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Abstract— In this a?:%})er we eﬁlore contrellability in fapping
fight for Micro Aeri ‘chicles (MAVs), inch-size robots capable
of autonomous fight. Differently from previous work, we focus
on a MAV with very limited wing kinematics and simple input
control schemes. In particular, in the first part we show how an
MAV provided with a pair of wings, each with a single de%];ee
of freedom an%&)asswe rotation, can still ensure controllability.
This is obtained by combinin% two ideas, The first idea is to
parameterize wing trajectory based on biomimetic principles
1.e. principles that are directly inspired by observation of rea
insect fight. The second idea is to treat fapping fight within the

framework of high frequency control and to apply averaging
theory arguments in order to prove controllability. The results
obtained set fhpping fight as a compelling example of high

frequency control present in nature, and shed light on some of
the reasons of superior maneuverability observed in fapping
ﬂ(%th Then, in the second part we show that controllability is
still guaranteed even when the wing-thorax dynamics is included
and _the electromechanical structure is driven by a pulse width
modulation (PWM) scheme where only its amplitude, period
and duty eycle are controllable on a wingbeat-by-wingbeat
basis. However, in this case our modeling clearly shows some

tradeoffs between controllability and lift generation efficiency,

which seem consistent with observations in real insect flight.

I. INTRODUCTION

Unmanned air vehicles, (UAV), have been a very active
area of research for both civil and military applications.
Despite recent remarkable achievements obtained with fixed
and rotary aircrafts [1], their use in many tasks is still limited
by their maneuverability and size. In order to overcome these
limitations, the extraordinary flight capabilities of insects
have inspired the design of small micro aerial vehicles
(MAVs) 2], in particular inch size robots with flapping
wings mimicking real flying insects [3]. Their unmatched
maneuverability, low fabrication cost and small size make
them very attractive for cost-critical missions in environments
which are impenetrable for larger size UAVs such as heli-
copters or airplanes. Moreover, the latest progress in insect
flight aerodynarnics [4] and in micro-technology [5] seem to
provide sufficient tools to fabricate flying insect micro-robots.

Despite the aerodynamic mechanisms {)resent during insect
flight have been clearly identified [4], little is still know about
how insects actually exploit these mechanisms to achieve
complex maneuvers such as saccades or hovering. Besides,
electromechanical considerations limit the set of feasible
wing kinematics configurations and the input control schemes
available,

The goal of this tpaper is to unveil some of the most
important features of insect flight from a control point of
view, placing particular emphasis on the electromechanical
constraints.

Similar to aerial vehicles based on rotary wings, such as
helicopter, flying insects control their flight by controlling
their attitude and the magnitude of the vertical thrust [6].
This is accomplished by the controlling the aerodynamic
forces and torques generated by the wings during flapping.
However, unlike in helicopters, acrodynamic forces on insect
wings are highly nonlinear and time-varying during a wing-
beat, and the periodic motion of the wings cannot be ignored.
As a result, the system dynamics cannot be approximated by
a linear time-invariant model, widely adopted in helicopter
theory based on quasi-static assumption on the rotary blades.
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The motion of the insect is a nonlinear system with forced
periodic inputs. On the other hand, the wingbeat frequency
1s much higher than the dynamics of the insect itself, since
flying insects require several wingbeat periods to complete
a complex maneuver such as a saccade. Moreover, the wing
pattern motion in real insect does not change dramatically
from one wingbeat to another wingbeat, even during fast
maneuvers. These two facts lie at the core of the control
approach for flapping MAVs proposed in [6] [7], which is
based on averaging the system with respect to the wingbeat
period, and on parameterizing the wing motion according to
biomimetically inspired parameters that can be changed on
a wingbeat-by-wingbeat basis.

A similar approach based on averaging has been proposed
for the control of fish-like locomotion {8] [9], which anal-
ogously to flapping flight, is generated by the interaction
o% oscillatory appendices with a viscous fluid. However,
our approach based on wing motion parametrization, which
mimics real insect wing motions, leads naturally to a time
invariant system where artificial virtual control inputs appear
naturally as a simple function of the wing parameters, thus
facilitating the synthesis of feedback control design.

Differently from previous work [7], where we considered
wings with two degrees of freedom and analog control
input to the the thorax-wing actuators, here we focus on a
model with very limited wing kinematics and with simple
PWM input to the wings actuators. This is motivated by
the necessity of simple electromechanical fabrication and
highly efficient power transfer from the power supply to the
actuators.

