2. Sincep̂1, p̂2 are skew symmetric ma-

trices andR2RT
1 is a rotation matrix, we then have either

(p2, R2) = (p1, R1) or (p2, R2) = (−p1, ep̂1π R1).
Therefore, given an essential matrixE there are ex-
actly two pairs(p, R) such thatRT p̂ = E. Further,
if E has the SVD:E = U6VT with U,V ∈ SO(3),1

the following formulae give the two solutions:
(
RT

1 , p̂1
) = (URT

Z

(
+π

2

)
VT ,VRZ

(
+π

2

)
6VT

)
,

(
RT

2 , p̂2
) = (U RT

Z

(
−π

2

)
VT ,VRZ

(
−π

2

)
6VT

)
(11)

whereRZ(θ) is defined to be the rotation matrix around
the Z-axis by an angleθ , i.e., RZ(θ) = eê3θ with e3 =
(0, 0, 1)T ∈ R3.

Since from the epipolar constraint (4) one can only
recover the essential matrix up to an arbitrary scale
(in particular, bothE and−E satisfy the same equa-
tion), so in general four solutions(p, R) will be ob-
tained from image correspondences. Usually, theposi-
tive depth constraintcan be imposed to discard three
of the ambiguous solutions. We here omit these well
known details and simply summarize the discrete es-
sential matrix approach for motion estimation as the
following algorithm (which is essentially the same as
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that given in Maybank (1993) and we repeat it here for
comparison with the algorithm that we will develop for
the differential case:

Three-Step SVD-Based 3D Displacement Estima-
tion Algorithm:

1. Estimate the essential matrix:
For a given set of image correspondences:(qi

0,

qi
c), i = 1, . . . ,m (m≥ 8), find the matrixE which

minimizes the error function:

V(E) =
m∑

i=1

(
qi T

c RT p̂qi
0

)2
(12)

subject to the condition‖E‖ = 1;
2. Singular value decomposition:

Recover matrixE fromeand find the singular value
decomposition of the matrixE:

E = U diag{σ1, σ2, σ3}VT (13)

whereσ1 ≥ σ2 ≥ σ3;
3. Recover displacement from the essential matrix:

Define the diagonal matrix6 to be:

6 = diag{1, 1, 0}. (14)

Then the 3D displacement(p, R) is given by:

RT = URT
Z

(
±π

2

)
VT , p̂ = VRZ

(
±π

2

)
6VT.

(15)

The epipolar geometric relationship between projec-
tions of the points and their displacements transfers to
the differential case. So, intuitively speaking, the dif-
ferential case is an infinitesimal version of the discrete
case. However, the differential case is by no means
simply a “first order approximation” of the discrete
case. When differentiation takes place, while structure
of the geometry of the discrete case is inherited by the
differential case, some degeneracies may occur. Such
degeneracies will become clear when we study the dif-
ferential version of the epipolar constraint. It is also
known that it is exactly due to these degeneracies that
camera calibration cannot be fully recovered from dif-
ferential epipolar constraint as opposed to the discrete
case (Ma et al., 1998b). Generally speaking, the sim-
ilarity between these two cases is that methods and
geometric intuition used in the discrete case can be

extended to the differential case, even though geomet-
ric characterization of the objects is different. One of
the main goals of this paper is to clarify the geometric
similarity anddifferencebetween the discrete and dif-
ferential cases. Although the theory will be developed
in a calibrated camera framework, the clear geomet-
ric nature of this approach has helped us to understand
the uncalibrated situation as well—especially the rela-
tion between the Kruppa’s equation and its differential
version (Ma et al., 1998b).

2.2. Differential Epipolar Constraint

We now develop adifferential essential matrix ap-
proachfor estimating 3D velocity from optical flow in
a parallel way to the discrete essential matrix approach
for estimating 3D displacement from image correspon-
dences.

The starting point of this approach is a differen-
tial version of the epipolar constraint and associated
concept of differential essential matrix. This constraint
is bilinear in nature and has been used extensively in
the motion estimation from optical flow measurements
(Vieville and Faugeras, 1995; Heeger and Jepson,
1992). Here we give a characterization of such ma-
trices and show that there exists exactly one 3D veloc-
ity corresponding to a non-zero differential essential
matrix; as a differential version of the three-step SVD-
based 3D displacement estimation algorithm, we pro-
pose a four-step eigenvector-decomposition-based 3D
velocity estimation algorithm; finally, we discuss the
reasons why the zero-translation case makes all essen-
tial constraint based motion estimation algorithms fail
and suggest possible ways to overcome this difficulty.

Assume that camera motion is described by a smooth
curveg(t)= (p(t), R(t)) ∈ SE(3). According to (3),
for a pointq attached to the inertial frameF0, its co-
ordinates in the inertial frame and the moving camera
frame satisfy:

q0 = R(t)qc(t)+ p(t). (16)

Differentiating this equation yields:

q̇c = −RTṘqc− RTṗ. (17)

Since−RT Ṙ ∈ so(3) and−RT ṗ ∈ R3 (see Murray
et al. (1994)), we may defineω = (ω1, ω2, ω3)

T ∈ R3
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andv = (v1, v2, v3)
T ∈ R3 to be:

ω̂ = −RTṘ, v = −RTṗ. (18)

The interpretation of these velocities is:−ω is the an-
gular velocity of the camera frameFc relative to the
inertial frameFi and−v is the velocity of the origin of
the camera frameFc relative to the inertial frameFi .
Using the new notation, we get:

q̇c = ω̂qc+ v. (19)

From now on, for convenience we will drop the sub-
scriptc from qc. The notationq then serves both as a
point fixed in the frame and its coordinates in the current
camera frameFc. The image of the pointq taken by the
camera is given by the spherical projection:q = π(q).
Denote the velocity of the image pointq, the so called
optical flow, by u, i.e.,u = q̇ ∈ R3.

Theorem 1(Differential epipolar constraint). Consi-
der a camera moving with linear velocityv and angular
velocityω with respect to the inertial frame. Then the
optical flowu at an image pointq satisfies:

uT v̂q+ qT ω̂v̂q ≡ 0 (20)

or in an equivalent form:

(uT , qT )

(
v̂

s

)
q = 0 (21)

where s is a symmetric matrix defined to be s= 1
2(ω̂v̂+

v̂ω̂) ∈ R3×3.

