;:‘ International Journal of Computer Vision 44(3), 219-249, 2001
' © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Optimization Criteria and Geometric Algorithms for Motion
and Structure Estimation*

YIMA
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West
Green Street, Urbana, IL 61801, USA

yima@uiuc.edu

JANA KOSECKA
Department of Computer Science, George Mason University, 4400 University Drive #MS4AS5, Fairfax,
VA 22030, USA

kosecka@cs.gmu.edu

SHANKAR SASTRY
Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley,
CA 94720,USA

sastry @eecs.berkeley.edu

Received May 21, 1999; Revised June 8, 2001; Accepted June 11, 2001

Abstract. Prevailing efforts to study the standard formulation of motion and structure recovery have recently
been focused on issues of sensitivity and robustness of existing techniques. While many cogent observations have
been made and verified experimentally, many statements do not hold in general settings and make a comparison of
existing techniques difficult. With an ultimate goal of clarifying these issues, we study the main aspects of motion
and structure recovery: the choice of objective function, optimization techniques and sensitivity and robustness
issues in the presence of noise.

We clearly reveal the relationship among different objective functions, such as “(normalized) epipolar constraints,”
“reprojection error” or “triangulation,” all of which can be unified in a new “optimal triangulation™ procedure.
Regardless of various choices of the objective function, the optimization problems all inherit the same unknown
parameter space, the so-called “essential manifold.” Based on recent developments of optimization techniques
on Riemannian manifolds, in particular on Stiefel or Grassmann manifolds, we propose a Riemannian Newton
algorithm to solve the motion and structure recovery problem, making use of the natural differential geometric
structure of the essential manifold.

We provide a clear account of sensitivity and robustness of the proposed linear and nonlinear optimiza-
tion techniques and study the analytical and practical equivalence of different objective functions. The ge-
ometric characterization of critical points and the simulation results clarify the difference between the ef-
fect of bas-relief ambiguity, rotation and translation confounding and other types of local minima. This leads
to consistent interpretations of simulation results over a large range of signal-to-noise ratio and variety of
configurations.
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220 Ma, KoSeckd and Sastry

Keywords: motion and structure recovery, optimal triangulation, essential manifold, Riemannian Newton’s

algorithm, Stiefel manifold

1. Introduction

The problem of recovering structure and motion from
a sequence of images has been one of the central prob-
lems in Computer Vision over the past decade and has
been studied extensively from various perspectives.
The proposed techniques have varied depending on
the type of features they used, the types of assump-
tions they made about the environment and projection
models and the type of algorithms. Based on image
measurements the techniques can be viewed either as
discrete: using point or line features, or differential: us-
ing measurements of optical flow. While the geometric
relationships governing the motion and structure re-
covery problem have been long understood, the robust
solutions are still sought. New studies of the sensitiv-
ity of different algorithms, search for intrinsic local
minima and new algorithms are still subject of great
interest. Algebraic manipulation of intrinsic geometric
relationships typically gives rise to different objective
functions, making the comparison of the performance
of different techniques difficult and often obstructing
issues intrinsic to the problem. In this paper, we pro-
vide new algorithms and insights by giving answers
to the following three questions, which we believe are
the main aspects of the motion and structure recov-
ery problem (in the simplified two-view, point-feature
scenario):

(1) What is the correct choice of the objective func-
tion and its associated statistical and geometric
meaning? What are the fundamental relationships
among different existing objective functions from
an estimation theoretic viewpoint?

(ii)) What is the core optimization problem which
is common to all objective functions associated
with motion and structure estimation? We pro-
pose a new intrinsic (i.e., independent of any par-
ticular parameterization of the search space) op-
timization scheme which goes along with this
problem.

(iii) Using extensive simulations, we show how the
choice of the objective functions and configura-
tions affects the sensitivity and robustness of the
estimates. We also reveal the effect of the bas-
relief ambiguity and other ambiguities on the sen-
sitivity and robustness of the proposed algorithms.

The nonlinear algorithms are initialized using
linear algorithms.

The seminal work of Longuet-Higgins (1981) on
the characterization of the so-called epipolar con-
straint, enabled the decoupling of the structure and
motion problems and led to the development of numer-
ous linear and nonlinear algorithms for motion estima-
tion (see Maybank, 1993; Faugeras, 1993; Kanatani,
1993; Weng et al., 1993a for overviews). The epipolar
constraint has been formulated both in a discrete and
a differential setting and our recent work (Ma et al.,
2000) has demonstrated the possibility of a parallel de-
velopment of linear algorithms for both cases: namely
using point feature correspondences and optical flow.
The original 8-point algorithm proposed by Longuet-
Higgins is easily generalizable to the uncalibrated cam-
era case, where the epipolar constraint is captured by
the so-called fundamental matrix. Detailed analysis of
linear and nonlinear techniques for estimation of fun-
damental matrix exploring the use of different objective
functions can be found in Luong and Faugeras (1996).

While the (analytic) geometrical aspects of the linear
approach have been understood, the proposed solutions
to the problem have been shown to be sensitive to noise
and have often failed in practical applications. These
experiences have motivated further studies which focus
on the use of a statistical analysis of existing techniques
and understanding of various assumptions which affect
the performance of existing algorithms. These stud-
ies have been done both in an analytical (Danilidis,
1997; Spetsakis, 1994) and experimental setting (Tian
et al., 1996). The appeal of linear algorithms which
use the epipolar constraint (in the discrete case (Weng,
et al., 1993a; Kanatani, 1993; Longuet-Higgins, 1981;
Maybank, 1993) and in the differential case (Jepson and
Heeger, 1993; Ma et al., 2000; Thomas and Simoncelli,
1995)) is the closed form solution to the problem which,
in the absence of noise, provides a true estimate of the
motion. However, a deeper analysis of linear techniques
reveals an inherent bias in the translation estimates
(Jepson and Heeger, 1993). Attempts made to com-
pensate for the bias slightly improve the performance
of the linear techniques (Kanatani, 1993).

The attempts to remove bias have led to different
choices of nonlinear objective functions. The perfor-
mance of numerical optimization techniques which



minimize nonlinear objective functions has been shown
superior to linear ones. The objective functions used are
either (normalized) versions of the epipolar constraint
or distances between measured and reconstructed im-
age points (the so-called reprojection error) (Weng
et al., 1993b; Luong and Faugeras, 1996; Zhang, 1998;
Horn, 1990). These techniques either require iterative
numerical optimization (Weng et al., 1993a; Soatto
and Brockett, 1998) or use Monte-Carlo simulations
(Jepson and Heeger, 1993) to sample the space of
the unknown parameters. Extensive experiments re-
veal problems with convergence when initialized far
away from the true solution (Tian et al., 1996). Since
nonlinear objective functions have been obtained from
quite different approaches, it is necessary to understand
the relationship among the existing objective functions.
Although a preliminary comparison has been made in
Zhang (1998), in this paper, we provide a more detailed
and rigorous account of this relationship and how it af-
fects the complexity of the optimization. In this paper,
we will show, by answering the question (i), that “min-
imizing epipolar constraint,” “minimizing (geometri-
cally or statistically') normalized epipolar constraint”
(Wengetal., 1993b; Luong and Faugeras, 1996; Zhang,
1998), “minimizing reprojection error” (Weng et al.,
1993b), and ““triangulation” (Hartley and Sturm, 1997)
can all be unified in a single geometric optimization
procedure, the so-called “optimal triangulation.” As a
by-product of this approach, a simpler triangulation
method than (Hartley and Sturm, 1997) is given along
with the proposed algorithm. A highlight of our method
is an optimization scheme which iterates between mo-
tion and structure estimates without introducing any
3D scale (or depth).

Different objective functions have been used in dif-
ferent optimization techniques (Horn, 1990; Weng
etal., 1993b; Taylor and Kriegman, 1995). Horn (1990)
first proposed an iterative procedure where the update
of the estimate takes into account the orthonormal con-
straint of the unknown rotation. This algorithm and
the algorithm proposed in Taylor and Kriegman (1995)
are examples of the few which explicitly consider the
differential geometric properties of the rotation group
SO(3). In most cases, the underlying search space has
been parameterized for computational convenience in-
stead of being loyal to its intrinsic geometric structure.
Consequently, in these algorithms, solving for optimal
updating direction typically involves using Lagrangian
multipliers to deal with the constraints on the search
space. “Walking” on such a space is done approxi-
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mately by an update-then-project procedure rather than
exploiting geometric properties of the entire space of
essential matrices as characterized in our recent paper
(Maetal., 2000) or in Soatto and Brockett (1998). As an
answer to the question (ii), we will show that optimiz-
ing existing objective functions can all be reduced to
optimization problems on the essential manifold. Due
to recent developments of optimization techniques on
Riemannian manifolds (especially on Lie groups and
homogeneous spaces) (Smith, 1993; Edelman et al.,
to appear), we are able to explicitly compute all the
necessary ingredients, such as gradient, Hessian and
geodesics, for carrying out intrinsic nonlinear search
schemes. In this paper, we will first give a review of
the nonlinear optimization problem associated with
the motion and structure recovery. Using a general-
ized Newton’s algorithm as a prototype example, we
will apply our methods to solve the optimal motion
and structure estimation problem by exploiting the in-
trinsic Riemannian structure of the essential manifold.
The rate of convergence of the algorithm is also stud-
ied in some detail. We believe the proposed geometric
algorithm will provide us with an analytic framework
for design of (Kalman) filters on the essential manifold
for dynamic motion estimation (see Soatto and Perona,
1996). The algorithm also provides new perspectives
for design of algorithms for multiple views.

In this paper, only the discrete case will be stud-
ied, since in the differential case the search space is
essentially Euclidean and good optimization schemes
already exist and have been well studied (see Soatto
and Brockett, 1998; Zhang and Tomasi, 1999). For the
differential case, recent studies (Soatto and Brockett,
1998) have clarified the source of some of the difficul-
ties (for example, rotation and translation confound-
ing) from the point of view of noise and explored the
source and presence of local extrema which are intrin-
sic to the structure from motion problem. The most
sensitive direction in which the rotation and translation
estimates are prone to be confound with each other is
demonstrated as a bas-relief ambiguity (for additional
details see Adiv, 1989; Weng et al., 1993b; Soatto and
Brockett, 1998). Here we apply the same line of thought
to the discrete case. In addition to the bas-relief effect
which is evident only when the field of view and the
depth variation of the scene are small, we will also
characterize other intrinsic extrema which occur at a
high noise level even for a general configuration, where
a base line, field of view and depth variation are all
large. As an answer to the question (iii), we will show



222 Ma, Koseckd and Sastry

both analytically and experimentally that some ambi-
guities are introduced at a high noise level by bifur-
cations of local minima of the objective function and
usually result in a sudden 90° flip in the translation es-
timate. Understanding such ambiguities is crucial for
properly evaluating the performance (especially the ro-
bustness) of the algorithms when applied to general
configurations. Based on analytical and experimental
results, we will give a clear profile of the performance
of different algorithms over a large range of signal-
to-noise ratio, or under various motion and structure
configurations.

