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Abslracl-In this a er we ex lore controllabilit in Wpping 
R ht for Micro Aeri8&hides (dAVs), inch-size rdo t s  ca able 
oFautonomous Rght Differently from previous work, we focus 
on a MAV with very limited wmg kinematics and simple input 
control schemes. In particular, in the first part we show how an 
MAV provided with a pair of wings, each with a single de ree 
of freedom and assive rotation, can still ensure coutrollabhy. 
This is obtaineabv combinine two ideas. The first idea is to 

I. INTRODUCTION 
Unmanned air vehicles. (UAV). have been a verv active 

area of research for both 'chi1 '&d military npplkations. 
Despite recent remarkable nchievementc obtained U ith fixed 
and r o r q  aircmfh [ I ] ,  their uhc in man) tasks is still limilcd 
by their maneuverability and size. In order to overcome these 
limitations, the extraordinary flight capabilities of insects 
have inspired the design of small nncro aerial vehicles 
(MAVs) 121, in particular inch size robots with flapping 
wings mimicking real flying insects [3]. Their unmatched 
maneuverability. low fabrication cost and small size make 
them very attractive for cost-critical missions in environments 
which are impenetrable for larger size UAVs such as heli- 
copters or airplanes. Moreover, the latest progress in insect 
flight aerodynamics [4] and in micro-technology [5] seem to 
provide sufficient tools to fabricate flying insect micro-robots. 

Despite the aerodynamic mechanisms resent during insect 
flight have been clearly identified [4], littfe is still know about 
how insects actuallv exuloit these mechanisms to achieve 

The motion of the insect is a nonlinear system with forced 
periodic inputs. On the other hand, the wingbeat frequency 
is much higher than the dynamics of the insect itself, since 
flying insects require several wingbeat periods to complete 
a complex maneuver such as a saccade. Moreover, the wing 
pattern motion in real insect does not change dramatically 
from one wingbeat to another wingbeat, even during fast 
maneuvers. These two facts lie at the core of the control 
approach for flapping MAVs proposed in [61 [71, which is 
based on averagmg the system with respect to the wingbeat 
period, and on parameterizing the wing motion according to 
biomimetically inspired parameters that can be changed on 
a wingbeat-by-wingbeat basis. 

A similar approach based on averaging has been proposed 
for the control of fish-like locomotion [SI [9], wlnch anal- 
o ously to flapping flight, is generated by the interaction OF oscillatory appendices with a viscous fluid. However, 
our approach based on wing motion parametrization, which 
mimics real insect wing motions, leads naturally to a time 
invariant system where artificial virmal control inputs appear 
naturally as a simple function of the wing parameters, thus 
facilitatlng the synthesis of feedback control design. 

Differently from previous work [7], where we considered 
wings with two degrees of freedom and analog control 
input to the the thorax-wing actuators, here we focus on a 
model with very limited wmg kinematics and with simple 
P W M  input to the wings actuators. This is motivated by 
the necessity of simple electromechanical fabrication and 
highly efficient power transfer from the power supply to the 
actuators. 

This paper is organized as follows. The next section 
presents a model for the insect flight dynamics, wing aero- 
dynamics and wing motion paramettization. Then it applies 
averaging theory arguments to reduce the controllability of 
the nonlinear time-varying system to the controllability of 
a nonlinear affine time-invariant system. In Section ID we 
propose a simplified model for the wing-thorax elecmme- 
chanical structure and a simple PWM conml input based on 
electrnmechanical considerations, and we study their effect 
on controllabilitv. In the final section we summarize our 

complex maneuvers' sucL as saccades or hovering. Besides, 
electromechanical considerations limit the set of feasible 
wing kinematics configurations and the input control schemes 
available. 

aper is to unveil some of the most 
important features o!insect flight from a control point of 
view, placing panicular emphasis on the electromechanical 
constraints. 