Proof: From the definition of the mapsπ , there exists
a real scalar functionλ(t) (‖q(t)‖ or q3(t), depending
on the type of projection) such thatq = λq. Take the
inner product of the vectors in (19) with(v × q):

q̇T (v × q) = (ω̂q + v)T (v × q) = qT ω̂T v̂q. (22)

Sinceq̇ = λ̇q+ λq̇ andqT (v × q) = 0, from (22) we
then have:

λq̇T v̂q− λqT ω̂T v̂q = 0. (23)

Whenλ 6= 0, we obtain a differential version of the
epipolar constraint:

uT v̂q+ qT ω̂v̂q ≡ 0 (24)

Due to the following fact 1, for any skew symmetric
matrix A ∈ R3×3, qT Aq = 0. Since1

2(ω̂v̂ − v̂ω̂) is
a skew symmetric matrix,qT 1

2(ω̂v̂ − v̂ω̂)q = qTsq−
qT ω̂v̂q = 0. Thus,qTsq = qT ω̂v̂q. We then have:

uT v̂q+ qTsq ≡ 0. (25)
2

The proof indicates that there is some redundancy in
the expression of the differential epipolar constraint
(20). The following fact from linear algebra shows
where this redundancy comes from.

Fact 1. Consider matrices M1,M2∈R3×3. qT M1q
= qT M2q for all q ∈ R3 if and only if M1 − M2 is a
skew symmetric matrix, i.e., M1− M2 ∈ so(3).

Let us define an equivalence relation on the space
R3×3, the space of 3× 3 matrices overR: for x, y ∈
R3×3, x ∼ y if and only if x − y ∈ so(3). Denote
by [x] = {y ∈ R3×3 | y ∼ x} the equivalence class
of x, and denote by [X] the set

⋃
x∈X[x]. The quotient

spaceR3×3/∼ can be naturally identified with the space
of all 3× 3 symmetric matrices. Especially, we have
s = 1

2(ω̂v̂+ v̂ω̂) ∈ [ω̂v̂], which is the reason why
we choose it in the equivalent form (21). Using this
notation, Theorem 1 can then be re-expressed in the
following way:

Corollary 1. Consider a camera undergoing a
smooth rigid body motion with linear velocityv and
angular velocityω. Then the optical flowu of a image
pointq satisfies:

(uT , qT )

(
v̂

[ω̂v̂]

)
q ≡ 0. (26)

Because of this redundancy, each equivalence class
[ω̂v̂] can only be recovered up to its symmetric com-
ponents = 1

2(ω̂v̂ + v̂ω̂) ∈ [ω̂v̂]. This redundancy is
the exact reason why different forms of the differen-
tial epipolar constraint exist in the literature (Zhuang
and Haralick, 1984; Ponce and Genc, 1998; Vieville
and Faugeras, 1995; Maybank, 1993; Brooks et al., in
press), and, accordingly, various approaches have been
proposed to recoverω andv (see Tian et al. (1996)).
It is also the reason why the differential case cannot
be simply viewed as a first order approximation of the
discrete case—a first order approximation of the es-
sential matrixRT p̂ is ω̂v̂, but this is certainly not what
one can directly estimate from the differential epipolar
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constraint. Instead, one has to deal with its symmetric
parts = 1

2(ω̂v̂ + v̂ω̂). This, in fact, makes the study
of the differential case harder than the discrete case
(in seek for linear algorithms). Notice that the sym-
metric matrixs is the same as the matrixK defined
in Kanatani (1993b). Although the characterization of
such matrices has been studied in Kanatani (1993b),
our constructive proofs given below will lead to a nat-
ural algorithm for recovering(ω, v) from s.

2.3. Characterization of the Differential
Essential Matrix

We define the space of 6× 3 matrices given by:

E ′ =
{(

v̂

1
2(ω̂v̂ + v̂ω̂)

) ∣∣∣∣∣ω, v ∈ R3

}
⊂ R6×3. (27)

to be thedifferential essential space. A matrix in this
space is called adifferential essential matrix. Note that
the differential epipolar constraint (21) is homogeneous
on the linear velocityv. Thusv may be recovered only
up to a constant scale. Consequently, in motion recov-
ery, we will concern ourselves with matrices belonging
to normalized differential essential space:

E ′1 =
{(

v̂
1
2(ω̂v̂ + v̂ω̂)

) ∣∣∣∣∣ω ∈ R3, v ∈ S2

}
⊂ R6×3.

(28)

The skew-symmetric part of a differential essential
matrix simply corresponds to the velocityv. The char-
acterization of the (normalized) essential matrix only
focuses on the characterization of the symmetric part
of the matrix:s= 1

2(ω̂v̂+ v̂ω̂). We call the space of all
the matrices of such form thespecial symmetric space:

S =
{

1

2
(ω̂v̂ + v̂ω̂)

∣∣∣∣ω ∈ R3, v ∈ S2

}
⊂ R3×3. (29)

A matrix in this space is called aspecial symmetric
matrix. The motion estimation problem is now reduced
to the one ofrecovering the velocity(ω, v)withω ∈ R3

andv ∈ S2 from a given special symmetric matrix s.
The characterization of special symmetric matrices

depends on a characterization of matrices in the form:
ω̂v̂ ∈R3×3, which is given in the following lemma. This
lemma will also be used in the next section for show-
ing the uniqueness of the velocity recovery from spe-
cial symmetric matrices. Like the (discrete) essential
matrices, matrices with the form̂ωv̂ are characterized

by their singular value decomposition (SVD) :ω̂v̂ =
U6VT ; moreover, the orthogonal matricesU andV
are related. Define the matrixRY(θ) to be the rotation
around theY-axis by an angleθ ∈ R, i.e.,RY(θ) = eê2θ

with e2 = (0, 1, 0)T ∈ R3.