Paper outline: Section 2 focuses on motion recov-
ery from epipolar constraint and introduces Newton’s
algorithm for optimizing various objective functions
associated with the epipolar constraint. Section 3 in-
troduces a new optimal triangulation method, which
is a single optimization procedure designed for esti-
mating optimal motion and structure together. The ob-
jective function and optimization procedure proposed
here unifies existing objective functions previously pro-
posed in the literature and gives clear answers to both
questions (i) and (ii). Section 4 gives a geometric char-
acterization of extrema of any function on the essen-
tial manifold and demonstrates bifurcations of some
local minima if the algorithm is initialized using the
linear techniques. Sensitivity study and experimental
comparison between different objective functions are
given in Section 5. Sections 4 and 5 give a detailed
account of the question (iii). Although this paper in-
troduces the concept of optimization on Riemannian
manifolds to the structure and motion recovery prob-
lem, background in Riemannian geometry is not truly
required. Some familiarity with Edelman et al.’s work
on optimization on Stiefel manifolds (Edelman et al.,
to appear) and some background in Riemannian geom-
etry (Spivak, 1979; Kobayashi and Nomizu, 1996) may
improve the understanding of the material. For inter-
ested readers, Appendix A and B provide more detailed
discussions on these subjects.

2. Motion from Epipolar Constraint

The purpose of this section is to introduce the opti-
mization problem of recovery of camera motion and
3D structure from image correspondences. We first em-
phasize the importance of proper characterization of the
underlying parameter space for this problem and in a
simplified setting outline a new Riemannian optimiza-
tion scheme for solving the nonlinear optimization.

Newton’s and conjugate gradient methods are clas-
sical nonlinear optimization techniques to minimize
a function f(x), where x belongs to an open sub-
set of Euclidean space R". Recent developments in
optimization algorithms on Riemannian manifolds
have provided geometric insights for generalizing
Newton’s and conjugate gradient methods to certain
classes of Riemannian manifolds. Smith (1993) gave
a detailed treatment of a theory of optimization on
general Riemannian manifolds; Edelman et al. (to ap-
pear) further studied the case of Stiefel and Grass-
mann manifolds,> and presented a unified geomet-
ric framework for applying Newton and conjugate
gradient algorithms on these manifolds. These new
mathematical schemes solve the more general op-
timization problem of minimizing a function f(x),
where x belongs to some Riemannian manifold (M, g),
where g : TM x TM — C*°(M) is the Riemannian met-
ric on M (and TM denotes the tangent space of M).
An intuitive comparison between the Euclidean and
Riemannian nonlinear optimization schemes is illus-
trated in Fig. 1.

Conventional approaches for solving such an op-
timization problem are usually application-dependent
(or parameterization-dependent). The manifold M is
first embedded as a submanifold into a higher dimen-
sional Euclidean space R" by choosing certain (global
or local) parameterization of M. Lagrangian multipli-
ers are often used to incorporate additional constraints
that these parameters should satisfy. In order for x to
always stay on the manifold, after each update it needs
to be projected back onto the manifold M. However,

Riemannian  Xi+1= exp(Xj Ai)

Euclidean  xi1=Xj + Ai

Figure 1. Comparison between the Euclidean and Riemannian non-
linear optimization schemes. At each step, an (optimal) updating
vector A; € Ty; M is computed using the Riemannian metric at x;.
Then the state variable is updated by following the geodesic from
x; in the direction A; by a distance of v/g(A;, A;) (the Riemannian
norm of A;). This geodesic is denoted in Riemannian geometry by
the exponential map exp(x;, A;).



the new analysis of Edelman et al. (to appear) shows
that, for “nice” manifolds, for example Lie groups, or
homogeneous spaces such as Stiefel and Grassmann
manifolds, one can make use of the canonical
Riemannian structure of these manifolds and system-
atically develop a Riemannian version of the Newton’s
algorithm or conjugate gradient methods for optimiz-
ing a function defined on them. Since the parameteriza-
tion and metrics are canonical and the state is updated
using geodesics (therefore always staying on the mani-
fold), the performance of these algorithms is no longer
parameterization dependent, and in addition they typ-
ically have polynomial complexity and super-linear
(quadratic) rate of convergence (Smith, 1993). An in-
tuitive comparison between the conventional update-
then-project approach and the Riemannian method is
demonstrated in Fig. 2 (where M is illustrated as the
standard 2D sphere S* = {x e R | || x||> =1}).

As we will soon see, the underlying Riemannian
manifold for this problem, the so-called essential man-
ifold, is a product of Stiefel manifolds. Appendix A
demonstrates how to extend such optimization schemes
to a product of Riemannian manifolds in general.

2.1.  Riemannian Structure of the Essential Manifold

The key towards characterization of the Riemannian
structure of the underlying parameter space of struc-
ture and motion estimation problem is the concept of
epipolar geometry, in particular the so-called essen-
tial manifold (for details see Ma et al., 2000). Cam-
era motion is modeled as rigid body motion in R3.
The displacement of the camera belongs to the special

Riemannian

Update-Project

s
X3+l

Figure 2. Comparison between the conventional update-then-
project approach and the Riemannian scheme. For the conventional
method, the state x; is first updated to x] 1 according to the updating
vector A; and then x;+1 is projected back to the manifold at x; ;1. For
the Riemannian scheme, the new state x; is obtained by following
the geodesic, i.e., xj+1 = exp(xi, A;).
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Euclidean group SE(3):
SEB)={(R,T):TeR>* ReSO3)} (1)

where SO(3) e R**3 is the space of rotation matrices
(orthogonal matrices with determinant +1). An ele-
ment g = (R, T) in this group is used to represent
the coordinate transformation of a point in R3. De-
note the coordinates of the point before and after the
transformation as X, =[X1, Y1, Z;]17 € R? and X, =
(X5, Ys, Zo]" e R3 respectively. Then, X; and X, are
associated by:

X, =RX; +T. 2
The image coordinates of X; and X, are given by
xi = [4, 2, T eR and x, = [, 2, 1] €R?

respectively.® The rigid body motion described in terms
of image coordinates then becomes:

)\,2X2 = R)lel +T. (3)

where A and X, are the unknown scales (depths) of
points x; and x;.

The main purpose of this paper is to revisit the
following classic problem of structure and motion
recovery:

Motion and Structure Recovery Problem: For
a given set of corresponding image points
{(x’i, xé)}fvz |» recover the camera motion (R, T') and
the 3D coordinates (3D structure) of the points that
these image points correspond to.

It is well known in Computer Vision literature that two
corresponding image points x; and X, satisfy the so-
called epipolar constraint (Longuet-Higgins, 1981):

x) TRx, = 0. 4

This intrinsic constraint is independent of depth infor-
mation and hence decouples the problem of motion
recovery from 3D structure.* The following section is
devoted to recovery of motion (R, T') using directly us-
ing this constraint and its variations. In Section 3, we
will see how this constraint has to be modified when
we consider recovering (optimal) motion and structure
simultaneously.

The matrix 7R in the epipolar constraint is the so-
called essential matrix, and the essential manifold is
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defined to be the space of all such matrices, denoted
by:

E={TR|R € SO?3), T € s0(3)}.

SO(3) is a Lie group of 3 x 3 rotation matrices, and
so(3) is the Lie algebra of SO(3), i.e., the tangent plane
of SO(3) at the identity. so(3) then consists of all 3 x 3
skew-symmetric matrices and Te s0(3). As we will
show later in this paper, for the problem of recovering
camera motion (R, T') from the corresponding image
points x; and X;, the associated objective functions are
usually functions of the epipolar constraint. Hence they
are of the form f(E) € Rwith E € £. Furthermore such
functions in general are homogeneous in E. Thus the
problem of motion recovery is formulated as optimiza-
tion of functions defined on the so-called normalized
essential manifold:

~ ~ 1 ~n
& = {TR |ReSOM3), T e€s0(3), 3 tr(T'T) = 1}.

Note that %tr(f"Tf) =TTT. The exact forms of
f(E) will be derived from statistical and geometric
considerations in Sections 2.3 and 3 of this paper.

In order to study the optimization problem on the
normalized essential manifold it is crucial to under-
stand its Riemannian structure. We start with the
Riemannian structure on the tangent bundle of the
Lie group SO(3), i.e., T (SO(3)). The tangent space of
SO(3) at the identity e is simply its Lie algebra so(3):

T,(SO(3)) = SO(3).

Since SO(3) is a compact Lie group, it has an intrin-
sic bi-invariant metric (Boothby, 1986) (such metric
is unique up to a constant scale). In matrix form, this
metric is given explicitly by:

~ A 1 A a A
8o(T1,T>) = 3 tr(Tl'Ty), Ti,T, € SO(3).

where 1r(A) refers to the trace of the matrix A. Notice
that this metric is induced from the Euclidean metric
on SO(3) as a Stiefel submanifold embedded in R3*3.
The tangent space at any other point R € SO(3) is given
by the push-forward map R,:

Tr(SO(3)) = R.(s0(3)) = {TR| T € s0(3)}.

Thus the tangent bundle of SO(3)is:

T(S0B3) = | J Tr(S0(3))

ReSO(3)

The tangent bundle of a Lie group is trivial (Spivak,
1979) that is, T (SO(3)) is equivalent to the product
SO(3) x so(3). T(SO(3)) can then be expressed as:

{(R,TR)|ReSOQ), T €s0(3)}
SO0(3) x 50(3).

T(SO(3))

12

The tangent space of SO(3) is R® and SO(3) itself is
parameterized by R, Hence we will use the same no-
tation for SO(3) and its tangent space. Consequently
the metric gy of SO(3) induces a canonical metric on
the tangent bundle 7 (SO(3)):

g(X,Y) = go(X1, X2)
+ go(Y1, Y2), X, Y €50(3) x s0(3).

Note that the metric defined on the fiber SO(3) of
T(SO(3)) is the same as the Euclidean metric if
we identify so(3) with R?. Such an induced met-
ric on T(SO(3)) is left-invariant under the action of
SO(3). Then the metric g on the whole tangent bun-
dle T (SO(3)) induces a canonical metric g on the unit
tangent bundle of T (SO(3)):

T (SO(3)) = {(R, TR)|ReSOQ3), T
| O }
€ 50(3), Etr(T T)=1;.

It is direct to check that with the identification of
SO(3) with R3, the unit tangent bundle is simply
the product SO(3) x S? where S? is the standard 2-
sphere embedded in R?. According to Edelman et al.
(to appear), SO(3) and S? both are Stiefel manifolds
V(n, k) of thetypen =k =3 and n =3, k =1, respec-
tively. As Stiefel manifolds, they both possess canon-
ical metrics by viewing them as quotients between
orthogonal groups. Here SO(3)= 0(3)/0(0) and
S? = 0(3)/0(2). Fortunately, for Stiefel manifolds of
the special type k = n or k = 1, the canonical metrics are
the same as the Euclidean metrics induced as subman-
ifold embedded in R”*¥. From the above discussion,
we have

Theorem 1. The unit tangent bundle Ti(SO(3)) is
equivalent to SO(3) x S*. Its Riemannian metric g



induced from the bi-invariant metric on SO(Q3) is
the same as that induced from the Euclidean metric
with T1(SO3)) naturally embedded in R3*4, Further,
(T1(SO(3)), g) is the product Riemannian manifold
of (SO(3), g1) and (S?, g») with g and g» canonical
metrics for SO(3) and S* as Stiefel manifolds.