Similar to aerial vehicles based on rotary wings, such as 
helicopter, flying insects control their flight by controlling 
their attitude and the magnitude of the vertical thrust [6]. 
This is accomplished by the controlling the aerodynamic 
forces and torques generated by the wings during flapping. 
However, u n l i e  in helicopters, aerodynannc forces on insect 
wings are highly nonlinear and time-varying during a wing- 
beat, and the periodic motion of the wings cannot be ignored. 
As a result, the system dynamics cannot be approximated by 
a linear time-invariant model, widely adopted in helicopter 
theory based on quasi-static assumption on the rotary blades. 
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findings and we'suggest future research directions. 
11. FLAPPING FLIGHT MODELING 

Flight dynamics of flapping insects is still an open area 
of research [lo] [ll].  This is primarily due to the difficulties 
in measuring aerodynamic forces on real flying insects, and 
in experimentally validating proposed theoretical models. In 
this work we model the dynamics of a flying insect as a 
rigid body subject to external forces. Albeit wmgs do move 
relative to the insect body, their mass is witbin 1 - 5% 
of total insect mass and hence their effect on the~insect 
dynamics is relatively small and can be neglected. Besides, 
nonbolonomic effects are unlikely, since wings move with 
an almost symmetrical motion. Therefore, we assume that 
the insect body motion evolves according to the rigid body 
motion equations subject to extemal forces relative to its 
center of mass [12]. The extemal forces acting on an insect 
are the aerodynamic forces generated by the wings, the 
gravity force, and the body viscous drag. Angular viscous 
torques are not included since they are negli ible with respect 
to the torques generated by aerodynamic forces. Summing 

The goal of this 



Fig. 1. Definition of wing kinematic parameters: (lej?) 3D view of left wing, (center) side view of wing perpendicular to wing axis of 
" ion  ?, (right) top view of insect stroke plane 

up, the dynamics of the attitude of a flapping insect are 
modeled as follows: 

where m is the insect body mass, pf E W3 and vf E 
W3 are the position and velocity of the insect center of 
mass relative to the fixed frame, respectively, f b  is the 
aerodynamic force relative to the body frame B, c E W is the 
viscous damping coefficient, g is the gravity vector, wb = 
[ w ~ ~ w ~ ~ w ~ ~ ] ~  is the angular velocity of the insect body 
relative to the bodv frame B. T~ E W3 is the aerodvnamic 
torque relative to h e  body frame B attached to thhcenter 
of pass, of the in>ect body, and Jb E is the moment 
of inema of the insect body relative to the body frame B. 
The matrix R E SO(3) = { R  E : RTR = I ;  det R = 
+1} is the rotation matrix representing the orientation of 
the insect bodv frame B relahve to the fixed frame A. In 
p&cular, k t  Lb = [ % b y b l b b i T  and V' = [ Z , y & Z , ] T  the 
coordinates of a vector v E W relahve to the body frame B 
and the fixed frame A, respectively. Then, these coordinates 
satisfy the transformations v,, = R v ~  and V b  = Fv,. 

The aerodynafnic force and torque, fb  and r b ,  are gener- 
ated by the mohon of the two wings. In insects each wing 
is quite stiff and can be modeled as a rigid body rotating 
ahout its-wing base. Let us define a wing frame coordinate 
system ( t ,  6,fl (see Figure 1). The vector Tis parallel to the 
wing chord oriented from the trailing to the leading edge. 
The vector 6 is perpendicular to the wing profile oriented 
form dorsal to ventral. The vector F is oriented from wing 
base to wing tip. Its position can be defined by t b r ~  Euler's 
angles: the stroke angle, 4, i.e. a rotation about the t axis, the 
deviation angle from stroke plane, 8, i.e. a rotation about the 
n' axis, and the rotation angle, $, i.e. a rotation about the i 
axis. The plane swept by the rotation axis Pwhen setling the 
deviation angle 8 to zero, is called mean stroke plane. Recent 
work done by DicFnson and his group [4] unveiled three 
major mechanisms involved in flapping flight: the delayed 
stall, the rotational lift, and wake capture. Delayed stall 
provides most of the aerodynamic force production, while 
rotational lift and wake capture are present only during wing 
rotation. In this work, we will consider only the modeling for 
the delayed stall because the rotational lift and wake capture, 
besides being mathematically less amenable, have a smaller 

contribution in aerodynamic force generation. therefore thcy 
are unlikely to change the yualirritiir. analysis developed in 
this uork. Indeed, there is evidence th3t these mechanisms 
act synergistically with the delayed stall in augmenting force 
and torque generation uhile preserving the same "sign" [ IO] .  
Experimental results 141 hwe shown that the delayed stdl can 
be modeled quite accurately by a quasi-steady state equation 
of instantaneous uring kinematic position 3nd telocity. Its 
effect is equivalent to apply a vector force perpendicular 
to the wing profile and on the opposite direction of wing 
velocity, VI.', 01 wing center of pressure uhich is placed 
at a quarter-chord distance from the lending edge and at a 
distance of approximately 0.C - 0.7 wing-length from the 
wing base depending on the exact wing shape (see Figure 
I ) .  The msgnitude of this force is given by: 