This paper is organized as follows. The next section
presents a model for the insect flight dynamics, wing aero-
dynamics and wing motion parametrization, Then it applies
averaging theory arguments to reduce the controllability of
the nonlinear time-varying system to the controllability of
a nonlinear affine time-invariant system. In Section IIT we
propose a simplified model for the wing-thorax electrome-
chanical structure and a simple PWM control input based on
electromechanical considerations, and we study their effect
on controllability. In the final section we summarize our
findings and we suggest future research directions.

II. FLAPPING FLIGHT MODELING

Flight dynamics of flapping insects is still an open area
of research [10} [11]. This is primarily due to the difficulties
in measuring aerodynamic forces on real flying insects, and
in experimentally validating proposed theoretical models. In
this work we model the dynamics of a flying insect as a
rigid body subject to external forces. Albeit wings do move
relative to the insect body, their mass is within 1 — 5%
of total insect mass and hence their effect on the insect
dynamics is relatively small and can be neglected. Besides,
nonholonomic effects are unlikely, since wings move with
an almost symmetrical motion. Therefore, we assume that
the insect body motion evolves according to the rigid body
motion equations subject to external forces relative to its
center of mass [12]. The external forces acting on an insect
are the aerodynamic forces generated by the wings, the
gravity force, and the body viscous drag. Angular viscous
torques are not included since they are negligible with respect
to the torques generated by aerodynamic forces. Summing



Plane paralie] 1g.- Planépeapendicular
wing pmﬁlgl} Icguoke Ph’j‘t - Ye
- S
>“ // ‘\_I
/ ~. \\.
4 )
troke plang _—Y
Y /; |
N A
\ /
N -
. N
\"JTRAILWG EDGE

Fig. 1.
rotation 7, (right) top view of insect stroke plane

up, the dynamics of the attitude of a flapping insect are
modeled as follows:

pf = v/

v/ = LR -cv!-¢g

R = R

W = TP —wy x Jyws) ey
0 Wt —wy P

L N
wyb —wgpt 0

where m is the insect body mass, p/ € R3® and v/ €
R? are the position and velocity of the insect center of
mass relative to the fixed frame, respectively, f° is the
aerodynamic force relative to the body frame B, ¢ € R is the
viscous damping coefficient, g is the gravity vector, w® =
fwyb w,?w,Y7T is the angular velocity of the insect body
relative to the body frame B, v° € R? is the aerodynamic
torque relative to the body frame B attached to the center
of mass of the insect body, and J, € R3*3 is the moment
of inertia of the insect body relative to the body frame B.
The matrix R € SO(3)={ReR¥3 : RTR=17I detR =
+1} is the rotation matrix representing the orientation of
the insect body frame B relauve to the fixed frame A, In
particular, let v® = [z szT and v¢ =
coordinates of a vector v € R” relative to the body frame B
and the fixed frame A, respectively. Then, these coordinates
satisfy the transformations v, = Rvy and v, = RTv,.

The aerodynamic force and torque, £ and 7*, are gener-
ated by the motion of the two wings. In insects each wing
is quite stiff and can be modeled as a rigid body rotating
about its wing base. Let us define a wing frame coordinate
system (£, 7, 7) (see Figure 1). The vector ¢ is parallel to the
wing chord oriented from the trailing to the leading edge.
The vector i is perpendicular to the wing profile oriented
form dorsal to ventral. The vector 7 is oriented from wing
base to wing tip. Its position can be defined by three Euler’s
angles: the stroke angle, ¢, i.e. a rotation about the ¢ axis, the
deviation angle from stroke plane, 8, i.e. a rotation about the
7t axis, and the rotation angle, ¢, i.e. a rotation about the
axis. The plane swept by the rotation axis 7 when setting the
deviation angle 8 to zero, is called mean stroke plane. Recent
work done by Dickinson and his group {4] unveiled three
major mechanisms involved in flapping flight: the delayed
stall, the rotational lift, and wake capture. Delayed stall
provides most of the aerodynamic force production, while
rotational lift and wake capture are present only during wing
rotation. In this work, we will consider only the modeling for
the delayed stall because the rotational lift and wake capture,
besides being mathematically less amenable, have a smaller
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contribution in aerodynamic force generation, therefore they
are unlikely to change the gualifative analysis developed in
this work. Indeed, there is evidence that these mechanisms
act synergistically with the delayed stall in augmenting force
and torque generation while preserving the same “sign” [10].
Experimental results {4] have shown that the delayed stall can
be modeled quite accurately by a quasi-steady state equation
of instantaneous wing kinematic position and velocity. Its
effect is equivalent 1o apply a vector force perpendicular
to the wing profile and on the opposite direction of wing
velocity, v, at wing center of pressure which is placed
at a quarter-chord distance from the leading edge and at a
distance of approximately 0.6 — 0.7 wing-length from the
wing base depending on the exact wing shape (see Figure
1). The magnitude of this force is given by:

o1
IF¥] = 5peCp(e)Aulv"]? 2)

where Cp = Csine and C' = 3.5 is the delayed stall fo'n;ce
coefficient empirically derived in [4], & = cos™(f- f¥ay)
is the angle of attack, A, is the total wing area, p, is the
air density (see Figure 1). Therefore, given the trajectory
(@(t), 6(2),¥(t)) for both wings it is possible to compute
the total aerodynamic force and torque vectors acting on the
center of mass of the insect body as follows:

f7(8) + £7°(¢)

pr(d) x £2(0) + pr(y x o)) P

<
o>
—
ey
—

Il

where the subscripts [,r stand for left and right wing,
respectively, and p* (£} = L7{¢) is the position of the center
of pressure of the wing. Note that p*{t) = v¥(1).

Flying insects show a rich set of wing trajectories by
varying the stroke angle oscillation from sinusoidal to saw-
tooth, by modulating the mean angle of attack during the
upstroke and downstroke, by changing the timing of rotation,
and by exhibiting out of stroke plane wing motions such as
figure-eight and banana-like trajectories [4].

However, in this work we restrict the wings to move on
the mean stroke plane, ie. #(t) = 0 for both wings, and
we assume that wing rotation is instantaneous at the wings
inversion of motion maintaining the same angle of attack
during upstroke and downstroke, ie. aft) = 45°. Also we
assume that the wings move at constant angular velocity
during the upstroke and the downstroke, i.e. the stroke angle

" #(t) moves according to a sawtooth-like motion as shown

in Figure 2. Mathematically, each wing trajectory within a
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single wingbeat 1s described by the following equations:

s ~ Ao(1+ k) 1—j—;)+~fAu 0<t<pT

Ao(1+4 K) 2(;—:-;;—)??_1) byAp pT<t<T

1,f:(t)) = 45 sign(oT — 1) 0<t<T
o) = 0

4)

where sign(z) = (37, 7" is the wingbeat period, Ao is the
stroke amplitude range, « is a tunable parameter that controls
the stroke amplitude, p is the ratio of downstroke duration to
total wingbeat period, + is the relative stroke angle offset. We
assume that the wingbeat period, T, and the stroke amplitude
range, ¢, are fixed, while the three dimensionless parameters
(x,p,7) can be changed on a wingbeat-by-wingbeat basis.
The angle of attack is fixed at 45°, because it is the angle
that generates maximum vertical thrust.

Our simplified wing trajectory parametrization is dictated
by the necessity of finding feasible wing trajectories for
the electromechanical structure, and yet this parametrization
%}}gﬁld stifl capture the essence of controllability of real insect

ight.

In practice, this particular wing trajectory parametrization
based on (x,p,7) is equivalent to reduce the 3-degree of
freedom wing to a single-degree of freedom wing with a
passive rotation, i.e. the only degree of freedom that is really
controllable is the stroke angle.

In order to simplify analytical derivations of these two
vectors, we also assume that the two insect wing bases
coincide with the insect center of mass, that the z® — 3°
plane of the body frame is parallel to the mean stroke plane
as shown in Figure 1. Therefore, the position of the center of
pressure of the wings can be written in cartesian coordinate
relative to body frame as pj®(t) = L(sin ¢:(£), — cos ¢(t), 0)
and p¥(t) = L{sin ¢.(t), cos ¢.{t}, 0)

Substituting Equations (4) into Equation (2), the delayed
stall force acting on a wing can be written in cartesian
coordinate relative to body frame as follows:

= it} |§u()] cos[gi(t)]
St} [ (1) sin[gi(t)] (5
& (t)

£9(t) = F

where F = $p,CA,,L? is a constant, and we used the fact
that v (t) = p¥ and a(¢) = 45°. An analogous equation
can be written for £(¢), only the sign in the y-component
is flipped. Substituting Equation (5) and its analogous Tor the

right wing inte Equations (3) we obtain the total wrench:
- [ —| 1|1 cos 1 — |brldr cos i J
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If we substitute Equations (6), into Equations (1), we find
that the insect dynamics is a twelve-dimensional nonlinear
time-varying dynamical system. However, one could notice
that the aerodynamic forces and torques are quasi-periodic
and that insect requires several wingbeat periods for complet-
ing a full maneuver. This means that the insect dynamics is
relatively slow with respect to the frequency of aerodynamic
forces. At this point we can use averaging theory which
shows, loosely speaking, that the trajectory of the averaged
dynamics is a good approximation of the true solution as
long as the wingbeat frequency is sufficiently large [13]
[14]. More precisely, the approximatior bounds are stated
in following theorem:

Theorem 1. Let us consider the following systems:

z = flz.u)

I o
uf{v,t) = u(v,t+7)

fi_i = f(ia v)

flz,w) = [T flz,u(v,t))dt ®)
v = vz

where T € R u € R™ v € RP, and all functions and
their partial derivatives are continuous up to second order,

o If 2(0) — 2(0) = O(T), then there exists a T such
that for all 0 < T < T*, z(t) - (1) = O(T) over a
timescale of order O(1).

o If T = 0 is alse an exponentially stable equilibrium
point for the averaged system (8), then x(t) — Z(t) =
O(T) for all t € [0, 00). Moreover the original system
(7) has a unique, exponentially stable, T-periodic limit
cycle xr(t) with the property ||z (t)|] < kT.

Given the limited space of this paper, the proof is omitted,
and it will be presented in a forthcoming technical paper.

This theorem shows that T-periodic feedback laws can
exponentially stabilize a system about a T-periodic Limit
cycle. At first it might be not clear the advantage of using
periodic control feedback laws gince one has to find a “good”
parametrization for the input u = u(v, ) and the averaged
system is still nonlinear, in general. Besides, these feedback
laws do not guarantee the convergence to the desired state
z = 0, but only to a limit cycle that that is O(T') close to the
origin. The advantage of high frequency T-periodic feedback
laws resides in the fact that the number of independent
virtual input v € R? can be larger than the original number
of independent input u € R™, ie. p > m. In fact, high
frequency control can in principle increase the number of
virtual input, as shown by Sussmann and Liu in [15] for
nonholonomic affine systems. In the case of flapping flight,
however, the increased number of virtual inputs arise from
the nonaffine nature of the system. In fact, the stroke angles
{¢r,¢y) of Equations (6), which play the role of the input
u defined in the previous Theorem, appear nonlinearly in
the entry of the wrench. The goal of the parametrization
in Equation 4 is to move the wings in order to affect
independently as many entry of the wrench as possible.

Another advantage of high frequency control is that the
origin £ = 0 might not be an equilibrium point for the

6443


http://sing1e.de

original system, i.e. there is no input u* such that f(0,u*) =
0. Therefore, this type of feedback can stabilize the system
closed to the desired state, which is ctherwise unfeasible. The
distance from the desired state depends on the frequency 7" of
the input. Therefore, if T is a controllable parameter, the error
can be made arbitrarily small by reducing the period T. In
the rest of this paragraph we show that these two advantages
are actually present in insect flapping flight. In particular, we
will show that we are able to generate 5 independent virtual
input for the averaged system by controlling actively only 2
input, which are the right and left stroke angles (&, ;).
Moreover, both the hovering configuration and the cruise
flight with constant velocity are not feasible for the original
systems, but they can be approximated with feasible trajecto-
ries that are O(T’) closed and are exponentially stabilizable.
The closeness depends on the period 7, and it has been
shown elsewhere [7] that the error of the approximation is
practically undetectable for inch-size insects or smaller. This
1s consistent with observations of real insects during free
flight which do not seem to oscillate about their trajectories.
Therefore, it seems that insect flapping flight represent a
very compelling example of high frequency control present
in nature. '
Instead of considering the time-varying system, we stud

its dynamics averaged over a single wingbeat penod, whjcg
requires the computation of the mean aerodynamic force,

= %foT £°(t)dt, and torque, 7 = L fOT 8(t)dt:

‘ sinc{ Mﬁms(‘nAo)(l +r0)?(1-2p4)
2 prl1-p1}
4FA; __sim(%i)sin(“n-‘lo)(1+~1)2(1-2pz)
T2 pr(l=p1}
(4 )?
pi(1-pp)
sine( 30y cos(v, Aa) (142 (120, )
A, pr{l—pr)
sine{ S8 ) sin{y- An){1+rr)3(1-20,) 9

Y !1+nr}ﬂ

pr(l=pr}

=

+

skc( 5L cos(yr An) (3+xr )

pi{i—pr)
_ 2sine( A2 sinm Ao) (1 m)?
T2 Aaplz(l—m)