It is well known that there are two pairs of rotation
and translation, which correspond to the same essen-
tial matrix. Hence the unit tangent bundle 7 (SO(3))
is not exactly the normalized essential manifold &;. It
is a double covering of the normalized essential space
&1, ie., £ =T1(SO(3))/Z? (for details see Ma et al.,
2000). The natural covering map from 7;(SO(3)) to
51 is:

hZTl(SO(?))) d 51
(R, TR) € T\(SO(3)) — TR € &.

The inverse of this map is given by:
h~"(TR) = {(R, TR), (exp(~Tm)R, TR)}.

This double covering # is equivalent to identifying a
left-invariant vector field on SO(3) with the one ob-
tained by flowing it along the corresponding geodesic
by distance m, the so-called time-7r map of the geodesic
flow on SO(3).>

If we take for £, the Riemannian structure induced
from the covering map h, the original optimization
problem of optimizing f(E) on & is converted to opti-
mizing f(R, T)on T (SO0(3)).6 Generalizing Edelman
et al.’s methods to the product Riemannian manifolds,
we may obtain intrinsic Riemannian Newton’s or
conjugate gradient algorithms for solving such an
optimization problem. Appendix B summarizes the
Riemannian Newton’s algorithm for minimizing a gen-
eral function defined on the essential manifold. Due
to Theorem 1, we can simply choose the induced Eu-
clidean metric on 7 (SO(3)) and explicitly implement
these intrinsic algorithms in terms of the matrix repre-
sentation of 77 (SO(3)). Since this Euclidean metric is
the same as the intrinsic one, the apparently extrinsic
representation preserves all intrinsic geometric proper-
ties of the given optimization problem. In this sense,
the algorithms we are about to develop for the motion
recovery are different from other existing algorithms
which make use of particular parameterizations of the
underlying search manifold 77 (SO(3)).
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2.2.  Minimizing Epipolar Constraint

In this section, we demonstrate in a simplified case how
to derive the Riemannian Newton’s algorithm for solv-
ing the the motion recovery problem from a given set
of image correspondences xj, x5 € R, i =1,..., N.
‘We here consider a naive objective function associated
directly with the epipolar constraint:

N

F(R.T) =Y (x/TRx)”,
i=1

xi,xb eR (R, T)eSO3) x S*. (5)

We will give explicit formulae for calculating all the
ingredients needed for the Newton’s algorithm: geode-
sics, gradient G, hessian Hess F' and the optimal updat-
ing vector A = —Hess ™' G. It is well known that such
an explicit formula for the Hessian is also important for
sensitivity analysis of the algorithm (Danilidis, 1997).
Furthermore, using these formulae, we will be able to
show that, under certain conditions, the Hessian is guar-
anteed non-degenerate, hence the Newton’s algorithm
is guaranteed to have a quadratic rate of convergence.

One must notice that the objective function F (R, T)
given in (5), although simple, is not yet well justified.
That is, it may not be related to a meaningful geometric
or statistical error measure. In the next Section 2.3, we
will then discuss how to modify the function F (R, T')
to ones which do take into account proper geomet-
ric and statistical error measures. However, this by no
means diminishes the significance of the study of the
simplified objective function F (R, T). As we will see,
the epipolar term “(xi’TRx)?” is the basic module
component of all the objective functions to be intro-
duced. Hence the computation of gradient and Hessian
of those functions essentially can be reduced to this
basic case.’

Here we present the computation of the gradient
and Hessian by using explicit formulae of geodesics.
The general formulae are given in the Appendix B. On
SO(3), the formula for the geodesic at R in the direction
A1 € TR(SO(3)) = R (SO(3)) is:

R(t) = exp(R, A1)
= R exp ot (6)
= R(I + & sint + &>(1 — cost))
where 1 € R, @ = A R” es0(3). The last equation is

called the Rodrigues’ formula (Murray et al., 1994).
S? (as a Stiefel manifold) also has a very simple
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expression for geodesics. At the point 7 along the di-
rection A, € Tr(S?) the geodesic is given by:

T(t) =exp(T, Axt) =T cosot + U sinat  (7)

where o = ||A,|| and U = A,/o, then TTU =0 since
TTA,=0.

Using the formulae (6) and (7) for geodesics , we can
calculate the first and second derivatives of F(R, T) in
the direction A = (A;, As) € Tr(SO3)) x T (S?):

dF(R(t), T (1))

dF(A) = o

t=0

N

Z TTRX, (XY TA X, + x5TAyRx),

(®)

d*F(R(1), T (1))

Hess F(A, A) = 12

t=0

[T (TA, + AR)x ]

|
.MZ

i=1

+ x5/ TRx, [x)] (—~TRAT A,
—TRAY AL + 2A000)% ] (9)

From the first order derivative, the gradient G =
(G, Gy) € Tr(SO(3)) x Ty (S?) of F(R, T) is:

N
= Z x)/ TRx! (TTXllelT
i=1
—%5Rx| — Tx{"R"X.T) (10)

Rx.x)TTR,

It is direct to check that G;RT €so(3) and TG, =0,
so that the G given by the above expression is a vector
in TR (SO(3)) x Tr(S?).

For any pair of vectors X, Y € Tr(SO(3)) x Tr(S?),
we may polarize® Hess F(A, A) to get the expression
for Hess F(X, Y):

Hess F(X,Y) (11)
1
= Z[HessF(X+ Y, X+7Y)

N
= Z T (TX) + XoR)Xi x5 (TY) + YaR)X,

i=1

T 1.
+x'TRx} |:x’2T <—§TR(XTY1 + Y/ X))

— TRXIY, + (Y2X, + X2Y1)>x§}. (12)

—Hess F(X —-Y, X —Y)]

To make sure this expression is correct, if we let
X=Y=A, then we get the same expression for
HessF (A, A) as that obtained directly from the sec-
ond order derivative. The following theorem shows that
this Hessian is non-degenerate in a neighborhood of
the optimal solution, therefore the Newton’s algorithm
will have a locally quadratic rate of convergence by
Theorem 3.4 of Smith (1993).

Theorem?2. Considerthe objective function F (R, T)

in the Eq. (5). Its Hessian is non-degenerate in a neigh-

borhood of the optimal solution if there is a unique (up

to a scale) solution to the system of linear equations:
XyEx; =0, EeR™, i=1,...,N.

If so, the Riemannian Newton’s algorithm has locally

quadratic rate of convergence.

Proof: It suffices to prove for any A0,
HessF (A, A) > 0. According to the epipolar con-
straint, at the optimal solution, we have X, TRX1 0.
The Hessian is then simplified to:

N

HessF(A,A) =) [x)

i=1

(Ta+ AR
Thus Hess F (A, A) = 0 if and only if:

X' (TA + AR)X, =0, i=1,...,N.
Since we also have:

xXJTRx, =0, i=1,...,N.

Then both f”Al + AZR and TR are solutions for the
same system of linear equations which by assumption
has a unique solution, hence Hess F(A, A) = 0 if and

only if:

fAl + AQR = Af“R, for some A € R

@f{:)—l—&z:)»f for CL):A]RT

o To=AT and Ay =0, sinceT A, =0
< w=0, andA, =0, sinceT #0
& A=0.
O
Comment 1 (Non-degeneracy of Hessian). In the

previous theorem, regarding the 3 x 3 matrix E in the



equations XéTExi = 0 as a vector in R®, one needs
at least eight equations to uniquely solve E up to a
scale. This implies that we need at least eight image
correspondences {(x,, x5)}"_|, N > 8 to guarantee the
Hessian non-degenerate whence the iterative search
algorithm locally converges in quadratic rate. If we
study this problem more carefully using transversality
theory, one may show that five image correspondences
in general position is the minimal data to guarantee the
Hessian non-degenerate (Maybank, 1993). However,
the five point technique usually leads to many (up to
twenty) ambiguous solutions, as pointed out by Horn
(1990). Moreover, numerical errors usually make the
algorithm not work exactly on the essential manifold
and the extra solutions for the equations X, EX1 =0
may cause the algorithm to converge very slowly in
these directions. It is not just a coincidence that the
conditions for the Hessian to be non-degenerate are
exactly the same as that for the eight-point linear al-
gorithm (see Maybank, 1993; Ma et al., 2000) to have
a unique solution. A heuristic explanation is that the
objective function here is a quadratic form of the epipo-
lar constraint on which the linear algorithm is directly
based.

Returning to the Newton’s algorithm, assume that
the Hessian is always non-degenerate and hence invert-
ible. Then, at each point on the essential manifold, we
can solve for the optimal updating vector A such that
A =Hess™'G, or in other words we can find a unique
A such that:

Hess F(Y, A) = g(—G, Y)

= —dF(Y), forall vector fields Y.

Pick five linearly independent vectors E*, j=
., 5 forming a basis of Tx(SO(3)) x Tr(S?). One
then obtains five linear equations:

Hess F(E*, A) = —dF(E*), k=1,...5 (13)

Since Hessian is invertible, these five linear equations
uniquely determine A. In particular one can choose
the simplest basis such that for E k = [é¢R, 0] where e
for k=1, 2, 3 is the standard basis for R3. The vectors
e4, es can be obtained using Gram-Schimdt process.
Define a 5 x 5 matrix A € R>* and a 5 dimensional
vector b € R to be:

=—dF(E"),
k,l=1,...,5.

A = Hess F(EX, E'), by
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Then solve for the vector a = [ay, a2, az, as, as]” €
R5:

a=A"b.

Let u=[a;, a, a3]T €R? and v =ases + asas € R3.
Then for the optimal updating vector A =(Aq, Ay),
we have A; =R and A, =v. We now summarize the
Riemannian Newton’s algorithm for minimizing the
epipolar constraint which can be directly implemented.

Riemannian Newton’s Algorithm for Motion
Recovery from the Objective Function

N
F(R,T) = Z (ATTRx),
xi,xb eR?, (R, T) € SO(3) x S*.

e Compute the Optimal Updating Vector: At the
point (R, T) € SO(3) x S?, compute the optimal up-
dating vector A = —Hess™' G:

1. Compute vectors e4,es from T using
Gram-Schimdt process and obtain five basis
tangent  vectors EF e TR(SO(3)) x Tr(S?),
k=1,...,5.