where CD = Csina and C = 3.5 is the delayed st$ force 
coefficient empirically derived in 141, a = cos-'(t . +$,) 
is the angle of attack, A, is the total wing area, pa is the 
air density (see Figure 1). Therefore, given the trajectory 
( 4 ( t ) , O ( t ) , + ( t ) )  for both wings it is possible to compute 
the total aerodynamic force and torque vectors acting on the 
center of mass of the insect body as follows: 

where the subscripts 1,r stand for left and right wing, 
respectively, and p"(t) = Lqt)  is the position of the center 
of pressure of the wing. Note that pw(t) = ~ ' " ( t ) .  

Flying insects show a rich set of wing trajectories by 
varying the stroke angle oscillation from sinusoidal to saw- 
tooth, by modulating the mean angle of attack during the 
upstroke and downstroke, by changing the timing of rotation, 
and by exhibiting out of stroke plane wing motions such as 
figure-eight and banana-like trajectories [4]. 

However, in this work we restrict the wings to move on 
the mean stroke plane, i.e. O(t) = 0 for both wings, and 
we assume that wing rotation is instantaneous at the wings 
inversion of motion maintaining the same angle of attack 
during upstroke and downstroke, i.e. a(t) = 45'. Also we 
assume that the wings move at constant angular velocity 
during the upstroke and the downstroke, i.e. the stroke angle 
+(t),moves according to a sawtooth-like motion as shown 
in Figure 2. Mathematically, each wing trajectory within a 
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Fig. 2. Wing kinematic during two wingbeat periods: (top) stroke 
angle, (bottom) rotation angle 

single wingbeat is described by the following equations: 

l - % ) + y A o  O S t S p T  
2*-1)+7A0 p T < t S T  

$(t)  = 45O sign(pT - t )  O S t S T  
O(t) = 0 . .  

(4) 
where sign(z) = 8, T is the wingbeat period, Ao is the 
stroke amplitude range, K is a tunable parameter that controls 
the stroke amplitude, p is the ratio of downstroke duration to 
total wingheat period, 7 is the relative stroke angle offset. We 
assume that the wingheat period, T, and the stroke amplitude 
range, 4, are fixed, while the three dimensionless parameters 
(K; p; y) can he changed on a wingbeat-by-wingbeat basis. 
The angle of attack is fixed at 4 5 O ,  because it is the angle 
that generates maximum vertical thrust. 

Our simplified wing trajectory parametrization is dictated 
by the necessity of finding feasible wing trajectories for 
the electromechanical structure, and yet this parametrization 
should still capture the essence of controllabihty of real insect 
Right. 

In practice, this paaicnlar wing trajectory parametrization 
based on ( ~ ; p , 7 )  is equivalent to reduce the 3-degree of 
freedom wing to a sing1e.de ree of freedom wing with a 
passive rotation, i.e. the only fegree of freedom that is really 
controllahle is the stroke angle. 

In order to simplify analytical derivations of these two 
vectors, we also assume that the two insect wing bases 
coincide with the insect center of mass, that the x b  - yb 
plane of the body frame is parallel to the mean stroke plane 
as shown in Figure I .  Therefore, the position of the center of 
pressure of the wings can he written in Cartesian coordinate 
relative tohodyframeaspp(t) = L(sindl(t):-cos$l(t),O) 
and p:(t) = L(sin$,(t):cos@,(t);O) 

Substituting Equations (4) into Equation (Z), the delayed 
stall force acting on a wing can he written in Cartesian 
coordinate relative to body frame as follows: 

where F = apaCA,L2 is a constant, and we used the fact 
that vw( t )  = p" and a(t) = 15O. An analogous equation 
can he written for fF ( t  only the sign in the y-com onent 
is Ripped. Substituting dua t ion  ( 5 )  and its analogous for the 

right wing into Equations (3) we obtain the total wrench 

-l$ll$lcos4i - I.&I.&cos4r 

4; + 4; 
14114isin@ - I$r14.sin4r fb(t) = F 

If we substitute Equations (6), into Eguations (l), we find 
that the insect dynamics is a twelve-duneusional nonlinear 
time-varying dynamical system. However, one could notice 
that the aerodynamic forces and torques are quasi-periodic 
and that insect requires several wingheat periods for complet- 
ing a full maneuver. This means that the insect dynamics is 
relatively slow with respect to the frequency of aerodynamic 
forces. At this point we can use averaging theory which 
shows, loosely speaking, that the trajectoly of the averaged 
dynamics is a good ap roximation of the true solution as 
long as the wingheat tequency is sufficiently large [I31 
[141. More precisely, the approximation bounds are stated 
in following theorem: 
Theorem 1. Let us consider the following systems: 