Lemma 2. A matrix Q∈ R3×3 has the form Q= ω̂v̂
withω ∈ R3, v ∈ S2 if and only if Q has the form:

Q = −VRY(θ) diag{λ, λ cos(θ), 0}VT (30)

for some rotation matrix V∈ SO(3). Further,λ = ‖ω‖
and cos(θ) = ωTv/λ.

Proof: We first prove the necessity. The proof fol-
lows from the geometric meaning ofω̂v̂: for any vector
q ∈ R3,

ω̂v̂q = ω × (v × q). (31)

Let b ∈ S2 be the unit vector perpendicular to bothω
andv: b = v×ω

‖v×ω‖ (if v × ω = 0, b is not uniquely
defined. In this case, pick anyb orthogonal tov and
ω, then the rest of the proof still holds). Thenω =
λ exp(b̂θ)v (according this definition,θ is the angle
betweenω andv, and 0≤ θ ≤ π ). It is direct to check
that if the matrixV is defined to be:

V = (eb̂ π2 v, b, v
)
, (32)

thenQ has the given form (30).
We now prove the sufficiency. Given a matrixQ

which can be decomposed into the form (30), define
the orthogonal matrixU =−VRY(θ)∈O(3).2 Let the
two skew symmetric matriceŝω and v̂ given by the
formulae:

ω̂=URZ

(
±π

2

)
6λU

T , v̂=VRZ

(
±π

2

)
61VT

(33)

where6λ = diag{λ, λ,0} and61 = diag{1, 1, 0}.
Then:

ω̂v̂ = URZ

(
±π

2

)
6λU

TVRZ

(
±π

2

)
61VT

= URZ

(
±π

2

)
6λ
(− RT

Y (θ)
)
RZ

(
±π

2

)
61VT

= U diag{λ, λ cos(θ), 0}VT

= Q. (34)
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Sinceω andv have to be, respectively, the left and the
right zero eigenvectors ofQ, the reconstruction given
in (33) is unique. 2

The following theorem gives a characterization of
the special symmetric matrix.

Theorem 2(Characterization of the special symmetric
matrix). A matrix s ∈ R3×3 is a special symmetric
matrix if and only if s can be diagonalized as s=
V6VT with V ∈ SO(3) and:

6 = diag{σ1, σ2, σ3} (35)

with σ1 ≥ 0, σ3 ≤ 0 andσ2 = σ1+ σ3.

Proof: We first prove the necessity. Supposes is a
special symmetric matrix, there existω ∈ R3, v ∈ S2

such thats = 1
2(ω̂v̂ + v̂ω̂). Sinces is a symmetric

matrix, it is diagonalizable, all its eigenvalues are real
and all the eigenvectors are orthogonal to each other.
It then suffices to check that its eigenvalues satisfy the
given conditions.

Let the unit vectorb and the rotation matrixV be
the same as in the proof of Lemma 2, so areθ andγ .
Then according to the lemma, we have:

ω̂v̂ = −VRY(θ) diag{λ, λ cos(θ), 0}VT . (36)

Since(ω̂v̂)T = v̂ω̂, it yields:

s = 1

2
(ω̂v̂ + v̂ω̂)

= 1

2
V
(−RY(θ) diag{λ, λ cos(θ), 0}

− diag{λ, λ cos(θ), 0}RT
Y (θ)

)
VT. (37)

Define the matrixD(λ, θ) ∈ R3×3 to be:

D(λ, θ)

= −RY(θ) diag{λ, λ cos(θ), 0}
− diag{λ, λ cos(θ), 0}RT

Y (θ)

= λ

−2 cos(θ) 0 sin(θ)

0 −2 cos(θ) 0

sin(θ) 0 0

. (38)

Directly calculating its eigenvalues and eigenvec-
tors, we obtain that:

D(λ, θ)= RY

(
θ

2
− π

2

)
× diag{λ(1− cos(θ)),−2λ cos(θ),

λ(−1− cos(θ))}RT
Y

(
θ

2
− π

2

)
. (39)

Thuss= 1
2VD(λ, θ)VT has eigenvalues:{

1

2
λ(1− cos(θ)), −λ cos(θ),

1

2
λ(−1− cos(θ))

}
,

(40)

which satisfy the given conditions.
We now prove the sufficiency. Givens=V1 diag
{σ1, σ2, σ3}VT

1 with σ1 ≥ 0, σ3 ≤ 0 andσ2 = σ1 + σ3

andVT
1 ∈ SO(3), these three eigenvalues uniquely de-

termineλ, θ ∈ R such that theσi ’s have the form given
in (40): {

λ = σ1− σ3, λ ≥ 0

θ = arccos(−σ2/λ), θ ∈ [0, π ]

Define a matrixV ∈ SO(3) to beV = V1RT
Y (

θ
2 − π

2 ).
Thens= 1

2VD(λ, θ)VT . According to Lemma 2, there
exist vectorsv ∈ S2 andω ∈ R3 such that:

ω̂v̂ = −VRY(θ) diag{λ, λ cos(θ), 0}VT . (41)

Therefore,12(ω̂v̂ + v̂ω̂) = 1
2VD(λ, θ)VT = s. 2

Figure 2 gives a geometric interpretation of the three
eigenvectors of the special symmetric matrixs for the
case when bothω, v are of unit length. Theorem 2 was
given as an exercise problem in Kanatani (1993a) but it
has never been really exploited in the literature for de-
signing algorithms. For that purpose, the constructive
proof given above is more important since it gives an
explicit decomposition of the special symmetric matrix
s, which will be studied in more detail next.

According to the proof of the sufficiency of
Theorem 2, if we already know the eigenvector de-
composition of a special symmetric matrixs, we cer-
tainly can find at least one solution(ω, v) such that
s = 1

2(ω̂v̂ + v̂ω̂). This section discusses the unique-
ness of such reconstruction, i.e., how many solutions
exist fors= 1

2(ω̂v̂ + v̂ω̂).
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Figure 2. Vectorsu1, u2, b are the three eigenvectors of a special
symmetric matrix1

2(ω̂v̂ + v̂ω̂). In particular,b is the normal vector
to the plane spanned byω andv, andu1, u2 are both in this plane.
u1 is the average ofω andv. u2 is orthogonal to bothb andu1.