_ (e (1-2p)
e1(l-pi)

St coulyr Ag) (1)

Pr{l—pr)
~25im(-‘%n)sin(‘7r.40)(l+nr)2

Auﬂrél—ﬂr)
+g1+.=,2 (1-2p;)

pr{l—pr)

3
20 AFL Ay

(10)

where sinc(z) = S22, The equations above can be lin-
earized about the symmetric wing motions corresponding te
P =pr = 3% =Y =k = K, = 0. To further simplify
results, let define the following input parameter:

w = —sinc(42)[(p — )+ (pr — )]
w2 = Ktk
wy = -sinc(40)[k; — #y] (1)
wy = —sine(52)ly + )
ws = (p;— %) = {(pr _‘%‘)
to obtain:
B 0 wy Wy
f"=f0[0]+f0[0], =mn w4] (12)
1 Wy ws

2 3
where fo = g‘zgéﬂ and 75 = g"—?g‘iﬁ. Note that the mean

stroke amplitude Ay and wingbeat period T can be chosen
to exactly balance the gravity force mg, i.e. fo = mg. The

linearized wrench clearly show how the kinematic parameters
can be combined to control independently all the forces
and torques about the insect center of mass, except for the
force component along the y-direction of the body frame. In
particular, a difference in amplitude in the two wings would
result in a net roll torque, the increase in amplitude of both
wing would results in a larger vertical thrust. A difference
in speed between downstroke and upstroke on both wing
leads to a net forward thrust, while a difference in speed
between the two wings leads in a net yaw torque. Finally,
an analogous change in the offset of stroke motion on both
wings gives rise to a net pitch torque. Equation (11) can be
thought as a linear map B € R**® from the wing kinematic
parameters, v = (py, &1, Y1, Pr. Kr, ¥r), 10 the virtual control
inputs w = (wy, we, wy, Wy, Ws), 1.6. w = By, Although the
map B is not invertible since it is not a square matrix, it is
always possible 1o find a linear map Bt € R5*® such that, for
any vector w the vector v = Bl w, satisfies w = BBTw, ic.
BB = I, 5. One natural choice is to use the pseudoinverse
of the matrix B, ie. BT = (BTB)"'BT. It is clear that
the wing kinematic parametrization chosen in Equations (4)
is sufficient to move the insect in any direction, since it
is possible to synthesize feedback laws based on the input
control vector w, and then use the static map B' to find
the corresponding wing kinematic parameters v. Moreover,
Equations (4) shed light on some of the reasons for the
superior maneuverability of insect flight. In fact, differently
from helicopter-like vehicles, flapping insects can generate
forward or backward thrust forces without necessarily pitch
the body orientation, thus resulting more responsive during

‘hovering mode and in initiatinF forward flight from rest.
1

We can summarize our results in the folféwing theorem:

Theorem 2. Define the system & = f(x,u) given by
Equations (1) and (6}, where ¢ = (pf,vf, R, wy) and
u = (¢, ér). Let the control input v = wu(v,t) be
parameterized as in Equations (4) and T-periodic, where
v = (pp, K1,V Pro Kry 1) are the wing kinematic param-
eters. The corresponding averaged system ¥ = f(Z,v) =
T fOT F(Z, u(v, 8))dt is given by Equations (1), (9) and (10).
1) The averaged system, & = f(Z,v), is locally accessible
2) The hovering configuration q = (p?, v/, R.wy) =
(Po, 0, f3x3,0), where Py € R* is an arbitrary point in
space, is an equilibrium point for the averaged system
z = f(Z,v), and its linearization is controllable. .
3) The motion of the center of mass along a straight line
with constant velociry, i.e. v/ (t) = v* where v* € R?
is constant, is a feasible trajectory for the the averaged
system & = f(Z,v) and it is comtrollable abour this
trajectory.
4) The original system & = [f(x,u) can be exponentially
stabilized about a T-periodic limit cycle xp(t). In
articular there are limit cycles with the property
ﬁxT (t)—z*(¢)|| < kT where x*(t) can be the hovering
configuration or the motion along a straight line with
constant velocity,

Given the limited space of this paper, the proofs are
omitted, and they will be presented in a forthcoming technical

aper.