= f ( z . a l  

(7) 

where z,Z E Rn,u E Rm,u E RP, and allfuncrions and 
rheir parrial derivatives are continuous up ro second order. 

If Z(0) - z(0) = O(T), then there erisrs a T' such 
thotfor a / /  0 < T < T', z( t )  - Z ( t )  = O(T)  aver a 
timescale of order O(1). 
If = 0 is also an exponentially stable equilibrium 
point for the averaged system (8). rhen s(t) - Z(t) = 
O(T)  for all t E [O.  CO). Moreover rhe original system 
(7) hos a unique, exponentially srable, T-periodic limit 
cycle xT( t )  with the pmperry IlzT(t)ll c kT. 

Given the limited space of this paper, the proof is omitted, 
and it will he presented in a forthcoming technical paper. 

Iaws do not guarantee the convergence to the desired state 
z = 0, but only to a limit cycle that that is O ( T )  close to the 
origin. The advantage of hi h frequency T-periodic feedback 
laws resides in the fact $at the number of independent 
vinual input U E W P  can be larger than the original number 
of independent input U E Wm, i.e. p > m. In fact, high 
frequency control can in principle increase the number of 
virtual input, as shown by Sussmann and Liu in [I51 for 
nonholonomic affine systems. In the case of flapping flight, 
however, the increased number of virtual inputs arise from 
the nonaffine nature of the system. In fact, the stroke angles 
(ah, &) of, Equations (6), which play the role of the input 
U defined in the previous Theorem, a pear nonlinearly in 
the enuy of the wrench. The goal o t t h e  parametrization 
in Equation 4 is to move the wings in order to affect 
independently as many entry of the wrench as possible. 

Another advantage of high frequency control is that the 
origin x = 0 might not he an equilibrium point for the 
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original system. i.e. there is no input N I  such that f ( 0 .  ii') = 
0. Therefore, this type of feedback can stabilipe the system 
closed to the desired st3te. which Is otherwise unfeasible. The 
distance froin the desired state depends on the frequency 7 of 
the input. Therefore, if 7' is 3 controllable parameter. the error 
can he made arbilranl) small by reducing the period T. In 
the rest of t h s  paragraph we show that thece two advanlitges 
are actually present in insect Rapping Right. In pdicular, we 
will show that \re are able to generate 5 independent \,mu31 
input for the averaged s)stem by controlling actively only 2 
input. which are the right and left stroke angles (a,.o,'. 
Moreover, both the ho\ering configuration and the cruke 
Right with constant yelocity are not feasible for the original 
systems, hut they can be approximated uith feasible trajecto- 
ries th3t are O(1') closed and arc exponenu;ill) stabilicilble. 
The closeness depends on the period T.  and i t  h3s been 
shown elsev'here [7] th3t the error of the approximation is 
practically undetecrnble for inch-size insects or smaller. This 
is consistent with ohsenations of real insects during free 
Right u,hich do not seem to oscillate about their trajectories. 
Therefore. i t  seems that insect Rapping Right rspresent a 
very compelling example of hgh  frequency control present 
in nature. 

its dynamics averaged over a single winbeat period, whicl 
reauucr the comvuution of the mean aerodynamic force. 