Theorem 3(Uniqueness of the velocity recovery from
the special symmetric matrix). There exist exactly
four3Dvelocities(ω, v)withω∈R3 andv ∈ S2 corres-
ponding to a non-zero special symmetric matrix s∈S.

Proof: Suppose(ω1, v1) and(ω2, v2) are both solu-
tions fors= 1

2(ω̂v̂ + v̂ω̂). Then we have:

v̂1ω̂1+ ω̂1v̂1 = v̂2ω̂2+ ω̂2v̂2. (42)

From Lemma 2, we may write:{
ω̂1v̂1 = −V1RY(θ1) diag{λ1, λ1 cos(θ1), 0}VT

1

ω̂2v̂2 = −V2RY(θ2) diag{λ2, λ2 cos(θ2), 0}VT
2 .

(43)

Let W = VT
1 V2 ∈ SO(3), then from (42):

D(λ1, θ1) =WD(λ2, θ2)W
T . (44)

Since both sides of (44) have the same eigenvalues,
according to (39), we have:

λ1 = λ2, θ2 = θ1. (45)

We then can denote bothθ1 andθ2 by θ . It is direct to
check that the only possible rotation matrixW which
satisfies (44) is given byI3×3 or:−cos(θ) 0 sin(θ)

0 −1 0

sin(θ) 0 cos(θ)

 or

 cos(θ) 0 −sin(θ)

0 −1 0

−sin(θ) 0 −cos(θ)

. (46)

From the geometric meaning ofV1 andV2, all the cases
give eitherω̂1v̂1 = ω̂2v̂2 orω̂1v̂1 = v̂2ω̂2. Thus, accord-
ing to the proof of Lemma 2, if(ω, v) is one solution
andω̂v̂ = U diag{λ, λ cos(θ), 0}VT , then all the so-
lutions are given by:
ω̂ = URZ

(
±π

2

)
6λU

T, v̂ = VRZ

(
±π

2

)
61VT ;

ω̂ = VRZ

(
±π

2

)
6λV

T, v̂ = URZ

(
±π

2

)
61U

T

(47)

where6λ= diag{λ, λ,0} and61= diag{1, 1, 0}. 2

Given a non-zero differential essential matrixE ∈
E ′, according to (47) its special symmetric part gives
four possible solutions for the 3D velocity(ω, v).
However, in general only one of them has the same
linear velocityv as the skew symmetric part ofE does.
We thus have:

Theorem 4(Uniqueness of the velocity recovery from
differential essential matrix). There exists only one
3Dvelocity(ω, v)withω∈R3 andv ∈R3 correspond-
ing to a non-zero differential essential matrix E∈ E ′.

In the discrete case, there are two 3D displacements
corresponding to an essential matrix. However, the ve-
locity corresponding to a differential essential matrix
is unique. This is because, in the differential case, the
twisted-pair ambiguity (see Maybank (1993)), which
is caused by a 180◦ rotation of the camera around the
translation direction, is avoided.

2.4. Algorithm

Based on the preceding study of the differential es-
sential matrix, we propose an new algorithm which
recovers the 3D velocity of the camera from a set of
(possibly noisy) optical flows.

Let E = ( v̂s ) ∈ E ′1 with s = 1
2(ω̂v̂ + v̂ω̂) be the es-

sential matrix associated with the differential epipolar
constraint (21). Since the submatrixv̂ is skew symmet-
ric ands is symmetric, they have the following form:

v =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

, s=

s1 s2 s3

s2 s4 s5

s3 s5 s6

.
(48)
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Define the (differential)essential vectore ∈ R9 to
be:

e= (v1, v2, v3, s1, s2, s3, s4, s5, s6)
T . (49)

Define a vectora ∈ R9 associated to optical flow(q, u)
with q = (x, y, z)T ∈ R3, u = (u1, u2, u3)

T ∈ R3 to
be3:

a = (u3y− u2z, u1z− u3x, u2x − u1y, x2, 2xy, 2xz,

y2, 2yz, z2)T . (50)

The differential epipolar constraint (21) can be then
rewritten as:

aTe= 0. (51)

Given a set of (possibly noisy) optical flow vectors:
(qi , ui ), i = 1, . . . ,m generated by the same motion,
define a matrixA ∈ Rm×9 associated to these measure-
ments to be:

A = (a1, a2, . . . ,am)T (52)

whereai are defined for each pair(qi , ui ) using (50).
In the absence of noise, the essential vectore has to
satisfy:

Ae= 0. (53)

In order for this equation to have a unique solution for
e, the rank of the matrixA has to be eight. Thus, for
this algorithm, in general, the optical flow vectors of at
least eight points are needed to recover the3Dvelocity,
i.e., m ≥ 8, although the minimum number of optical
flows needed is 5 (see Maybank (1993)). When the
measurements are noisy, there might be no solution
of e for Ae = 0. As in the discrete case (Maybank,
1993), we choose the solution which minimizes the
error function‖Ae‖2.

Since the differential essential vectore is recovered
from noisy measurements, the symmetric parts of E
directly recovered frome is not necessarily a special
symmetric matrix. Thus one can not directly use the
previously derived results for special symmetric matri-
ces to recover the 3D velocity. In the algorithms pro-
posed in Zhuang and Haralick (1984) and Zhuang et al.
(1988), suchs, with the linear velocityv obtained from
the skew-symmetric part, is directly used to calculate
the angular velocityω. This is an over-determined prob-
lem since three variables are to be determined from six
independent equations; on the other hand, erroneousv

introduces further error in the estimation of the angular
velocityω.

We thus propose a different approach: first extract
the special symmetric component from the symmetric
matrixs directly estimated from the differential epipo-
lar constraint; then recover the four possible solutions
for the 3D velocity using the results obtained in The-
orem 3; finally choose the one which has the closest
linear velocity to the one given by the skew-symmetric
part of E. In order to extract the special symmetric
component out of a symmetric matrix, we need a pro-
jection from the space of all symmetric matrices to the
special symmetric spaceS, i.e., a differential version
of the projection of a matrix to the essential manifold
E given in Maybank (1993).