P Eﬂ other words, this theorem states that the averaged
dynamics is a good approximation for sufficiently high wing-
beat frequency, therefore designing exponentially stabilizing
control laws for the averaged dynamics would result in stabie
dynamics for the true system. The fact that the system is
globally accessible is quite intuitive since it is possible to
control altitede by modulating the vertical thrust generation,
and z ~ y position by steering the body orientation similarly
to helicopters. In practice, accessibility is a necessary condi-
tion to be able to find a control input that can steer the insect
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from any initial configuration to any final configuration, This
is very important when designing complex maneuvers such
as saccades, take off and landing. Finally, stabilizing control
laws for hovering and cruising flight modes, two fundamental
building blocks for high performance flight, can be readily
synthesized from the linearized averaged wrench described
by Eﬁfuations (12). In particular, linear feedback laws, i.e.
v = Kz, can be designed to (locally) stabilize flight, which
is critical to MFIs because of their limited computational
capabilities.

1. THORAX TOY MODEL

A simplified model of the actuator-thorax-wing system is
derived here. As shown in [16], the piezoelectric actuator can
be seen as a pure force generator with a parallel stiffness,
where the output force is proportional to the input voltage
v(¢}. The thorax, basically consisting of a 4-bar mechanism,
is deployed to transform the force/linear displacement at the
tip of the actuator into torque/angular displacement at the
base of the wing. The wing will contribute to the dynamics
with its rotary inertia and its aerodynamic damping. In
order to underline the principal features of flapping flight, a
simplified electromechanical model will be used. A detailed
model for a 2 degrees of freedom (d.o.f) thorax-wing can
be found in [17], while here only 1 d.o.f. will be considered,
as the one sketched in Figure 3, where the rotation along the
wing axis is passive, i.e. the trailing edge of the wing simply
follows the leading edge (see Figure I). With reference to
Figure 3, the thorax transmission will be modelled as a
static linear relation, i.e. nonlinearities at high fields will be
neglected, and the aerodynamic damping will be considered
as a linear function of the wing speed, although a more
faithful model would consider a quadratic dependence on
the wing speed as suggested by Equation {2).

Fig. 3. Actuator, 4-bar, wing system.

In [16] is shown how to relate geometrical and physical
characteristics of actuator-thorax-wing system to the param-
eters that characterize a second order systems, i.e. DC gain
K¢, resonant frequency wy, and quality factor Q. The actual
values for these parameters have been choosen based on those
experimentally observed on blowflies, our target size MFL In
fact, the actuator stiffness is tuned with wing inertia and the
thorax transmission ratio (f£7], {16]) in order to resonate at
150H z, ie. wp = 27150 rad/sec, while the quality factor
is typically @ = 3, as shown in [16].

Let u(t), ¢(t) and ¢(f) be respectively the input voltage,
the output wing displacement and the output wing speed and
V, ¢ and @ be their Laplace transforms. The dynamics of
{)he second order system in the time domain are determined

y:

¢ty | [ © 1 (1) 0
[ém]“["wﬁ —%‘Lqu(t)}*[KDc]”“)
(13
while in the Laplace domain it can be expressed as: )

®)_ _Kpcwp (171, _[EW
HIEE=1H L P I

A. Controllability via Pulse Width Modulation

In this section the case of symmetric wing kinematics
will be considered in order to highlight the key aspects
of controllability by means of simphified calculations. Since
the wings move with symmetric motion, the force along
the y-axis and the roll and yaw torques generated by the
left wing are exactly balanced by the right wing, therefore

“the dynamics of the insect is constrained to the x-z plane,

Formally, the simplified system is described by the equations:

mpl cos(d) —sin(d} 0 f_,,g
m(pl +g) | = | sin(®) cos(@) 0
Jod 0 o 1f|t
15)
where m is the insect mass, J® is its inertia relative to the
y-axis (see Figure 1), ¥ is itcﬁ angle, and g is the gravity.
In a previous section, forces and torque were derived
after parameterizing wing kinematics with input parame-
ters (&, p,~). Here the motion of the wings is determined
by the wing-thorax electromechanical system driven by a
piezoelectric actuator, A piezoelectric actvator is capable
of transforming an input voltage into an output mechanical
displacement. Its parasitic capacitance mainly affects the
efficiency of such a conversion [18]. Due to energy/size
constraints [16], a binary input voltage {+V}), i.e. a switching
stage, will be employed. It is important to limit the number of
switches per cycle because each switch lead to unavoidable
losses [18] and for this reason only square waves with
variable duty cycle will be considered. Therefore a PWM
will be employed and the input parameters will be related to
the input voltage ©(t), i.e. its amplitude Vjp, its frequency wy
and its duty cycle d, as follows:

v(t) = Vosign{dT - ¢t)

where T = 2£,

In order to control the system (15), we should be able
to vary ingut parameters (Vp,wp,d) so that the wrench
(72 £2 781" might assume any valve (within an open ball
around the origin), From Equation (13), ¢(¢} depends linearly
on Vp and then the forces will depend linearly on V02 which
can be used to modulate the wrench modulus. What is left to
be shown is how wp and d can modulate the wrench direction.
‘When only steady state is of interest, v(t}, ¢(t) and ¢(¢) can
be expanded as Fourier series. For a generic function w{?):