2. Compute the 5x5 matrix (A)y =HessF
(EX,Eh,1<k,l < 5 using the Hessian for-
mula (12).

3. Compute the 5 dimensional vector by = —dF
(E*), 1 <k <5 using the formula for the first
derivative dF (8).

4. Compute the vectora=[ay, as, as, as, as]’ € R?
such thata= A~'b.

5. Define u=/ay,a, a3]” €eR® and v=aes +
ases € R®. Then the optimal updating vector A
is given by:

A = —Hess™' G = (iR, v).

e Update the Search Spate: Move (R, T) in the
direction A along the geodesic to (exp(R, Ait), exp
(T, Ast)), using the formulae (6) and (7) for
geodesics on SO(3) and S? respectively:

R(t) = exp(R, Ait) = R exp ot
= R(I + & sint + &*(1 — cos 1))
T(t) =exp(T, Axt) =T cosot + U sinot
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t=\/3tr(ATA), 0=ART /1,0

= /2 1r(ASA), U = A, /0.
e Return: 1o step 1 if ||b|| > € for some pre-deter-
mined error tolerance € > 0.

where

2.3.  Minimizing Normalized Epipolar Constraints

The epipolar constraint (5) gives the only necessary
(depth independent) condition that image pairs have to
satisfy. Thus the motion estimates obtained from min-
imizing the objective function (5) are not necessarily
statistically or geometrically optimal for the commonly
used noise model of image correspondences. We note
here that this would continue to be a problem even if
the terms associated with each image correspondence
were given positive weights. It has been observed pre-
viously (Weng et al., 1993b) that in order to get less
biased estimates the epipolar constraints need to prop-
erly normalized. In this section, we will give a brief
account of these normalized versions of epipolar con-
straints. In the next section we demostrate that these
normalizations can be unified by a single procedure
for getting optimal estimates of motion and structure.
In the perspective projection case,” coordinates
of image points x; and x, are of the form
x=[x, y, 117 e R3. Suppose that the actual measured
image coordinates of N pairs of image points are:

X =% +a, X =%+, i=1,....,N
(14)

where f(’z and i’l are ideal (noise free) image co-
ordinates, qi = [o), @, 017 e R* and B' =[], B, 017
eR?and &}, o), B, B} are independent Gaussian ran-
dom variables of identical distribution N (0, 2). Sub-
stituting x} and X/, into the epipolar constraint (5), we
obtain:

X,/ TRx, = BTTRX, + X TRa' + B'TTRa'. (15)

Since the image coordinates x’i and xé are usually mag-
nitude larger than o' and B', one can omit the last
term in the equation above. Then X’ 7 Rx are indepen-
dent random variables of approximately Gaussian dis-
tribution N (0, o2([|é3 TR, ||> + |Ix)/ TREX [|%)) where
e3=10,0, 117 e R?. If we assume the a priori distribu-
tion of the motion (R, T') is uniform, the maximum a
posteriori (MAP) estimate of (R, T') is then the global

minimum of the objective function:

N iTH poi \2
F(R, T):Z (x5 TRxY)

= |eTRx |+ [ TRET [
xi,xb € R} (R, T)eSO(3) xS*.  (16)

Here we use F; to denote the statistically normalized
objective function associated with the epipolar con-
straint. This objective function is also referred to in
the literature as gradient criteria (Luong and Faugeras,
1996) or epipolar improvement (Weng et al., 1993a).
Therefore, we have:

(R, T)pmap ~ arg min Fy(R, T) 17)

Note that in the noise free case, F; achieves zeros just
like the unnormalized objective function F of Eq. (5).
Asymptotically, MAP estimates approach the unbiased
minimum mean square estimates (MMSE). So, in gen-
eral, the MAP estimator gives less biased estimates than
the unnormalized objective function F. The reason for
~ is that we have dropped one term in the expression
(15).

Note that Fj is still a function defined on the manifold
SO(3) x S%. Moreover the numerator of each term of
F; is the same as that in F', and the denominator of each
term in Fj is simply:

|esT R | + x5 7R |
= (ITRX)) + (S TRx)?
+(xTTRe)) + (X TRez)”  (18)

where e;=[1,0,0]" eR? and e, =]0, 1,0]" e R3.
That is, the components of each term of the normal-
ized objective function F; are essentially of the same
form as that in the unnormalized one F. Therefore, we
can exclusively use the formulae for the first and sec-
ond order derivatives dF(A) and HessF (A, A) of the
unnormalized objective function F to express those for
the normalized objective function F; by simply replac-
ing x! or x, with e; or e, at proper places. This is one
reason why the epipolar constraint is so important and
studied first. Since for each term of F; we now need
to evaluate the derivatives of five similar components
(e{fjexﬁ)z, (el TRx)?, (xi'TRe)?, (xi' TRe;)> and
(XETTRXIi)Z, as compared to one in the unnormalized
case, the Newton’s algorithm for the normalized objec-
tive function is in general five times slower than that



for the unnormalized objective function F'. The normal-
ized objective function gives statistically much better
estimates, as we will demonstrate in the experimental
section.

Another commonly used criterion to recover motion
is to minimize the geometric distances between image
points and corresponding epipolar lines. This objective
function is given as:

v (RN (T Rx)
=R XM

xi, x, eR? (R, T)€SO(3) x S*.  (19)

F,(R,T) =

Here we use F, to denote this geometrically normal-
ized objective function. For a more detailed derivation
and geometric meaning of this objective function see
Luong and Faugerai (1996) and Zhang (1998). Notice
that, similar to F and Fj, Fg is also a function defined
on the essential manifold and can be minimized us-
ing the given Newton’s algorithm. As we have demon-
strated in Ma et al. (2000), in the differential case, the
normalization has no effect when the translational mo-
tion is in the image plane, i.e., the unnormalized and
normalized objective functions are in fact equivalent.
For the discrete case, we have a similar claim. Sup-
pose the camera motion is given by (R, T) € SE(3)
with T € S? and R = ¢* for some w € S? and
0 € R_Ifw = [0,0,1]" and T = [Ty, T»,0]",
i.e., the translation direction is in the image plane,
then, since R and é; now commute, the expression
ésTRX: || = [|xiT TR | = || T||> = 1. Hence, in this
case, all the three objective functions F, F; and F, are
very similar to each other around the actual (R, T).!°
Practically, when the translation is in the image plane
and rotation is small (i.e., R ~ I), the normalization
will have little effect on the motion estimates, as will
be verified by the simulation.'!

The relationship between the two objective functions
F; and F,, each justified by its own reason will be re-
vealed in the next section, where we study the problem
of recovering motion and structure simultaneously as a
following constrained optimization problem.

3. Motion and Structure from
Optimal Triangulation

Note that, in the presence of noise, for the motion
(R, T) recovered from minimizing the unnormalized
ornormalized objective functions F', F; or F,, the value
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of the objective functions is not necessarily zero. That
is, in general:

xXJTRx) #£0, i=1,...,N. (20)

Consequently, if one directly uses x| and x} to recover
the 3D location of the point to which the two image
points X} and x} correspond, the two rays correspond-
ing to x| and X, may not be coplanar, hence may not
intersect at one 3D point. Also, when we derived the
normalized epipolar constraint Fy, we ignored the sec-
ond order terms. Therefore, rigorously speaking, it does
not give the exact MAP estimates. Here we want to
clarify the effect of such an approximation on the es-
timates both analytically and experimentally. Further-
more, since F, also gives another reasonable approxi-
mation of the MAP estimates, can we relate both F; and
Fg to the MAP estimates in a unified way? This will be
studied in this section. Experimental comparison will
be given in the next section.

Under the assumption of Gaussian noise model (14),
in order to obtain the optimal (MAP) estimates of cam-
era motion and a consistent 3D structure, in principle
we need to solve the following optimization problem:

Optimal Triangulation Problem. Seek camera
motion (R, T) and points i‘l eR3 and i’z eR3 on
the image plane such that they minimize the distance
from X’i and Xé:

N
Fi(R T30 %) = 3O = x [+ 5 - xal
i=1

(2D
subject to the conditions:

XTRX, =0, %es=1, %e3=1,

i=1,...,N. (22)

In the problem formulation above, we use F; to denote
the objective function for triangulation. This objective
function is referred to in the literature as the reprojec-
tion error. Unlike Hartley and Sturm (1997), we do not
assume a known essential matrix 7R. Instead we si-
multaneously seek X}, X, and (R,T) which minimize
the objective function F; given by (21). The objective
function F; then implicitly depends on the variables
(R, T) through the constraints (22). The optimal solu-
tion to this problem is exactly equivalent to the optimal
MAP estimates of both motion and structure. Using
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Lagrangian multipliers, we can convert the minimiza-
tion problem to an unconstrained one:

min Z||X1—X1|| + % — x| + AR TR
RT‘I "21 1

+y (& es— 1)+ 7' (% es — 1).  (23)

The necessary conditions for minima of this objective
function are:

2% —x) + A RTTTR, +yles =0 (24)
2(xh — x5) +MNTRX +7'e3 =0 (25)

Under the necessary conditions, we obtain:

e = xi — 1AeTesRTTTR,
X, = x}, — 1M1 TRR] (26)
KITRX, = 0

where A’ is given by:

2(xi/ TR, + X TRx))
XTRTTTeTe;TRR, + X TReT&;RTTTR,

A=

27
or
2xi' TRX,
% TRTTTe! ;T RX

_ 2% TRX]
© KTTRETSRTTTR,
(28)

Substituting (26) and (27) into F;, we obtain:

. N (xTRE, + % TRx))’
F(R,T,%, %) = Z 17 % — XA)T
Mesm] P+ I 7Red

(29)

and using (26) and (28) instead, we get:

(ingRxg)z

HiéTfRéaT I
(30)

N iT
F,(R, T i’i, Z X2 TRX
& Jestrs, u

Geometrically, both expressions of F; are the distances
from the image points x; and X} to the epipolar lines
specified by f(’l f(’z and (R, T'). Equations (29) and (30)

give explicit formulae of the residue of ||f(i — X’i 1> +
|X5 — x5]1% as x|, X} being triangulated by X/, X5. Note
that the terms in F;, are normalized crossed epipolar
constraints between x} and X} or between X and x5.
These expressions of F; can be further used to solve for
(R, T) which minimizes F,. This leads to the follow-
ing iterative scheme for obtaining optimal estimates of
both motion and structure, without explicitly introduc-
ing scale factors (or depths) of the 3D points.

Optimal Triangulation Algorithm Outline: The
procedure for minimizing F; can be outlined as follows:

1. Initialization: [Initialize X\ (R, T),X5(R, T) as
X5, X|.

2. Motion:  Update (R,T) by minimizing
F*(R,T)=F,(R,T,X (R, T),X,(R, T)) given
by (29) or (30) as a function defined on the
manifold SO(3) x S?.

3. Structure (Triangulation): Solve fori"] (R, T)
and X5 (R, T) which minimize the objective func-
tion F; (21) with respect to (R, T) computed in
the previous step.

4. Back to step 2 until updates are small enough.

Atstep 2, F(R, T):

‘T x1 + x’2TTRx )
|egTRxl || + ||%T T REY ||
(xlzTTRx ) (X’ZTTRXI)2
|es7 R | ||i2TfRé§ I°

FX(R, T

i

i=1

(€29

is a sum of normalized crossed epipolar constraints.
It is a function defined on the manifold SO(3) x S2,
hence it can be minimized using the Riemannian
Newton’s algorithm, which is essentially the same as
minimizing the normalized epipolar constraint (16)
studied in the preceding section. The algorithm ends
when (R, T) is already a minimum of F;*. It can
be shown that if (R, T) is a critical point of F/,
then (R, T, i’l (R, T), ig(R, T)) is necessarily a crit-
ical point of the original objective function F; given by
210).