Theorem 5(Projection to the special symmetric space).
If a symmetric matrix F∈ R3×3 is diagonalized as F=
V diag{λ1, λ2, λ3}VT with V ∈ SO(3), λ1 ≥ 0, λ3 ≤ 0
andλ1 ≥ λ2 ≥ λ3, then the special symmetric matrix
E ∈S which minimizes the error‖E− F‖2f is given by
E = V diag{σ1, σ2, σ2}VT with:

σ1 = 2λ1+ λ2− λ3

3
, σ2 = λ1+ 2λ2+ λ3

3
,

σ3 = 2λ3+ λ2− λ1

3
. (54)

Proof: Define S6 to be the subspace ofS whose
elements have the same eigenvalues:6 = diag{σ1,

σ2, σ3}. Thus every matrixE ∈ S6 has the formE =
V16VT

1 for someV1 ∈ SO(3). To simplify the nota-
tion, define6λ = diag{λ1, λ2, λ3}. We now prove this
theorem by two steps.

Step 1: We prove that the special symmetric ma-
trix E ∈ S6 which minimizes the error‖E − F‖2f
is given by E=V6VT . SinceE ∈S6 has the form
E = V16VT

1 , we get:

‖E − F‖2f =
∥∥V16VT

1 − V6λV
T
∥∥2

f

= ∥∥6λ − VT V16VT
1 V

∥∥2
f . (55)

DefineW = VT V1 ∈ SO(3) andW has the form:

W =

w1 w2 w3

w4 w5 w6

w7 w8 w9

. (56)
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Then:

‖E − F‖2f
= ‖6λ −W6WT‖2f
= tr

(
62
λ

)− 2 tr(W6WT6λ)+ tr(62). (57)

Substituting (56) into the second term, and using the
fact thatσ2 = σ1 + σ3 andW is a rotation matrix, we
get:

tr(W6WT6λ)

= σ1
(
λ1
(
1− w2

3

)+ λ2
(
1− w2

6

)+ λ3
(
1− w2

9

))
+ σ3

(
λ1
(
1− w2

1

)+ λ2
(
1− w2

4

)
+ λ3

(
1− w2

7

))
. (58)

Minimizing ‖E − F‖2f is equivalent to maximizing
tr(W6WT6λ). From (58), tr(W6WT6λ) is maxi-
mized if and only ifw3 = w6 = 0, w2

9 = 1, w4 =
w7 = 0 andw2

1 = 1. SinceW is a rotation matrix,
we also havew2 = w8 = 0 andw2

5 = 1. All possi-
ble W give a unique matrix inS6 which minimizes
‖E − F‖2f : E = V6VT .

Step 2: From step one, we only need to minimize
the error function over the matrices which have the
form V6VT ∈ S. The optimization problem is then
converted to one of minimizing the error function:

‖E − F‖2f = (λ1− σ1)
2

+ (λ2− σ2)
2+ (λ3− σ3)

2 (59)

subject to the constraint:

σ2 = σ1+ σ3. (60)

The formula (54) forσ1, σ2, σ3 are directly obtained
from solving this minimization problem. 2

Remark 1. For symmetric matrices which do not sati-
sfy conditionsλ1≥ 0 orλ3≤ 0,one may simply choose
λ′1 = max(λ1, 0) or λ′3 = min(λ3, 0).

We then have an eigenvalue-decomposition based
algorithm for estimating 3D velocity from optical flow.

Four-Step 3D Velocity Estimation Algorithm:

1. Estimate essential vector:
For a given set of optical flows:(qi , ui ), i =

1, . . . ,m, find the vectore which minimizes the
error function:

V(e) = ‖Ae‖2 (61)

subject to the condition‖e‖ = 1;
2. Recover the special symmetric matrix:

Recover the vectorv0 ∈ S2 from the first three en-
tries ofe and the symmetric matrixs ∈ R3×3 from
the remaining six entries.4 Find the eigenvalue de-
composition of the symmetric matrixs:

s= V1 diag{λ1, λ2, λ3}VT
1 (62)

with λ1 ≥ λ2 ≥ λ3. Project the symmetric matrixs
onto the special symmetric spaceS. We then have
the news= V1 diag{σ1, σ2, σ3}VT

1 with:

σ1 = 2λ1+ λ2− λ3

3
, σ2 = λ1+ 2λ2+ λ3

3
,

σ3 = 2λ3+ λ2− λ1

3
; (63)

3. Recover velocity from the special symmetric matrix:
Define:

λ = σ1− σ3, λ ≥ 0,

θ = arccos

(−σ2

λ

)
, θ ∈ [0, π ].

(64)

Let V =V1RT
Y (

θ
2 − π

2 ) ∈ SO(3) andU = −VRY(θ)

∈ O(3). Then the four possible 3D velocities cor-
responding to the special symmetric matrixs are
given by:
ω̂=URZ

(
±π

2

)
6λU

T , v̂=VRZ

(
±π

2

)
61VT

ω̂=VRZ

(
±π

2

)
6λV

T , v̂=URZ

(
±π

2

)
61U

T

(65)

where6λ = diag{λ, λ,0} and61 = diag{1, 1, 0};
4. Recover velocity from the differential essential

matrix:
From the four velocities recovered from the spe-
cial symmetric matrixs in step 3, choose the pair
(ω∗, v∗) which satisfies:

v∗Tv0 = max
i
vT

i v0. (66)
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Then the estimated 3D velocity(ω, v) with ω ∈ R3

andv ∈ S2 is given by:

ω = ω∗, v = v0. (67)

Both v0 and v∗ are estimates of the linear velocity.
However, experimental results show that, statistically,
within the tested noise levels (see next section),v0

yields a better estimate thanv∗. Here, thus, we sim-
ply choosev0 as the estimate. Nonetheless, one can
find statistical correlations betweenv0 andv∗ (experi-
mentally or analytically) and obtain better estimates
for v, using bothv0 andv∗. Another potential way to
improve this algorithm is to study the systematic bias
introduced by the least square method in step 1. A simi-
lar problem has been studied by Kanatani (1993a) and
an algorithm was proposed to remove such bias from
Zhuang’s algorithm (Zhuang and Haralick, 1984).