Instead of considering the time-varyin system. we stud 

where sine(x) = *. The equations above can be lin- 
earized ahout the symmeuic wing motions corresponding to 
pi = pr = - 7, = yT = nl = I C ~  = 0. To further simplify 
results, let &fine the following input parameter: 

1 

32FA' 32FLA3 where fo = -7p and T~ = +. Note that the mean 
stroke amplitudme A0 and wingbeat period T can be chosen 
to exactly balance the gravity force mg, I.e. fo = mg. The 
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linearized urench clearl) show how the kinematic parameters 
c3n be combined to control i1 i i l i~p~1i i1ent I~ all the forces 
aiid torques about the insect center of mass. except for the 
force component along the y-dire.Tion of the hod? frame. In 
particular. a difference in aniplitude in the two wings would 
result in a net roll torque, the increase in amplitude of both 
a,ing would results in 3 larger \,r.rtical tluust. A difference 
in speed hetween downstroke and upstroke on both uing 
leads to a net foruard thrust. while 3 diffcrencd in speed 
hetween the two wings leads in a net y3w torque. Finally. 
3n analogous change i n  the offset of stroke motion on hoth 
wings gkes rise to a net pitch torque. Equation ( I  I )  can be 
thought as il linear m3p B E P5*' froin the wing kinematic 
n3rametcrs. i, = ( I ) , .  R , .  3,. or. tir. -,, ). to the virtual control ~, . . . . , . . . . , 
inputs 11' = ( U , , .  u z .  U'.,. w4. w ~ ! ,  i.e U' 1 Bv.  Although the 
map B is not invenihle since it  is not a square matrix, i t  is 
always possible to find a linear map Bt E @6x5 such that, for 
any vector m the vector U = Btw, satisfies w = B B ~ u J ,  i.e. 
BBt = I,,,. One natural choice is to use the pseudoinverse 
of the matrix B, i.e. Bt = (BTB)-'BT. It is clear that 
the wing kinematic parametrization chosen in Equations (4) 
is sufficient to move the insect in any direction, since it 
is possible to synthesize feedback laws based on the input 
control vector w, and then use the static map Et to find 
the corresponding wing kinematic parameters U. Moreover, 
Equations (4) shed light on some of the reasons for the 
supenor maneuverability of insect flight. In fact, differently 
from helicopter-like vehicles, flapping insects can generate 
forward or backward thrust forces without necessanly pitch 
the body orientation, thus resulting more responsive during 
-hovering mode and in initiatin forward fli-ht from rest. 

We can summarize our res& in the fol6wing theorem: 
Theorem 2. Define the system x = f ( z ; u )  given 6.v 
Equations ( I )  and (6), where x = (pf,vf,R;wb) and 
U = ($ I :&) .  Let the contml input U = u(v,t)  be 
parameterized as in Equurions (4) and T-periodic, where 
U = ( P I ,  I Q , ~ I : ~ , . , K ~ , - / ~ )  are the wing kinemuric param- 
eters. The corresponding averaged qstem k = J (Z ,u )  = 
$ Jc f ( Z ,  U ( U ,  t ) ) d t  is given by Equations ( I ) ,  (9) and (IO). 

1) 777e averaged system, = f(E> U ) ,  is locall 5 accessible 
2)  The hovering cortfrguration 7 = (pj, VI, R: wb) = 

(PO, 0: &3,0) ,  where PO f R I S  an arbrrrarypoint in 
space, is an equilibrium point for the averaged system 
5 = f(5, U), and its linearization is controllable. 

3 )  777e motion of the center of muss along a straight line 
with con~tanf velocify, Le. vf ( t )  = v* where v* E W 3  
is constant, i s g  feasible trajectory for the the averaged 
system E = f (Z,  v) and it is controllable about this 
trajectory. 

4) 77ie original system 5 = f ( z ,  U) can be exponentially 
stabilized about a T-periodic limit cycle z T ( t ) .  In 
articular there are limit cycles wirh the pmperry ri x ~ ( t ) - x ' ( t ) l l  i kTwherez* ( t )  can be the hovering 

configuration or the motion along a straight line with 
constanr velocify. 

Given the limited space of this paper, the proofs are 
omitted, and they will he presented in a forthcoming technical 
pa er h 'other words, this theorem states that the averaged 
dynamics is a good approximation for sufficiently high wing- 
beat frequency, therefore designing exponentially stabilizing 
control laws for the averaged dynamics would result in stable 
dynamics for the me system. The fact that the system is 
globally accessible is quite intuitive since it is possible to 
control altitude by modulating the vertical thrust generation, 
and x - y position by steering the body orientation similarly 
to helicopters. In practice, accessibility is a necessary condi- 
tion to be able to find a control input that can steer the insect 
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from any initial configuration to any final configuration. This 
is very important when designing complex maneuvers such 
as saccades, take off and landing. Finally, stabilizing control 
laws for hovering and cruising flight modes, two fundamental 
building blocks for high performance flight, can be readily 
synthesized from the linearized averaged wrench described 
by Eg" (12). In particular, linear feedback laws, i.e. 
U = 2, can he designed to (locally) stabilize flight, which 
is critical to MFIs because of their limited computational 
capabilities. 