Atstep 3, for a fixed (R, T), X, (R, T) and X5(R, T)
can be computed by minimizing the distance ||5('1 —
X/ ||2 + ||x2 - x2||2 for each pair of image points. Let
t2 GIR2 be the normal vector (of unit length) to the
(epipolar) plane spanned by (%5, 7). Given such a 1},



X! and X}, are determined by:

SyritiTelxt 4 7iTfiey

T8iT i
est; te3

X (1) =

% (1) =

)

5 i giTaT i | §T R
el e X, + 1, 1e3

S : (32)
eIt 1 es

where #, = R”t]. Then the distance can be explicitly
expressed as:

ci i 2 oG 2 _ i||2 téTAité
“Xl Xl” + ”Xz Xz“ = Hxl “ + 0TBiL]
, HTCi
+ %)+ i G
where
Al =1- (é3X§XéTé§ + ﬁlzé:; + é3§2),
B' = élé;
oy (é i JiTAT | &in A o G4
= 3X(X| e3 +Xe3 + €3X1),
D' = élé;,

The problem of finding X{(R, T) and X5(R, T) be-
comes one of finding #5 which minimizes the function
of a sum of two singular Rayleigh quotients:

e
t'RC'Rt;
tTRD'RTH

iT Ai4i
min  V(d)= ?TA;% (35)
A T=0,"r)=1 1'B't,
This is an optimization problem on a unit circle S! in the
plane orthogonal to the vector T' (therefore, geometri-
cally, motion and structure recovery from N pairs of im-
age correspondences is an optimization problem on the
space SO(3) x S* x TV where TV is an N-torus, i.e., an
N-fold product of S"). If ny, n, € R3 are vectors such
that T, ny, n, form an orthonormal basis of R?, then
té = cos(f)n| + sin(f)n, with 8 € R. We only need to
find * which minimizes the function V(tﬁ'(@)). From
the geometric interpretation of the optimal solution, we
also know that the global minimum 6* should lie be-
tween two values: 6; and 6, such that té (01) and té (62)
correspond to normal vectors of the two planes spanned
by (x5, T) and (RX|, T) respectively. If x|, x} are al-
ready triangulated, these two planes coincide. There-
fore, in our approach the local minima is no longer an
issue for triangulation, as oppose to the method pro-
posed in Hartley and Sturm (1997). The problem now
becomes a simple bounded minimization problem for
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a scalar function and can be efficiently solved using
standard optimization routines such as “fmin” in Mat-
lab or the Newton’s algorithm. If one properly param-
eterizes té(@), té (6*) can also be obtained by solving
a 6-degree polynomial equation, as shown in Hartley
and Sturm (1997) (and an approximate version results
in solving a 4-degree polynomial equation Weng et
al., 1993a). However, the method given in Hartley and
Sturm (1997) involves coordinate transformation for
each image pair and the given parameterization is by
no means canonical. For example, if one chooses in-
stead the commonly used parameterization of a circle
St:
22 1 -2

cos(20) =

WO =15 [422

A eR,
(36)

then it is straightforward to show from the Rayleigh
quotient sum (35) that the necessary condition for min-
ima of V(#}) is equivalent to a 6-degree polynomial
equation in A.'? The triangulated pairs (X, X) and the
camera motion (R, T') obtained from the minimization
automatically give a consistent (optimal) 3D structure
reconstruction from two views.

Comment 2 (Stability of the Optimal Triangulation
Algorithm). The (local) stability of the optimal trian-
gulation algorithm follows directly from the fact that,
in either step 2 or 3 of each iteration, the value of the
crossed epipolar objective function F,(R, T, i’z i’i) in
(29) always decreases. Let us denote the estimates af-
ter kth iteration as (R(k), T (k), X5 (k), X, (k)). Then F,
certainly decreases at step 2, i.e.,

F(R(k+ 1), T(k + 1), X, (k), %5(k))
< F,(R(k), T (k). %, (k). %, (K)).

To see that F, must decrease after step 3, we notice
that what step 3 does is to directly minimize the orig-
inal objective (21) subject to the epipolar constraint
(22) with the motion (R(k + 1), T (k + 1)) fixed. For
this constrained optimization problem, we apply the
Lagrangian method in a similar way as the case when
(R, T) are unknown. According to the Lagrangian
method, if X (k + 1), X5 (k + 1) solve the constrained
optimization problem, it is necessary that, for some
Lagrangian multipliers, (f(i1 k+1), f(’z (k 4+ 1)) should
be minimizing the function F,(R(k+1), T(k+ 1), -, -)
which is of exactly the same form as in (29). Hence we
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have:

F(R(k+1), Tk +1),Xj(k+ 1), x5k + 1))
< F(R(k+ 1), Tk+1),% k), %5k))
< Fi(R(K), T (k), X, (k), %5 (k)).

Hence the algorithm is at least locally stable, i.e., it is
guaranteed to converge to a critical point of the func-
tion Fy given in (29).

Comment 3 (Sensitivity of the Optimal Triangulation
Algorithm). As one may have noticed, the crossed
epipolar objective function F; in (29) is a function on
both the motion (R, T) and structure (X1, X,). Hence
the Hessian of the function F, around the ground
truth (R*, §*, X}, X}) provides information about the
sensitivity of joint estimates of motion and structure
together.

The optimal triangulation method clarifies the rela-
tionship between previously obtained objective func-
tions based on normalization, including Fy and F, as
well constraints captured by epipolar geometry. In the
expressions of F,, if we simply approximate X}, X5 by
x!, x) respectively, we may obtain the normalized ver-
sions of epipolar constraints for recovering camera mo-
tion. From (29) we get:

N 4(xiTTRx )
F(R,T)=) — 4(; ‘,)A — (7
2 et rn, P+ s T7ReT |
or from (30) we have:
N ITTR iTFRxt )
Fo(R,T) = Z (TR, L TR) (38)

= ||és7 R | ||leTTRéT I?

The first function (divided by 4) is exactly the same as
the statistically normalized objective function Fj intro-
duced in the preceding section; and the second one is
exactly the geometrically normalized objective func-
tion Fy. From the above derivation, we see that there is
essentially no difference between these two objective
functions—they only differ by a second order term in
terms of X} — X} and x5 — X}. Although such subtle
differences between Fj, F, and F; has previously been
pointed out in Zhang (1998), our approach discovers
that all these three objective functions can be unified in
the same optimization procedure—they are just slightly
different approximations of the same objective function

F}. Practically speaking, using either normalized ob-
jective function F; or F,, one can already get camera
motion estimates which are very close to the optimal
ones.

Secondly, as we noticed, the epipolar constraint type
objective function F;* given by (31) appears as a key
intermediate objective function in an approach which
initially intends to minimize the so-called reprojection
error given by (21). The approach of minimizing repro-
jection error was previously considered in computer
vision literature as an alternative to methods which
directly minimize epipolar constraints (Weng et al.,
1993b; Hartley and Sturm, 1997). We see here that
they are in fact profoundly related. Further, the crossed
epipolar constraint F* given by (31) for motion estima-
tion and the sum of singular Rayleigh quotients V (})
given by (35) for triangulation are simply different ex-
pressions of the reprojection error under different con-
ditions. In summary, “minimizing (normalized) epipo-
lar constraints” (Luong and Faugeras, 1996; Zhang,
1998), “triangulation” (Hatley and Sturm, 1997) and
“minimizing reprojection errors” (Weng et al., 1993b)
are in fact different (approximate) versions of the
same procedure of obtaining the optimal motion and
structure estimates from image correspondences.

4. Critical Values and Ambiguous Solutions

We devote the remainder of this paper to the study of
the robustness and sensitivity of motion and structure
estimation problem in the presence of large levels of
noise. We emphasize here the role of the linear tech-
niques for initialization and utilize the characteriza-
tion of the space of essential matrices and the intrinsic
optimization techniques on the essential manifold for
characterization of the critical points of the presented
objective functions. We make a distinction between the
robustness issue (behavior of the objective function in
general configuration in the presence of large levels of
noise) and sensitivity issue, which is more related to
sensitive configurations of motion/structure.

Like any nonlinear system, when increasing the
noise level, new critical points of the objective function
can be introduced through bifurcation (Sastry, 1999).
Although in general an objective function could have
numerous critical points, numbers of different types of
critical points have to satisfy the so-called Morse in-
equalities, which are associated to topological invari-
ants of the underlying parameter space manifold (see
Milnor, 1969). A study of these inequalities will help us



to understand how patterns of the objective function’s
critical points may switch from one to another when
the noise level varies.

Given a Morse function f (i.e., critical points are all
non-degenerate) defined on a n-dimensional compact
manifold M, according to the Morse lemma (Milnor,
1969), by changing the local coordinates of a neighbor-
hood around a critical point, say ¢ € M, the function f
locally looks like:

—Xx7 == xP g e X (39)
The number A is called the index of the critical point
q. Note that g is a local minimum when A = 0 and a
maximum when A = n. Let C, denote the number of
critical points with index A. Let D, denote the dimen-
sion of the Ath homology group H; (M, K) of M over
any field K, the so-called Ath Betti number. Then the
Morse inequalities are given by:

0 0
D (=D <Y (-G,
A=i A=i
i=0,1,2,...n—1 (40)

D (=MD =) (=G (41)
=0 r=0

Note that Y ;_o(—1)*Dy is the Euler characteristic
x (M) of the manifold M. In our case, all objective
functions F, Fy, Fy and F;* that we have encountered
are even functions in S € S2.!> We can then view them
as functions on the manifold SO(3) x RP? instead of
SO(3) x S?, where RP? is the two dimensional real pro-
jective plane. Computing the dimension of homology
groups of SO(3) x RIP? we obtain D, =1,2,3,32,1
for A=0,1, 2, 3,4, 5 respectively, whence the Euler
characteristic x (SO(3) x RIPZ) =0.

All the Morse inequalities above give necessary con-
straints on the numbers of different types of critical
points of the function F (R, T'). Among all the critical
points, those belonging to type 0 are called (local) min-
ima, type n are (local) maxima, and types 1 ton — 1 are
saddles. Since, from the above computation, the Euler
characteristic of the manifold SO(3) x RP? is 0, any
Morse function defined on it must have all three kinds
of critical values. The nonlinear search algorithms pro-
posed in the above are trying to find the global min-
imum of given objective functions. When increasing
the noise level, new critical points can be introduced
through bifurcation. Although, in general, many differ-
ent types of bifurcations may occur when increasing the
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B0~ X

Figure 3. Bifurcation which preserves the Euler characteristic by
introducing a pair of saddle and node. The indices of the two circled
regions are both 1.

noise level, the fold bifurcation illustrated in Fig. 3 oc-
curs most generically (see Sastry 1999, Chapter 7) in
the motion and structure estimation problem. We there-
fore need to understand how such a bifurcation occurs
and demonstrate how it affects the motion estimates.
The study of the intrinsic local minima and ambigui-
ties in the discrete setting is extremely difficult due to
the need of visualizing the space of unknown param-
eters. Previous approaches resorted to approximations
(Oliensis, 1999) and demonstrated the presence of local
minima and bias towards optical axis. Here we under-
take the study of the problem of local minima in the
context of initialization by linear algorithms.