Remark 2. Since bothE,−E ∈ E ′1 satisfy the same
set of differential epipolar constraints, both (ω,±v)
are possible solutions for the given set of optical flows.
However, as in the discrete case, one can get rid of
the ambiguous solution by adding the “positive depth
constraint”.

Remark 3. By the way of comparison to Heeger and
Jepson’s algorithm (Heeger and Jepson, 1992), note
that the Eq. (53) may be rewritten to highlight the de-
pendence on optical flow as: [A1(u) | A2]e= 0 where
A1(u) ∈ Rm×3 is a linear function of the measured op-
tical flow and A2 ∈ Rm×6 is a function of the image
points alone. Heeger and Jepson compute a left null
space to the matrixA2 (C ∈ R(m−6)×m) and solve the
equation: CA1(u)v = 0 for v alone. Then they use
v to obtainω. Our method simultaneously estimates
v ∈ R3, s ∈ R6. We make a detailed simulation com-
parison of these two algorithms in Section 4.

One should note that this linear algorithm is not op-
timal in the sense that the recovered velocity does not
necessarily minimize the originally picked error func-
tion‖Ae(ω, v)‖2 onE ′1 (see next section for a more de-
tailed discussion). However, this algorithm only uses
linear algebra techniques and is particularly simpler
than a one which tries to optimize on the manifoldE ′1
(Ma et al., 1998c).

One potential problem with the (discrete or differ-
ential) essential approaches is that the motion estima-
tion schemes are all based on the assumption that the

translation is not zero. In this section, we study what
makes the epipolar constraint fail to work in the zero-
translation case.

For the discrete case, if two images are obtained
from rotation alone i.e.,p = 0 andqc = RTq0, it is
straightforward to check that, for allp ∈ S2, we have:

qT
c RT p̂q0 ≡ 0. (68)

Thus, theoretically, the estimation schemes working on
the normalized essential spaceE1 will fail to converge
(since there are infinite many pairs of(R, p) satisfying
the same set of epipolar constraints). In the differential
case, we have a similar situation:

Theorem 6. An optical flow field(q, u) is obtained
from a pure rotation with the angular velocityω if and
only if for all vectorsv ∈ S2

(uT , qT )

(
v̂

[ω̂v̂]

)
q = 0. (69)

Proof: u = ω̂q sinceu is obtained from rotation
ω ⇔ uT (v × q) = −qT ω̂(v × q) for all v ∈ S2 ⇔
(uT , qT )(v̂[ω̂v̂])q = 0. 2

This theorem implies that the velocity estimation al-
gorithm proposed in the previous section will have trou-
ble when the linear velocityv is zero, since there are
infinite many pairs of(ω, v) satisfying the same set of
differential epipolar constraints. However, it is shown
by Soatto and Perona (1996) that, in the dynamical es-
timation approach, one can actually make use of the
noise in the measurements to obtain correct estimate
of the rotational componentR regardless of the accu-
racy of the estimate for the translation vectorp. The
same should hold also in the differential case. That is,
even in the zero-translation case, the recovery of the
angular velocityω is still possible using dynamic esti-
mation schemes. Study of such schemes is beyond the
scope of this paper and will be addressed in our future
research work.

Example: Kinematic model of an aircraft. This ex-
ample shows how to utilizenonholonomic constraints
(see Murray et al. (1994)) to simplify the proposed lin-
ear motion estimation algorithm in the differential case.
Let g(t) ∈ SE(3) represents the position and orienta-
tion of an aircraft relative to the spatial frame, the inputs
ω1, ω2, ω3 ∈ R stand for the rates of the rotation about
the axes of the aircraft andv1 ∈ R the velocity of the
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aircraft. Using the standardhomogeneous representa-
tion for g (see Murray et al. (1994)), the kinematic
equations of the aircraft motion are given by:

ġ = g


0 −ω3 ω2 v1

ω3 0 −ω1 0

−ω2 ω1 0 0

0 0 0 0

 (70)

whereω1 stands for pitch rate,ω2 for roll rate,ω3 for
yaw rate andv1 the velocity of the aircraft. Then the
3D velocity(ω, v) in the differential epipolar constraint
(21) has the form:ω = (ω1, ω2, ω3)

T , v = (v1, 0, 0)T .
For the algorithm given in Section 2.4, this adds extra
constraints on the symmetric matrixs= 1

2(ω̂v̂ + v̂ω̂):
s1 = s5 = 0 ands4 = s6. Then there are only four
different essential parameters left to determine and we
can re-define the essential parameter vectore ∈ R4

to be: e = (v1, s2, s3, s4)
T . Then the measurement

vectora ∈ R4 is to be:a= (u3y−u2z, 2xy, 2xz, y2+
z2)T . The differential epipolar constraint can then be
rewritten as:

aTe= 0. (71)

If we define the matrixA froma like in (52), the matrix
AT A is a 4× 4 matrix rather than a 9× 9 one. For
estimating the velocity(ω, v), the dimensions of the
problem is then reduced from 9 to 4. In this special
case, the minimum number of optical flow measure-
ments needed to guarantee a unique solution ofe is
reduced to 3 instead of 8. Further more, the symmetric
matrix s recovered frome is automatically in the spe-
cial symmetric spaceS and the remaining steps of the
algorithm given in Section 2.4 can be thus dramatically
simplified. From this simplified algorithm, the angu-
lar velocityω = (ω1, ω2, ω3)

T can be fully recovered
from the images. The velocity information can be then
used for controlling the aircraft.