0<t<T (16)

w(t) = Wpe + D [Wal cos(mwot + 8(Wa))  (17)

n=1

where wy is the input frequency, vsually centered around wy,
Wpc is the DC component of w(t), Wy, is the (generally a
complex number) Fourier coefficient, and |W,,| and &(W,,)
represent respectively its modulus and phase.

w(t) B(t) B(t)
2Vp(d — %) Kpe 2Vp(d — %) B
i d i d . in(mdn) £ .
zsms:rnn 251“;’;’1) F(nng) 2511'11'::Il ™ F(nJWO)
TABLE 1

FOURIER COEFFICIENTS FOR v(t), (t), AND ¢(t).

Considering v(t) as a (periodic) square wave of amplitude
+V, and duty cycle d, steady state solutions of (14) can
derived at once by simply posing s = jw as shown in Table
I where the first row refers to the DC component while the
second row refers to n-th coefficient of the Fourier series,
ie. s =njwo.
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Since the purpose is driving with square-waves, next it
will be shown how, starting with a nominal square-wave of

frequency wp = 2w150rad/sec and duty cycle d = 0.5,

vanations of the input frequency and duty cycle can provide
enough degrees of freedom to adjust the mean wrench:

b
f T ¢”
f F .
= = —¢|d|cosg | di (18)
% _ T ‘/0 #?sing

where T = 2r/wy and F has been defined in the previous
section. .

Considering the state space ¢ — ¢, periodic trajectories wiil
determine closed loops. Integrals in Equation (18), after a
change of variables (d¢ = ¢ dt), will solely depend upon the
trajectory in the state space. For instance, 72 will correspond

to the area enclosed by a trajectory divided by T

Fig. 4.  (feff) Mean force in the x direction (bpcg frame) versus input
frequency (nominal 150 z) and duty cycle (nominal 0.5). (right}

R

1| a

Frequancy [Hz] Buty cycie

Fig. 5. Mean force in the z direction (body frame)} versus input frequency
(nominal 150.H z) and duty cycle (nominal 0.5).

Consider the plane of input parameters (wg and d) centered
around their nominal values (150H 2z and 0.5). From Figure

(4) it is clear that, given any two desired values for fi and
FZ in a (small) neighborhood of zero, it is always possible to
find an input frequency and duty cycle that will provide those
outputs. It is in fact possible to distinguish 4 quadrants where
mean torque and mean force along x-axis assume arbitrary
sign:
input quadrant I
wp > 2150, d > 0.5
wy < 2m150, 4 > 0.5
wy < 27150, d < 0.5
wp > 27150, d < 0.5

+ 1+ g
RIS iy 8

Note how, although mean torque and mean x-axis force
change sign at each quadrant, z-axis mean force does not

_in Equation (18).

change significantly since the nominal values of input fre-

uency and duty cycle correspond to 2 maximum of f z, as
shown in Figure (5).

During hovering, the z-axis of the body frame and the z-
axis of the fix frame are almost aligned. Because of gravity,
only positively directed z-axis components of the force are
of interest. A simple way to obtain a negative z-axis force
is by decreasing power to the wings, i.e. lowering |¢[%. This
can easily be accomplished in the stage (generally a DC-
DC converter [18]) that is used to generate the high driving
voltage (V) for the piezoelectric actuators. The analysis
in this section can be summarized by saying that there
exists a nonlinear locally invertible map 11 : (Vy,d,wq) —
(w1, we, ws) such that: ’

—b
I mg w;
-j_‘b = 0 + 1 wy
_1-_.5 0 W3
Equation (19) is analogous to Equation {12) and the map If
in analogous to the linear map B of Equation (11), therefore

similar considerations about controllability and synthesis of
feedback control laws can be derived.

19)

B. Input-Output Delay

Whatever the control law will be, input frequency and
duty cycle shall certainly vary much “slowly” with respect
to the wing beat period T = 2n/wp. It 1s important to
determine what “slowly” means in this case. For this reason
an estimate will be derived of the time delay occurring
between the setting of input (frequency and/or duty cycle)
and the generation of a steady output (the desired mean forces
or mean torque).