Since the nonlinear search schemes are usually ini-
tialized by the linear algorithm, not all the local minima
are equally likely to be reached by the proposed algo-
rithms. In the preceding section we showed that all the
objective functions presented here are approximately
equivalent to the epipolar constraints, especially when
the translation is parallel to the image plane. If we let
E = TR to be the essential matrix, then we can rewrite
the epipolar constraint as Xy’Ex} = 0,i = 1,..., N.
Then minimizing the objective function F is (ap-
proximately) equivalent to the following least square
problem:

min|Ael? (42)

where A is a N x 9 matrix function of entries of x’i and
xé, and e € R? is a vector of the nine entries of E. Then e
is the (usually one dimensional) null space of the 9 x 9
symmetric matrix ATA. In the presence of noise, e is
simply chosen to be the eigenvector corresponding to
the least eigenvalue of ATA. At a low noise level, this
eigenvector in general gives a good initial estimate of
the essential matrix. However, at a certain high noise
level, the smallest two eigenvalues may switch roles, as
do the two corresponding eigenvectors—topologically
and a bifurcation as shown in Fig. 3 occurs. Let us
denote these two eigenvectors as e and ¢’. Since they
both are eigenvectors of the symmetric matrix A”A,
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noise level:6.4 pixels on each image
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Figure 4. Value of objective function F; for all S at noise level 6.4 pixels (rotation fixed at the estimate from the nonlinear optimization).
Estimation errors: 0.014 in rotation estimate (in terms of the canonical metric on SO(3)) and 2.39° in translation estimate (in terms of angle).

they must be orthogonal to each other, i. e., ele' =0.
In terms of matrix notation, we have tr(E”E’) = 0. For
the motions recovered from E and E’ respectively, we
have tr(RTTTT'R’) = 0. It is well known that the rota-
tion estimate R is usually much less sensitive to noise
than the translation estimates 7. Therefore, approxi-
mately, we have R ~ R’ hence tr(T7T") ~ 0, That is T
and T’ are almost orthogonal to each other. This phe-
nomena is very common for linear techniques for the
motion estimation problem: at a high noise level, the
translation estimate may suddenly change direction by
roughly 90°, especially in the case when translation
is parallel to the image plane. We will refer to such
estimates as the second eigenmotion. Similar to detect-
ing local minima in the differential case (see Soatto
and Brockett, 1998), the second eigenmotion ambigu-
ity can be usually detected by checking the positive
depth constraints. A similar situation of the 90° flip in
the motion estimates for the differential case and small
field of view has previously been reported in Danilidis
and Nagel (1990).

Figures 4 and 5 demonstrate such a sudden appear-
ance of the second eigenmotion. They are the simu-
lation results of the proposed nonlinear algorithm of
minimizing the function F; for a cloud of 40 randomly
generated pairs of image correspondences (in a field of
view 90°, depth varying from 100 to 400 units of focal
length.). Gaussian noise of standard deviation of 6.4
or 6.5 pixels is added on each image point (image size
512 x 512 pixels). To make the results comparable, we
used the same random seeds for both runs. The actual
rotation is 10° about the Y-axis and the actual transla-
tion is along the X-axis.'* The ratio between transla-
tion and rotation is 2.'> In the figures, “4” marks the
actual translation, “x” marks the translation estimate
from linear algorithm (see Maybank, 1993 for detail)
and “o” marks the estimate from nonlinear optimiza-
tion. Up to the noise level of 6.4 pixels, both rotation
and translation estimates are very close to the actual
motion. Increasing the noise level further by 0.1 pixel,
the translation estimate suddenly switches to one
which is roughly 90° away from the actual translation.
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noise level:6.5 pixels on each image
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Figure 5. Value of objective function F; for all S at noise level 6.5 pixels (rotation fixed at the estimate from the nonlinear optimization).
Estimation errors: 0.227 in rotation estimate (in terms of the canonical metric on SO(3)) and 84.66° in translation estimate (in terms of angle).

Geometrically, this estimate corresponds to the second
smallest eigenvector of the matrix A”A as we discussed
before. Topologically, this estimate corresponds to the
local minimum introduced by a bifurcation as shown by
Fig. 3. Clearly, in Fig. 4, there are 2 maxima, 2 saddles
and 1 minima on R]P’z; in Fig. 5, there are 2 maxima,
3 saddles and 2 minima. Both patterns give the Euler
characteristic of RP? as 1.

From the Fig. 5, we can see that the second eigenmo-
tion ambiguity is even more likely to occur (at certain
high noise level) than the other local minimum marked
by “¢” in the figure which is a legitimate estimate of the
actual one. These two estimates always occur in pairs
and exist for general configuration even when both the
FOV and depth variation are sufficiently large. We pro-
pose a way for resolving the second eigenmotion ambi-
guity at the initialization stage by linear algorithm. An
indicator of the configuration being close to critical is
the ratio of the two smallest eigenvalues of A7A o9 and
og . By using both eigenvectors vg and vg for computing
the linear motion estimates and choosing the one which

satisfies the positive depth constraint by a larger margin
(i.e., larger number of points satisfies the positive depth
constraint) leads to the motion estimates closer to the
true one. The motion estimate (R, T)) which satisfies
the positive depth constraint should make the following
inner product:

A

(Tx)" (% R™x}) > 0 (43)

greater then O for all the corresponding points. While
for low noise level all the points satisfy the posi-
tive depth constraint, with the increasing noise level
some of the points fail to satisfy it. We therefore chose
the solution where a majority of points satisfies the
positive depth constraint. Simple re-initialization then
guarantees convergence of the nonlinear techniques to
the true solution. Figures 6 and 7 depict a slice of the
objective function for varying translation and for the
rotation estimate obtained by linear algorithm using
vg and vg as two different estimates of the essential
matrix.
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noise level:6.7 pixels on each image
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Figure 6. Value of objective function F; for all S at noise level 6.7 pixels. Rotation is fixed at the estimate from the linear algorithm from the
eigenvector vg associated with the smallest eigenvalue. Note the verge of the bifurcation of the objective function.

The second eigenmotion, however, is not statistically
meaningful: it is an artifact introduced by a bifurcation
of the objective function; it occurs only at a high noise
level and this critical noise level gives a measure of
the robustness of the given algorithm. For comparison,
Fig. 8 demonstrates the effect of the bas-relief ambi-
guity: the long narrow valley of the objective function
corresponds to the direction that is the most sensitive to
noise.!® The (translation) estimates of 20 runs, marked
as “o”, give a distribution roughly resembling the shape
of this valley—the actual translation is marked as “+”
in the center of the valley which is covered by circles.
This second eigenmotion effect has a quite different
interpretation then bas-relief ambiguity. The bas-relief
effect is only evident when FOV and depth variation is
small, but the second eigenmotion ambiguity appears
at higher noise levels for general configurations.

5. [Experiments and Sensitivity Analysis

In this section, we demonstrate by experiments the re-
lationship among the linear algorithm (as in Maybank

(1993)), nonlinear algorithm (minimizing F'), normal-
ized nonlinear algorithm (minimizing F;) and opti-
mal triangulation (minimizing F;). Due to the nature
of the second eigenmotion ambiguity, it gives statisti-
cally meaningless estimates. Such estimates should be
treated as “outliers” if one wants to properly evaluate
a given algorithm and compare simulation results. In
order for all the simulation results to be statistically
meaningful and comparable to each other, in following
simulations, we usually keep the noise level below the
critical level at which the second eigenmotion ambigu-
ity occurs unless we need to comment on its effect on
the evaluation of algorithm’s performance.

We follow the same line of thought as the analysis
of the differential case in Soatto and Brockett (1998).
We will demonstrate by simulations that seemingly
conflicting statements in the literature about the per-
formance of existing algorithms can in fact be given
a unified explanation if we systematically compare the
simulation results with respect to a large range of noise
levels (as long as the results are statistically mean-
ingful). Some existing evaluations of the algorithms
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Figure 7. Value of objective function Fs for all S at noise level 6.7 pixels. Rotation is fixed at the estimate from the linear algorithm from the
eigenvector vg associated with the second smallest eigenvalue. The objective function is well shaped and the nonlinear algorithm refined the

linear estimate closer to the true solution.

turn out to be valid only for a certain small range of
signal-to-noise ratio. In particular, algorithms’ behav-
iors at very high noise levels have not yet been well
understood or explained. Since, for a fixed noise level,
changing baseline is equivalent to changing the signal-
to-noise ratio, we hence perform the simulations at a
fixed baseline but the noise level varies from very low
(<1 pixels) to very high (tens of pixels for a typical im-
age size of 512 x 512 pixels). The conclusions there-
fore hold for a large range of baselines. In particular,
we emphasize that some of the statements given below
are valid for the differential case as well.

In following simulations, for each trial, a random
cloud of 40 3D points is generated in a region of trun-
cated pyramid with a field of view (FOV) 90°, and
a depth variation from 100 to 400 units of the focal
length. Noises added to the image points are i.i.d. 2D
Gaussian with standard deviation of the given noise
level (in pixels). Magnitudes of translation and rota-
tion are compared at the center of random cloud. This
will be denoted as the translation-to-rotation ratio, or

simply the T/R ratio. The algorithms will be evaluated
for different combinations of translation and rotation
directions. We here use the convention that Y-axis is
the vertical direction of the image and X-axis is the
horizontal direction and the Z-axis coincides with the
optical axis of the camera. All nonlinear algorithms are
initialized by the estimates from the standard 8-point
linear algorithm (see Maybank, 1993). The criteria for
all nonlinear algorithms to stop are: 1. The norm of gra-
dient is less than a given error tolerance, which usually
we pick as 1078 unless otherwise stated;!” and 2. The
smallest eigenvalue of the Hessian matrix is positive.'®

5.1.  Axis Dependency Profile

It has been well known that the sensitivity of the motion
estimation depends on the camera motion. However, in
order to give a clear account of such a dependency, one
has to be careful about two points: 1. The signal-to-
noise ratio and 2. Whether the simulation results are
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Figure 8. Bas-relief ambiguity. FOV is 20° and the random cloud depth varies from 100 to 150 units of focal length. Translation is along the
X-axis and rotation around the Y-axis. Rotation magnitude is 2°. T/R ratio is 2. 20 runs at the noise level 1.3 pixels.

still statistically meaningful while varying the noise
level.

Figures 9-12 give simulation results of 100 trials for
each combination of translation and rotation (“T-R”)
axes, for example, “X-Y” means translation is along
the X-axis and the rotation axis is the Y-axis. Rotation
is always 10° about the axis and the T/R ratio is 2. In the
figures, “linear” stands for the standard 8-point linear
algorithm; “nonlin” is the Riemannian Newton’s algo-
rithm minimizing the epipolar constraints F', “normal”
is the Riemannian Newton’s algorithm minimizing the
normalized epipolar constraints Fj.