3. Experimental Results

We have carried out some initial simulations in order
to study the performance of our algorithm. We chose
to evaluate it in terms of bias and sensitivity of the
estimates with respect to the noise in the optical flow
measurements. Preliminary simulations were carried
out with perfect data which was corrupted by zero-
mean Gaussian noise where the standard deviation was
specified in terms of pixel size and was independent of

velocity. The image size was considered to be 512×
512 pixels. Our algorithm has been implemented in
Matlab and the simulations have been performed using
example sets proposed by Tian et al. (1996), in their
paper on comparison of the egomotion estimation from
optical flow.5 The motion estimation was performed
by observing the motion of a random cloud of points
placed in front of the camera. Depth range of the points
varied froma to b (>a) units of the focal lengthf ,
which was considered to be unity. For example, if
the focal length is 8 mm anda = 100 andb = 400,
the point depth varies from 0.8 m to 3.2 m in front
of the camera. This setup makes the simulation de-
pend only on the parameterc= (b−a)/a, calleddepth
variation parameter. The results presented below are
for a fixed field of view (FOV) of 60 degrees unless
otherwise stated.

3.1. Comparing to Subspace Methods

Each simulation consisted of 500 trials for 50 randomly
sampled points in a given depth variation [a, b] =
[100, 400] with a fixed noise level and ratio between
the image velocity due to translation and rotation for
the point in the middle of the random cloud. Figures 3
and 4 compare our algorithm with Heeger and Jepson’s
linear subspace algorithm (Heeger and Jepson, 1992).
The presented results demonstrate the performance of
the algorithm while rotating aroundX-axis with rate of
1◦ per frame and translating alongY-axis with trans-
lation to rotation ratio of 1 and 5 respectively (for the
point at the center of the random cloud). The first stage
of our analysis was performed using benchmarks pro-
posed by Tian et al. (1996). The bias is expressed as
an angle between the average estimate out of all trials
(for a given setting of parameters) and the true direc-
tion of translation and/or rotation. The sensitivity was
computed as a standard deviation of the distribution of
angles between each estimated vector and the average
vector in case of translation and as a standard deviation
of angular differences in case of rotation.

We further evaluated the algorithm by varying the
direction of translation and rotation. At the noise level
of 0.9 pixel and translation/rotation ratio 1, for different
combination of translation and rotation axis, the bias
of these two algorithm are shown in Fig. 5. From the
simulation results, we observe that:

1. In terms of translational bias and sensitivity, the sub-
space method (Heeger and Jepson, 1992) and our



84 Ma, Kǒsecḱa and Sastry

Figure 3. Bias for each noise level was estimated by running 500 trials and computing the average translation and rotation. The ratio between
the magnitude of linear and angular velocities is 1.

algorithm have exactly the same performance at all
noise levels.

2. The choice of the rotation axis does not influence
the translation estimates at all for both algorithms.
It does not generally influence the rotation estimates
for the subspace method either but indeed influences
our algorithm. This is because the decomposition
of the special symmetric matrixs = 1

2(ω̂v̂ + v̂ω̂)
is numerically less accurate whenω andv coincide
with each other.

3. Both algorithms give much better estimates when
translation along Z-axis is present. This is consis-
tent to the sensitivity analysis done in Daniilidis
and Nagel (1990). In the case of translation inX-Y
plane, our algorithm gives better rotation estimates

than the subspace method (Heeger and Jepson,
1992), especially when the noise levels are high.

This is due to the fact that in our algorithm the rota-
tion is estimated simultaneously with the translation,
so that its bias is only due to the bias of the initially es-
timated differential essential matrix obtained by linear
least squares techniques. This is in contrast to the ro-
tation estimate used by the subspace method (Heeger
and Jepson, 1992), which uses another least-squares
estimation by substituting an already biased transla-
tional estimate to compute the rotation. Increasing the
ratio between the magnitude of translational and rota-
tional velocities, the performance of both algorithms
improves, especially the translation estimates.
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Figure 4. Bias for each noise level was estimated by running 500 trials and computing the average translation and rotation. The ratio between
the magnitude of linear and angular velocities is 5.

3.2. Bias Analysis: Relation
with Nonlinear Algorithms

A disadvantage of any linear algorithm is that it tries
to directly minimize the epipolar constraint, i.e., the
objective function:

V(ω, v) =
N∑

i=1

(uiT v̂qi + qiT ω̂v̂qi )2. (72)

But this is not the likelihood function ofω andv for
commonly used noise models of the optical flow. Con-
sequently, estimates given by linear algorithms are usu-
ally not close to maximuma posteriori(MAP) or min-
imum mean square estimates (MMSE). In general, this
is the source of bias for linear algorithms. In case of per-
spective projection, a commonly used noise model is:

ũi = ui + ni (73)

whereũi ’s are corrupted optical flows andni ’s are inde-
pendent Gaussian noises with identical covariance ma-
trix K = diag{σ 2, σ 2, 0}. Substitutẽui into the epipolar
constraint and we obtain

ũiT v̂qi + qiT ω̂v̂qi = niT v̂qi . (74)

The random variableniT v̂qi is Gaussian with distri-
bution N(0, ‖ê3v̂qi ‖2) wheree3 = (0, 0, 1)T . Conse-
quently, the variance in general depends on the location
of the image pointqi . Assuming that thea priori dis-
tributions ofω, v are uniform, the MAP estimates are
then given by theω∗, v∗ which minimize the objective
function:

V(ω, v) =
N∑

i=1

(uiT v̂qi + qiT ω̂v̂qi )2

‖ê3v̂qi ‖2 . (75)
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Figure 5. Bias dependency on combination of translation and rotation axises. For example, “X-Y” means the translation direction is inX-axis
and rotation axis is theY-axis. Bias for each combination of axises was estimated by running 500 trials at the noise level 0.9 pixel. The ratio
between the magnitude of linear and angular velocities is 1.

This objective function is also referred asnormalized
epipolar constraints. A desirable property of MAP
estimates is that they are asymptotically unbiased, i.e.,
when the number of sample pointsN is large, the bias
is reduced dramatically. The asymptotic unbiasness of
this motion estimates has been studied extensively by
Soatto et al. (submitted), where they have provided a
concise and rigorous proof of the asymptotic unbias-
ness. However, such a topic is beyond the scope of
this paper and we refer interested readers to relevant
sections in that paper.