Suppose the control law decides to switch at time ¢t = 0
from an initial steady state space trajectory [¢(t} #(2)]7
relative to input variables (Vp, wq, d) to a new one relative
to (Vj.wh.d'). Accordingly to linear systems thecry, the
trajectory after time ¢ = 0 can be thought of the superposition
of the steady state trajectory [¢'(t} ¢'(t)]” and a transient
trajectory [Ad(t) Ap()}T.

Both initial and final steady state trajectories can easily be
determined by Fourier coefficients in Table I. The transient
is determined by the evolution of the system with initial
conditions (at time ¢t = 0) [¢(0) — ¢'(0) ¢(0) — ¢'(0)]F =
[Ag(D) A@(0))T and zero input voltage.

Two steady state trajectories, corresponding 1o inputs
(Vo wo, d) and (V{.w).d'), are used to evaluate integrals
e time it takes for such integrals to
stabilize around the final value is exactly the time it takes

for the transient [A¢(t) Ag(t)]” to fade away. Such a decay
simply depends on [A$(0) A¢(0)]” and the eigenvalues of
the second order system in Equation (14), i.e. in the state
space variables:

P20 ]-[ 5 B[] e

with eigenvalues:

-1+ 4/1—4Q? .
A:wn_—_—Q_g_ﬁian

20 2Q

approximation ctearly holds for @ = 3. The purely imaginary
term represents the oscillatory nature of the filter while the
real one represents its damping. The inverse of the real
term is the time constant, i.e. 2Q/wy, = TQ/m < T when
@ = 3 < m. The time constant 1s less than a period (the
period of the input voltage is close to the period of the

21
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resonant frequency of the filter). In Figure (6), average forces
and torque seitle to steady values within a cycle. Steady
values can be derived also from maps in Figure (4), (4) and
(3) for inputi frequencies equal to 140, 150, 165H z and duty
cycles equal to 0.4, 0.5 and 0.6. For smoother transitions, the
oscillations can be greatly reduced.

ar 3
number of cycles T=2n/w

Fig. 6, Averages'forces and torque transient due to variation of duty cycle
at different frequencies.

As a final remark, it is important to notice how the choice
of @, in the design of the electromechanical system, affects
controllability. Previous calculations show how a lower @
implies a quicker decay of transients, i.e. for a given input
transition the delay between initial and final values of average
forces and torque is lower.

On the other hand, a high @ system would be capable of
generating higher forces, including the mean lift fj, defined
in Equation (12), which can be shown to be inversely: pro-
portional to the square of (0. Since at present no quantitative
analysis for this trade off is available, ( = 3 has been chosen
based on values observed in most insect species [16].

IV, CONCLUSIONS

In this paper, we presented a detailed controllability analy-
sis of flapping flight for an MAV with limited kinematics and
PWM control of wing-thorax electromechanical structure.

In particular, we show that a pair of wings with a sin-
gle degree of freedom and passive rotation are sufficient
to ensure controllability of nsect flight for hovering and
forward motions, This has been shown using high frequency
control theory applied to nonaffine control systems. Besides,
the wing parametrization adopted can be readily mapped to
the mean torque and forces relative to the body frame, thus
posing the basis for simple linear feedback laws. This is
extremely valuable given the limited computational power
available on board on the MAV. Even in the more realistic
scenario when the electromechanical model of the wing-
thorax is introduced and a simple PWM control of the
actuators is assumed, controllability is still ensured. However,
in this case, the wing-thorax electromechanical structure must
be designed to have a fast transient decay when control input
changes at the beginning of every wingbeat. Interestingly,
this condition sets a trade off between controllability and
efficiency in lift generation, and it seems to be present also in
most flight insects, since the quality factor ¢, which regulate
this tradeoff, is approximately 1 — 5 for most species.

This work sets the basis for interesting future research
directions. One direction is to introduce a more realistic
model for the wing-thorax structure, including a nonlinear

term in the restoring force and a quadratic dependence on the
velocity in the damping term, and study their consequences.
Another interesting topic is to model the transient decay in
the mean forces arising from the dynamics of the wing-
thorax structure. Also, we would like to quantify analytically
the performance loss in terms of controllability and power
efficiency when a single degree of freedom wing with PWM
control of actuators is compared to a two-degree of freedom
wing with analog control of actuators. Finally, we would
like to set up a general framework for designing optimal
control input parametrizations given the constraints on the
electromechanical structure, and to compare them with those
based on biomimetic principles, i.e. those observed in real
insects.
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