By carefully comparing the simulation results in
Figs. 9-12, we can draw the following conclusions:

e Optimization Techniques (linear vs. nonlinear)

1. Minimizing F in general gives better estimates
than the linear algorithm at low noise levels
(Figs. 9 and 10). At higher noise levels, this is
no longer true (Figs. 11 and 12), due to the more
global nature of the linear technique.

2. Minimizing the normalized F; in general gives
better estimates than the linear algorithm at mod-
erate noise levels (all figures). Very high noise
level case will be studied in the next section.

e Optimization Criteria (F vs. Fy)

1. At relatively low noise levels (Fig. 9), normal-
ization has little effect when translation is par-
allel to the image plane; and estimates are in-
deed improved when translation is along the
Z-axis.

2. However, at moderate noise levels (Figs. 10—
12), things are quite the opposite: when trans-
lation is along the Z-axis, little improvement
can be gained by minimizing F; instead of F
since estimates are less sensitive to noise in this
case (in fact all three algorithms perform very
close); however, when translation is parallel to
the image plane, F is more sensitive to noise
and minimizing the statistically less biased Fj
consistently improves the estimates.
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Figure 9. Axis dependency: estimation errors in rotation and translation at noise level 1.0 pixel. T/R ratio = 2 and rotation = 10°.

e Axis Dependency (translation parallel to image
plane vs. along Z-axis)

1. All three algorithms are the most robust to the
increase of noise when the translation is along
Z. At moderate noise levels (all figures), their
performances are quite close to each other.

2. Although, at relatively low noise levels (Figs. 9—
11), estimation errors seem to be larger when the
translation is along the Z-axis, estimates are in
fact much less sensitive to noise and more robust
to increasing of noise in this case. The larger es-
timation error in case of translation along Z-axis
is because the displacements of image points are
smaller than those when translation is parallel
to the image plane. Thus, with respect to the
same noise level, the signal-to-noise ratio is in
fact smaller in the case of translation along the
Z-axis.

3. At a noise level of 7 pixels (Fig. 12), estima-
tion errors seem to become smaller when the
translation is along Z-axis. This is not only be-
cause estimates are less sensitive to noise for this

case, but also due to the fact that, at a noise level
of 7 pixels, the second eigenmotion ambiguity
already occurs in some of the trials when the
translation is parallel to the image plane. Out-
liers given by the second eigenmotion are av-
eraged in the estimation errors and make them
look even worse.

The second statement about the axis dependency sup-
plements the observation given in Weng etal. (1989). In
fact, the motion estimates are both robust and less sen-
sitive to increasing of noise when translation is along
the Z-axis. Due to the exact reason given in Weng et al.
(1989), smaller signal-to-noise ratio in this case makes
the effect of robustness not to appear in the mean esti-
mation error until at a higher noise level. As we have
claimed before, for a fixed base line, high noise level
results resemble those for a smaller base line at a mod-
erate noise level. Figure 12 is therefore a generic pic-
ture of the axis dependency profile for the differential
or small base-line case (for more details see Ma et al.,
2000).
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Figure 10. Axis dependency: estimation errors in rotation and translation at noise level 3.0 pixels. T/R ratio = 2 and rotation = 10°.

5.2.  Non-iterative vs. Iterative

In general, the motion estimates obtained from directly
minimizing the normalized epipolar constraints F; or
F, are already very close to the solution of the optimal
triangulation obtained by minimizing F; iteratively be-
tween motion and structure. It is already known that,
at low noise levels, the estimates from the non-iterative
and iterative schemes usually differ by less than a cou-
ple of percent (Zhang, 1998). This is demonstrated in
Figs. 13 and 14—"linear” stands for the linear algo-
rithm; “norm nonlin” for the Riemannian Newton’s
algorithm minimizing normalized epipolar constraint
F;; “triangulate” for the iterative optimal triangulation
algorithm. For the noise level from 0.5 to 5 pixels, at
the error tolerance 107, the iterative scheme has lit-
tle improvement over the non-iterative scheme—the
two simulation curves overlap with each other. Sim-
ulation results given in Figs. 15 and 16 further show
that the improvements of the iterative scheme become
a little bit more evident when noise levels are very
high, but still very slim. Due to the second eigenmotion

ambiguity, we can only perform high noise level simu-
lation properly for the case when the translation direc-
tion is along the Z-axis.

By comparing the simulation results in Figs. 13—16,
we can therefore draw the following conclusions:

e Although the iterative optimal triangulation algo-
rithm usually gives better estimates (as it should),
the non-iterative minimization of the normalized
epipolar constraints F; or F, gives motion esti-
mates with only a few percent larger errors for all
range of noise levels. The higher the noise level,
the more evident the improvement of the iterative
scheme is.

e Within moderate noise levels, normalized nonlinear
algorithms consistently give significantly better esti-
mates than the standard linear algorithm, especially
when the translation is parallel to the image plane.
At very high noise levels, the performance of the
standard linear algorithm outperforms nonlinear al-
gorithms. This is due to the more global nature of
the linear algorithm.
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Figure 11.  Axis dependency: estimation errors in rotation and translation at noise level 5.0 pixel. T/R ratio = 2 and rotation = 10°.

For low level Gaussian noises, the iterative optimal tri-
angulation algorithm gives the MAP estimates of the
camera motion and scene structure, the estimation er-
ror can be shown close to the theoretical error bounds,
such as the Cramer-Rao bound. This has been shown
experimentally in Weng et al. (1993a). Consequently,
minimizing the normalized epipolar constraints F; or
F, gives motion estimates close to the error bound as
well. At very high noise levels, linear algorithm is cer-
tainly more robust and gives better estimates. Due to
numerous local minima, running nonlinear algorithms
to update the estimate of the linear algorithm does not
necessarily reduce the estimation error further.

6. Discussion and Future Work

The motion and structure recovery problem has been
studied extensively and many researchers have pro-
posed efficient nonlinear optimization algorithms. One
may find historical reviews of these algorithms in
Maybank (1993) and Kanatani (1993). Although these

algorithms already have good performance in practice,
the geometric concepts behind them had not been com-
pletely revealed. The non-degeneracy conditions and
convergence speed of those algorithms are usually not
explicitly addressed. Due to the recent development of
optimization methods on Riemannian manifolds, we
now can have a better mathematical understanding of
these algorithms, and propose new geometric algo-
rithms or filters (for example, following (Soatto and
Perona, 1996), which exploit the intrinsic geometric
structure of the motion and structure recovery prob-
lem. As shown in this paper, regardless of the choice of
different objectives, the problem of optimization on the
essential manifold is common and essential to the op-
timal motion and structure recovery problem. Further-
more, from a pure optimization theoretic viewpoint,
most of the objective functions previously used in the
literature can be unified in a single optimization proce-
dure. Consequently, “minimizing (normalized) epipo-
lar constraints,” “triangulation,” “minimizing reprojec-
tion errors” are all different (approximate) versions of
the same simple optimal triangulation algorithm.
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Figure 12. Axis dependency: estimation errors in rotation and translation at noise level 7.0 pixels. T/R ratio = 2 and rotation = 10°.

‘We have applied only Newton’s algorithm to the mo-
tion and structure recovery problem since it has the
fastest convergence rate (among algorithms using sec-
ond order information, see Edelman et al. (1998) for
the comparison). In fact, the application of other con-
jugate gradient algorithms would be easier since they
usually only involve calculation of the first order in-
formation (the gradient, not Hessian), at the cost of a
slower convergence rate. Like most iterative search al-
gorithms, Newton’s and conjugate gradient algorithms
are local methods, i.e., they do not guarantee conver-
gence to the global minimum. Due to the fundamen-
tal relationship between the motion recovery objective
functions and the epipolar constraints discovered in this
paper, at high noise levels all the algorithms unavoid-
ably will suffer from the second eigenmotion (except
the case when translation is along the Z-axis). Such
an ambiguity is intrinsic to the problem of motion and
structure recovery and independent of the choice of
objective functions.

In this paper, we have studied in detail the problem
of recovering a discrete motion (displacement) from

image correspondences. Similar ideas certainly apply
to the differential case where the rotation and transla-
tion are replaced by angular and linear velocities re-
spectively (Ma et al., 2000). Optimization schemes for
the differential case have also been studied by many re-
searchers, including the most recent Bilinear Projection
Algorithm (BPA) proposed in Soatto Brockett (1998)
and a robust algorithm proposed in Zhang and Tomasi
(1999). Similarly, one can show that they all in fact min-
imize certain normalized versions of the differential
epipolar constraint. We hope the Riemannian optimiza-
tion theoretic viewpoint proposed in this paper will pro-
vide a different perspective to revisit these schemes.
Although the study of the proposed algorithms is car-
ried out in a calibrated camera framework, due to a
clear geometric connection between the calibrated and
uncalibrated case (Ma et al., 1998), the same approach
and optimization schemes can be generalized with little
effort to the uncalibrated case as well. Details will be
presented in future work. As we pointed out in this pa-
per, Riemannian optimization algorithms can be easily
generalized to products of manifolds. Thus, although
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Figure 13. Estimation errors of rotation (in canonical metric on SO(3)). 50 trials, rotation 10 degree around Y -axis and translation along X -axis,

T/R ratio is 2. Noises range from 0.5 to 5 pixels.

the proposed Newton’s algorithm is for 2-frame and a
single rigid body motion, it can be easily generalized
to multi-frame and multi-body cases. Only the under-
lying search spaces of optimization will be replaced
by products of Lie groups instead of Stiefel manifolds.
Comparing to other existing algorithms and conjugate
gradient algorithms, the Newton’s algorithm involves
more computational cost in each iteration step. How-
ever, it has the fastest rate of convergence. This is very
important when the dimension of the search space is
high, for instance, multi-body motion recovery prob-
lem. This is because the number of search steps usually
increases with the dimension, and each step becomes
more costly. We will study these issues in future work.

Appendix A: Optimization on a Product
of Riemannian Manifolds

In this appendix, we discuss how to generalize
Edelman et al.’s methods (to appear) to the product of
Stiefel (or Grassmann) manifolds. Suppose that

(M, g1) and (M5, g;) are two Riemannian manifolds
with Riemannian metrics:

g1¢, ) TMy x TMy — C*(M)),
gz(-, ) . TM2 X TM2 e COO(Mz)

where TM is the tangent bundle of M, similarly for
TM,. The corresponding Levi-Civita connections (i.e.,
the unique metric preserving and torsion-free connec-
tion) of these manifolds are denoted as:

Vi X(My) x X(M) — X (M),
Vz . X(Mz) X X(Mz) — X(Mz)

where X' (M) stands for the space of smooth vector
fields on M|, similarly for X (M5).

Now let M be the product space of M and M5, i.e.,
M=M1 X Mz. Let i] IM] — M and i2:M2 - M
be the natural inclusions and 7;: M — M; and
m: M — M, be the projections. To simplify the
notation, we identify TM, and TM, with i,(TM,)
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Figure 14. Estimation errors of translation (in degree). 50 trials, rotation 10 degree around Y -axis and translation along X-axis, T/R ratio is 2.