111. THORAX TOY MODEL 

A simplified model of the actuator-thorax-wing system is 
derived here. As shown in [16], the piezoelectric actuator can 
be seen as a pure force generator with a parallel stiffness, 
where the output force is proportional to the input voltage 
u( t ) .  The thorax, basically consisting of a 4-bar mechanism, 
is deployed to transform the forcefinear displacement at the 
tip of the actuator into torquelangnlar displacement at the 
base of the wing: The wing will contribute to the dynamics 
with its rotary inertia and its aerodynamic damping. In 
order to underline the principal features of flapping flight, a 
simplified electromechanical model will be used. A detailed 
model for a 2 degrees of freedom (d.0.f.) thorax-wing can 
be found in (171, while here only 1 d.0.f. will be considered, 
as the one sketched in Figure 3, where the rotation along the 
wing axis is fass,ive, i.e. the trailing edge of the wing simply 
follows the eading edge (see Figure 1). With reference to 
Figure 3, the thorax transmission will be modelled as a 
static linear relation, i.e. nonlinearities at high fields will be 
neglected, and the aerodynamic damping will be considered 
as a linear function of the wing speed, although a more 
faithful model would consider a quadratic dependence on 
the wing speed as suggested by Equation (2). 

Fig. 3. Actuator, 4-har, wing system. 

In [I61 is shown how to relate geometrical and physical 
characteristics of actuator-thorax-wing system to the param- 
eters that characterize a second order systems, i.e. DC gain 
KDC, resonant frequency U,, and quality factor Q. The actual 
values for these parameters have been choosen based on those 
experimentally observed on blowflies, our target size ME.  In 
fact, the actuator stiffness is tuned with wing inenia and the 
thorax transmission ratio ([17], [16]) in order Io resonate at 
?50Hz, i.e. w, = 2x150 radlsec, while the quality factor 
is typically Q = 3, as +own in [16]. 

Let v( t ) ,  $(t) and $( t )  he respectively the input voltage, 
the output wing displacement and the output wing speed and 
V ,  @ and @ be their Laplace transforms. The dynamics of 
the second order system in the time domain are determined 
by: 

(15) 
while in the Laplace domain it can be expressed as: 

F ( s )  v (14) KDC 
[ : l v = [ F ( s ) ]  

A. Coiitrollabiliry via Pulse Width Modulntion 
In this section the case of symmetric wing kinematics 

will be considered in order to highlight the key as ects 
of controllability by means of simplified calculations. hnce 
the wings move with symmetric motion, the force along 
the y-axis and the roll and yaw torques generated by the 
left wing are exactly balanced by the right wing, therefore 
the dynamics of the insect is constrained to the x-z plane. 
Formally, the simplified system is described by the equations: 

,-"I 

where m is the insect mass, J b  is its inertia relative to the 
y-axis (see Figure I), ZP is itci angle, and g is the gravity. 

after parameterizing wing kinematics with input parame- 
ters ( ~ . p , y ) .  Here the motion of the wings is determined 
hy the wing-thorax electromechanical system driven hy a 
piezoelectric actuator. A piezoelectric actuator is capable 
of transforming an input voltage into an output mechanical 
displacement. Its parasitic capacitance mainly affects the 
efficiency of such a conversion [lS]. Due to energylsize 
constraints [16], a binary input voltage (+VO), i.e. a switching 
stage, will be em loyed. It is important to limit the number of 
switches per cycye because each switch lead to unavoidable 
losses [IS] and for this reason only square waves with 
variable duty cycle will be considered. Therefore a P W M  
will be employed and the input parameters will be related to 
the input voltage u ( t ) ,  i.e. its amplitude VO, its frequency WO 
and its duty cycle d, as follows: 

v(t)  = V, sign(dT - t )  (16) 

where T = 2. 
In order ;"o" control the s stem (15), we should be able 

to vary in ut parameters i;/o,wo,d) so that the wrench 

around the origin). From Equation (13), c$(t) depends linearly 
on V, and then the forces will depend linearly on V$ which 
can be used to modulate the wrench modulus. What is left to 
be shown is how wo and d can modulate the wrench duection. 
When only steady state is of interest, u(t).  @(t)  and +( t )  can 
be expanded as Fourier series. For a generic function w ( t ) :  

In a previous section, F orces and torque were derived 

, 

0 5 t 5 T 

[f, b f, b T,] b !  mgbt  . assume any value (within an open ball 

m 

where U,, is the input frequenc usually centered around w,, 
WDC is the DC component o?w(t), W, is the (generally a 
complex number) Fourier coefficient, and IW,( and 0(W,) 
represent respectively its modulus and phase. 