It is important to notice that if the translationv is in
the X-Y plane, i.e.,v = (v1, v2, 0)T , ‖ê3v̂qi ‖ = ‖v‖
is independent of the image pointqi . The normalized
version (75) is therefore equivalent to the unnormalized
version (72). Consequently, the normalization will not

have much effect on the obtained estimates. Note that
this is exactly the case when our algorithm performs
better than the subspace method. For the case that the
Z-axis translation is present, the performance of both
algorithms can be further improved by solving the nor-
malized version (especially when a large number of
sample points are available). This is, in general, a non-
linear optimization problem and is beyond the scope of
this paper. However, since nonlinear algorithms usu-
ally only guarantee local convergence, a good linear
algorithm may provide a good initial state for a nonlin-
ear search scheme. Simply to demonstrate the effect
of normalization, we have run our linear algorithm for
the normalized objective function (75) using the actual
translation velocity in the denominator to normalize the
epipolar constraint and compare the results with those
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Figure 6. Translation bias of using normalized and unnormalized epipolar constraints. Bias for each noise level is estimated by running 50
trials. Both rotation and translation is along theZ-axis and the ratio between the magnitude of linear and angular velocities is 1.

from the unnormalized one (a loyal implementation
of the nonlinear optimization scheme can be found in
Ma et al. (1998c). Since the advantage of MAP es-
timate is only observed asymptotically, we here pick
a large number of sample pointsN = 500. Because,
up to N = 500, the improvement in rotation estimate
is less significant, we only plot the translation bias
with respect to different noise levels in Fig. 6. Both
the translation direction and rotation axis are along the
Z-axis.

3.3. Sensitivity to the Depth Variation Parameter c

Simulations also show that the depth variation para-
meterc= (b− a)/a is another important measure of
the performance of the linear algorithm. We ran our

algorithm at noise levels 0.3, 0.6 and 0.9 pixel with
respect to depth variation parameterc = 2.5, 3.0,
3.5, 4.0 for a cloud of 200 points. Translation and rota-
tion biases are plotted in Fig. 7. One should notice that
at high noise levels, the bias increases almost exponen-
tially when the depth variation parameterc decreases.
When the depth variation parameter is small and noise
level is high, the proposed algorithm gives less robust
estimates. Especially, estimates of the bias and sensitiv-
ity become less stable. In order to demonstrate the true
monotonic relation between the sensitivity and noise
level, a larger number of trials have to be performed.
In this case, the fact that the points in the scene are
(almost) coplanar has to be incorporated in the design-
ing of motion estimation algorithms (Longuet-Higgins
1986; Subbarao and Waxman, 1985).
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Figure 7. Translation bias and rotation bias with respect to different
depth variation parameterc. Bias for each noise level and depth
variation parameter is estimated by running 500 trials. Translation is
along theX-axis and rotation axis is theZ-axis and the ratio between
the magnitude of linear and angular velocities is 1.

3.4. Translation estimatesv0 versusv∗

Further evaluation of the results and more extensive
simulations are currently underway. We believe that
thoroughly understanding the source of translational
bias, we can obtain even better performance by uti-
lizing additional information about the linear velocity
which is embedded in the special symmetric part of
the differential essential matrix, i.e.,v∗ (see step 4 of
the algorithm in the preceding section). In the above
simulations, the linear velocityv was estimated only
from thev0, the skew symmetric part of the differential
essential matrix. Figure 8 demonstrates thatv0 is in
general a much better estimate thanv∗. A more de-
tailed analysis of the statistical correlation betweenv0

andv∗ is currently under investigation.

4. Discussions and Future Work

This paper presents a unified (linear) approach for the
problem of egomotion estimation using discrete and
differential epipolar constraints. In either the discrete
or differential setting, a geometric characterization is
given for the space of essential matrices or differential
essential matrices. Such characterization gives a natu-
ral geometric interpretation for the number of possible
solutions to the motion estimation problem. In addi-
tion, in the differential case, understanding of the
space of differential essential matrices leads to a new

Figure 8. Bias and sensitivity of the translation estimatesv0 from
the skew symmetric part andv∗ from the special symmetric part of
the differential essential matrix. Bias and sensitivity for each noise
level are estimated by running 200 trials for a cloud of 50 points. Both
translation and rotation are along theX-axis and the ratio between
the magnitude of linear and angular velocities is 5.

egomotion estimation algorithm, which is a natural
counterpart of the well-known three-step SVD based
algorithm developed for the discrete case by Toscani
and Faugeras (1986).

In order to exploit temporal coherence of motion
and improve algorithm’s robustness, a dynamic (recur-
sive) motion estimation scheme, which uses implicit
extended Kalman filter for estimating the essential pa-
rameters, has been proposed by Soatto and Perona
(1996) for the discrete case. The same ideas certainly
apply to our algorithm.

Although only linear algorithms are studied in this
paper, the understanding of the geometric characteri-
zation of the essential matrix spaces leads to natural
geometric nonlinear search algorithms based on opti-
mization techniques on Riemannian manifolds. Those
intrinsic nonlinear algorithms will be presented in the
sequel of this paper (Ma et al., 1998c). The problem
of 3D structure reconstruction is not discussed in this
paper. Like the motion estimation, this subject has also
been studied extensively in the computer vision litera-
ture. A unified approach has been proposed in a sequel
paper (Ma et al., 1998a).

In this paper, we have assumed that the camera is
calibrated. Our approach can be extended to uncali-
brated camera case, where the motion estimation and
camera self-calibration problem can be solved simul-
taneously, using the differential essential constraint
(Vieville and Faugeras, 1995, Brooks et al., in press). In
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this case, the essential matrix is replaced by the funda-
mental matrix which captures both motion information
and camera intrinsic parameters. It is shown in Brooks
et al. (in press) and Ma et al. (1998b), that besides five
motion parameters only two extra intrinsic parameters
can be recovered.
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Notes

1. An essential matrix always has a SVD such thatU,V ∈ SO(3).
2. O(3) represents the space of all orthogonal matrices (of determi-

nant±1.)
3. For perspective projection,z= 1 andu3 = 0 thus the expression

for a can be simplified.
4. In order to guaranteev0 to be of unit length, one needs to “re-

normalize” e, i.e., multiply e by a scalar such that the vector
determined by the first three entries is of unit length.
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