Noises range from 0.5 to 5 pixels.

and i,(TM;) respectively. Then TM =TM; x TM,
and X(M)=X (M) x X(M,). For any vector field
X € X(M) we can write X as the composi-
tion of its components in the two subspaces TM,
and TM,: X = (X, X») € TM| x TM,. The canonical
Riemannian metric g(-, -) on M is determined as:

8(X,Y) =g (X1, Y1)+ (X2, Y2), X, Y eX(M).

Define a connection V on M as:

VxY = (Vix Y1, Vox,Y2) € X (M) x X (M),
X,Y € X(M).

One can directly check that this connection is torsion
free and compatible with the canonical Riemannian
metric g on M (i.e., preserving the metric) hence it is
the Levi-Civita connection for the product Riemannian
manifold (M, g). From the construction of V, it is also
canonical.

According to Edelman et al. (to appear), in order
to apply Newton’s or conjugate gradient methods on
a Riemannian manifold, one needs to know how to
explicitly calculate parallel transport of vectors on the
manifolds and an explicit expression for geodesics. The
reason that Edelman et al.’s methods can be easily gen-
eralized to any product of Stiefel (or Grassmann) man-
ifolds is because there are simple relations between the
parallel transports on the product manifold and its fac-
tor manifolds. The following theorem follows directly
from the above discussion of the Levi-Civita connec-
tion on the product manifold.

Theorem 3. Consider M = M, x M, the product
Riemannian manifold of My and M. Then for two vec-
tor fields X,Y e X(M), Y is parallel along X if and
only if Yy is parallel along X and Y, is parallel along
Xo.

As a corollary to this theorem, the geodesics in the
product manifold are just the products of geodesics in
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Figure 15. Estimation errors of rotation (in canonical metric on SO(3)). 40 points, 50 trials, rotation 10 degree around Y-axis and translation

along Z-axis, T/R ratio is 2. Noises range from 2.5 to 20 pixels.

the two factor manifolds. Consequently, the calculation
of parallel transport and geodesics in the product space
can be reduced to those in each factor manifold.

Appendix B: Optimization on the
Essential Manifold

This appendix outlines Newton’s algorithm for opti-
mizing a general function defined on the essential man-
ifold, as a product of Stiefel manifolds. For the details
of the Newton’s or other conjugate gradient algorithms
for general Stiefel or Grassmann manifolds please refer
to Edelman et al. (to appear).

Generally speaking, in order to generalize Newton’s
algorithm to a Riemannian manifold, we at least need
to know how to compute three things: the gradient,
the Hessian of the given function and the geodesics of
the manifold. Since the metric of the manifold is no
longer the standard Euclidean metric, the computation
for these three needs to incorporate the new metric. In

the following, we will give general formulae for the
gradient and Hessian of a function defined on SO(3) x
S? using results from Edelman et al. (to appear). In
the next section, we will however give an alterna-
tive approach for directly computing these ingredients
by using the explicit expression of geodesics on this
manifold.

Let f(R, T) be a function defined on the essential
manifold or, equivalently, T;(SO(3)) = SO(3) x S?
with R € SO(3) represented by a 3 x 3 rotation ma-
trix and 7 € S? a vector of unit length in R3. Let
g1 and g be the canonical metrics for SO(3) and S?
respectively and V| and V, be the corresponding Levi-
Civita connections. Let g and V be the induced Rieman-
nian metric and connection on the product manifold
SO(3) x S?. The gradient of the function f(R, T) on
SO(3) x S?is a vector field G = grad(f) on SO(3) x S?
such that:

df(Y) = g(G.,Y),
for all vector fields Y on SO(3) x S°.
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ratio is 2. Noises range from 2.5 to 20 pixels.

Geometrically, so defined gradient G has the same
meaning as in the standard Euclidean case, i.e., G is the
direction in which the function f increases the fastest.
On SO(3) x SZ, it can be shown that the gradient is
explicitly given as:

G = (fr — RfgR. fr — Tf{T)
€ Tr(SO(3)) x Tr(S?)

where fi € R3*3 is the matrix of partial derivatives of
f with respect to the elements of R and fr € R? is
the vector of partial derivatives of f with respect to the
elements of 7'

b
(fR)i = —f

of
=—, 1<ij, k=<3
IR, (fre o, <iJ

Geometrically, the Hessian of a function is the sec-
ond order approximation of the function at a given

point. However, when computing the second order
derivative, unlike the Euclidean case, one should
take the covariant derivative with respect to the
Riemannian metric g on the given manifold.'® On
SO(3) x S?, for any X = (X1, Xp),Y = (1, ) €
T (SO(3)) x T (S?), the Hessian of f (R, T) is explicitly
given by:

Hessf(X,Y) = frr(X1, Y1) — tr [T r(X1, Y1)
+ frr(X2, Y2) — tr fIT7(X2, Y2)
+ frr(X1, Y2) + frr(Y1, Xo).

where the Christoffel functions 'y for SO(3) and 'y
for S? are:

1
Fr(X1, Y1) = ER(XlTY1 + Y/ X)),

1
I'r(X2, Y2) = ET(XzTYz + Y, X>)



and the other terms are:

3%f
frr(X1, Y1) =Y ————(X1)(Y1)u,
RR(X 1, I U;aleaRkl Dij\L'1)k
frrXa, Yo) =Y T X
2, £2) = Py— 2)i\£2);j,
"’ w 0Ti0T; :
3%f
frr(X1,Y2) =) —=—(X1);(Y)x
RT(A1, I2 ;8&78@{ 1)ij12)k
fret X = Y o,
TR(Y71, X2 o oT; 0R;; 1)ilA2)jk

For Newton’s algorithm, we need to find the optimal
updating tangent vector A such that:

Hess f(A,Y) = g(—G,Y) for all tangent vectors Y.

A is then well-defined and independent of the choice of
local coordinate chart. In order to solve for A, first find
the tangent vector Z(A)=(Zi, Z,) € Tr(SO(3)) x
Tr(S?) (in terms of A) satisfying the linear equations
(see Edelman et al., to appear for a more detailed deriva-
tion of the equations):

Srr(A1 Y1) + frr(Yh, Az) = g1(Zy, Y1)
for all tangent vectors Y; € T (SO(3))

Jrr(A2, V2) + frr(Ar, Vo) = g2(Z5, a)
for all tangent vectors Y, € T(Sz)

From the expression of the gradient G, the vector
A = (A}, A) then satisfies the linear equations:

Zi — R skew(fRTA]) — skew(A]fRT)R
= —(fr — RfgR)
Zy — f{TAy = —(fr — Tf{T)

with A|RT skew-symmetric and T7A,=0. In the
above expression, the notation skew(A) means the
skew-symmetric part of the matrix A: skew(A) = (A —
AT)/2. For this system of linear equations to be solv-
able, the Hessian has to be non-degenerate, in other
words the corresponding Hessian matrix in local coor-
dinates is invertible. This non-degeneracy depends on
the chosen objective function f.

According to Newton’s algorithm, knowing A, the
search state is then updated from (R, T) in direc-
tion A along geodesics to (exp(R, A1), exp(T, A3)),
where exp(R, -) stands for the exponential map from
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Tr(SO(3)) to SO(3) at point R, similarly for exp(7, -).
Explicit expressions for the geodesics exp(R, At) on
SO(3) and exp(T, Ast) on S? are given in (6) and (7).
The overall algorithm can be summarized in the fol-
lowing:

Riemannian Newton’s Algorithm for Minimizing
f(R, T) on the Essential Manifold

e At the point (R, T),

— Compute the gradient G = (fr — RfRTR, fr —
Tfi 1),
— Compute A = —Hess™' G.

e Move (R, T) in the direction A along the geodesic
10 (exp(R, Ay), exp(T, Ay)).
e Repeat if ||G|| > € for pre-determined € > 0.

Since the manifold SO(3) x S? is compact, the
Newton algorithm is guaranteed to converge to a (local)
extremum of the objective function f (R, T). Note that
this algorithm works for any objective function defined
on SO(3) x S%. For an objective function with non-
degenerate Hessian, the Riemannian Newton’s algo-
rithm has quadratic (super-linear) rate of convergence
(Smith, 1993).
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Notes

1. Inthe literature, they are respectively referred to as distance be-
tween points and epipolar lines, and gradient-weighted epipolar
errors (Zhang, 1998) or epipolar improvement (Weng et al.,
1993 a).

2. Stiefel manifold V (n, k) is the set of all orthonormal k-frames in
IR"; Grassmann manifold G (n, k)is the set of all k dimensional
subspaces in IR”. Then canonically, V(n, k) =0(n)/On — k)
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and G(n,k)=0(n)/0(k) x O(n — k) where O (n) is the or-
thogonal group of R”.

3. Without loss of generality we here assume the camera model is
a perspective projection with focal length 1. The development
for spherical projection case is similar.

4. Given a vector u = [uy, u2, u3]’ € R3, the notation & denotes
the associated skew-symmetric matrix:

0 —u3z up
i=| uzs 0 —u e R3%3,
—up u; 0

Then for any two vectors u, v € R3, the cross product u X v is
equal to Uv.

5. This fact has been pointed out by Professor A. Weinstein, Math-
ematics Department, UC Berkeley.

6. & and T,(SO(3)) have the same local Riemannian structure
according to the covering map.

7. The exact formulae for the gradient and Hessian of those objec-
tive functions would be extensively long. Hence such areduction
is quite necessary.

8. For a symmetric bilinear form: b(-, -), we only need to know
b(x, x) for all x to know the form b(-, -) since we can always
evaluate b(x, y) for all x, y using the so-called polarization
scheme: b(x, y) = %[b(x +y,x+y)—bx—y,x =yl

9. The spherical projection case is similar and is omitted for sim-
plicity as before.

10. Around a small neighborhood of the actual (R, T'), they only
differ by higher order terms.

11. Strictly speaking, this is the case only when the noise level is
low, i.e., corrupted objective functions are not yet so different
from the noise-free one.

12. Since there is no closed form solution to 6-degree polynomial
equations, directly minimizing the Rayleigh quotient sum (35)
avoids unnecessary transformations hence can be much more
efficient.

13. A even function f(T) on S? satisfies f(—T) = f(T).

14. We here use the convention that Y-axis is the vertical direction of
the image and X-axis is the horizontal direction and the Z-axis
coincides with the optical axis of the camera.

15. Rotation and translation magnitudes ||w|| and || 7'|| are compared
with respect to the average depth Z of the cloud of 3D points
generated; ||T'|| = Z # ||| * ratio. The translation is expressed
in units of focal length.

16. This direction is given by the eigenvector of the Hessian asso-
ciated with the smallest eigenvalue.

17. Our current implementation of the algorithms in Matlab has a
numerical accuracy at 1078,

18. Since we have the explicit formulae for Hessian, this condition
would keep the algorithms from stopping at saddle points.

19. Itis a fact in Riemannian geometry that there is a unique metric
preserving and torsion-free covariant derivative.
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