TABLE I 
FOURIER COEFFICIENTS FOR v(t), +(t). AND $(t) 

Considering u( t )  as a (periodic) square wave of amplitude 
+Vo and duty cycle d, steady state solutions of (14) can 
derived at once by simply posing s = j w  as shown in Table 
I where the first row refers to the DC component while the 
second row refers to n-th coefficient of the Fourier series, 
i.e. s = njwo. 
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Since the purpose is drivink with square-waves, next it 
will he shown how, starting with a nomnal square-wave of 
frequency wo = 2xl50rad/sec and duty cycle d = 0.5, 
vanations of the input frequency and duty cycle can provide 
enough degrees of freedom to adjust the mean wrench: 

where T = 2n/wo and F has been defined in the previous 
section. 

Considering the state space 4-4, periodic trajectories will 
determine closed loops. 1n:egrals in Equation (IX), after a 
change of variables (d# = 4 dt), will solely depend upon the 
trajectory in the state space. For instance, 9 will correspond 
to the area enclosed by a trajectory divide2 by T.  

.. 

Fig. 4. 
frequency (nomind I 5 0 H r )  and duly cycle (nomind 0.5). (right) 
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Fig. 5. Mean force in the z direction (body frame) versus input frequency 
(nominal 150Hr)  and duty cycle (nommal 0.5). 

Consider the plane of input parameters (WO and d )  centered 
around their nominal values (150Hz and 0.5). From Figure 
(4) it is clear that, given any two desired values for 7: and 
7: in a (small) neighborhood of zero, it is always possible to 
find an input frequency and duty cycle that will provide those 
outputs. It is in fact possible to distinguish 4 quadrants where 
mean torque and mean force along x-axis assume arbitrary 
sign: - -b 

input quadrant I f, ri", 
wn > 2 ~ 1 5 0 .  d > 0 . 5  I - + 

< 2x150; d > 0 . 5  + + 
WO < 2x150, d < 0.5 - - 
WO > 2x150, d < 0.5 + - 
Note how, although mean torque and mean x-axis force 

change sign at each quadrant, z-axis mean forcc does not 

change significantly since the nominal values of input fre- 
uency and duty cycle correspond to a maximum of T:, as 

$own in Figure (5) .  
During hovering, the z-axis of the body frame and the z- 

axis of the fix frame are almost aligned. Because of gravity, 
only positively directed z-axis components of the force are 
of interest. A simple way to obtain a negative z-qis  force 
is by decreasing power to the wings, i.e. lowering 141'. This 
can easily he accomplished in the stage (generally a DC- 
DC converter [IS]) that is used to generate the high driving 
voltage (&VO) for the piezoelectric actuators. The analysis 
in this section can be summarized by saying that there 
exists a nonlinear /orally inveniWe map II : (Vo:d.,wo) -+ 
(201. w2; 203) such that: 

Equation (19) is analogous to Equation (12) and the ma Il 
in analogous to the linear map B of Equation (1 l),  therefore 
similar considerations about controllability and synthesis of 
feedback control laws can he derived. 
E. Input-Output Dehy 

Whatever the control law will he, input frequency and 
duty cycle shall certainly vary much "slowly" with respect 
to the wing beat period T = 27r/wO. It is important to 
determine what ''slowly'' means in this case. For this reason 
an estimate will be derived of the time delay occurring 
between the setting of input (frequency andlor duty cycle) 
and the generation of a steady output (the desired mean forces 
or mean torque). 

Suppose the control law decides to switch at time t = 0 
from an initial steady state space trajectory [4(t) 4(t)]' 
relative to in ut variables (Vo. wo, d )  to a new one relative 
to (VL;wA,d5. .Accordingly to linear systems theory, the 
trajectory after tune t = 0 can he thought of the superposition 
of the steady state trajectory [@'(t)  $'(t)lT and a transient 
trajectory [A$(t) A&(t)lT. 

Both initial and final steady state trajectories can easily be 
determined by Fourier coefficients in Table I. The transient 
is determined by the evolution of the system with initial 
conditions (at time t = 0) [4(0) - y(0) +(O) - 4'(O)lT = 
[A@(O) A&(0)lT and zero input voltage. 

Two steady state trajectories, corresponding to inputs 
(I/O.wo; d )  and (V';wb. d') ,  are used to evaluate integrals 
in Equation (18). b e  time it takes for such integrals to 
stabilize around the final +e is exactly the time it takes 
for the transient [A$(t) A+h(t)lT to fade away. Such a decay 
simply de -ends on [Ad(O) Ab(0)lT and the eigenvalues of 
the seconf; order system in Equation (14). i.e. in the state 
space variables: 

with eigenvalues: 

approximation clearly holds for Q = 3. The purely imaginary 
term represents the oscillatory nature of the filter while the 
real one represents its damping. The inverse of the real 
term is the time constant, i.e. 2Q/w, = TQ/T < T when 
Q = 3 < T. The time constant is less than a period (the 
period of the input voltage is close to the period of the 
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resonant frequency of the filter). In Figure (6),  average forces 
and torque settle to steady values within a cycle. Steady 
values can be derived also from maps in Figure (4), (4) and 
(5) for input frequencies equal to 140! 150, 165Hz and duty 
cycles equal to 0.4,0.5 and 0.6. For smoother transitions, the 
oscillations can he greatly reduced. 

Fig. 6, Averages'forces and torque transient due to variation of duty cycle 
at different frequencies. 

As a final remark, it is important to notice bow the choice 
of Q, in the design of the electromechanical system, affects 
controllability. Previous calculations show how a lower Q 
implies a quicker decay of transients, i.e. for a given input 
transition the delay between initial and final values of average 
forces and torque is lower. 

On the other hand, a high Q system would he capable of 
generating higher forces, including the mean lift fo, defined 
in Equation (12), which can be shown to be inversely.pro- 
ponional to the square of Q.  Since at resent no quantitative 
analysis for this trade off is available, 6 = 3 has been chosen 
based on values observed in most insect species [161. 

IV. CONCLUSIONS 

In this paper, we presented a detailed controllability analy- 
sis of flappin flight for an MAV with limited kinematics and 
PWM controf of wing-thorax electromechanical structure. 

In narticular. we show that a oair of wines with a sin- r ~~ ~~~ ~ ~~~~. 
&degree of freedom and passive rotation-are sufficient 
to ensure controllability of insect flight for hovering and 
forward motions. This has been shown using high frequency 
control theory applied to nonaffine control Gstcms. Bisideb, 
the wing parametrization adopted can be readily mapped to 
the mean torque and forces relative to the body frame, thus 
posing the basis for simple linear feedback laws. This is 
extremely valuable given the limited computational power 
available on board on the MAV. Even in the more realistic 
scenario when the electromechanical model of the wing- 
thorax is introduced and a simple PWM control of the 
actuators is assumed, controllability is still ensured. However, 
in this case, the wing-thorax electromechanical structure must 
he designed to have a fast transient decay when control input 
changes at the beginning of every wingbeat. Interestingly, 
this condition sets a trade off between controllability and 
efficiencv in lift eeneration. and it seems to be nresent also in 
most f l i iht  inseck since the quality factor (2. i,hich regulate 
this tradeoff, IS approximxel) 1 - 3 for most species. 

This work sets-the basis h for interesting future research 
directions. One direction is to introduce a more realistic 
model for the wing-thorax structure, including a nonlinear 

term in the restoring force and a quadratic dependence on the 
velocity in the damping term, and study their consequences. 
Another interesting topic is to model the transient decay in 
the mean forces arising from the dynamics of the wing- 
thorax structure. Also, we would l i e  to quantify analytically 
the performance loss in terms of controllability and power 
efficiency when a single degree of freedom wing with PWM 
control of actuatnrs is compared to a two-degree of freedom 
wing with analog control of actuators. Finally, we would 
like to set up a general framework for designing optimal 
control input parametrizations given the constraints on the 
electromechanical structure, and to compare them with those 
based on biomimetic principles, i.e. those observed in real 
insects. 
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